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Abstract

In this paper we consider a class of integral operators on L%(0,c0) that are unitarily
equivalent to little Hankel operators between weighted Bergman spaces. We calculate
the norms of such integral operators and as a by-product obtain a generalization of
the Hardy-Hilbert’s integral inequality. We also consider the discrete version of the
inequality which give the norms of the companion matrices of certain generalized
Bergman-Hilbert matrices. These results are then generalized to vector valued case

and operator valued case.
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1 Introduction

Let C; = {z € C: Rez > 0} be the right half plane. Let dg(s) = dxdy be the area measure.
Let L2(C,,dA) be the space of complex valued, square-integrable, measurable functions
on C; with respect to the area measure. Let Lﬁ(&) be the closed subspace of LZ(C+,dX)
consisting of those functions in L2(C+,dX) that are analytic. The space LZ(C+) is referred
to as the Bergman space of the right half plane. Let P, denote the orthogonal projection
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of L%(C,,dA) onto L2(C,). The functions %;,(z) = = +Z)2
[6] for L§(<C+). Let L>(C,) be the space of complex-valued, essentially bogpded, Lebesgue
measurable functions on C,. For ¢ € L*(C,), the little Hankel operator Ay is a mapping
from L2(C+) into L2(C,) defined by E, f= P, (&f), where P, isthe projection operator from
L*(C,,dA) onto L3(Cy) ={ fife L;(Cy)}. Let S s be the mapplng from L2(C,) into L2(Cy)
defined by S¢, f= P+(J(¢ f)) where J is the mapplng from L? (C+,dA) into LZ(C+,dA) such
that Jf(s) f(s). Notice that Jis unitary and JS¢f J(P+(J(¢f))) JP+J(¢f) P+(¢f) =
h¢ fforall fe L2(C+) Let F¢ be the mapplng from LZ(C+) into LZ(C+) defined by F¢ f=
P+M¢J f where M¢ is the mapping from L? (C+,dA) into LZ(C+,dA) defined by M¢ f=9¢f.
Thus F¢f P+M¢Jf P (p(s)f(s)) = P+(J(¢(s)f(s))) = J¢f for all f € L2(C,). Hence
F¢ S T

,z € C, are the reproducing kernel

For a > -1, let LZ(C+, "dA(s)) be the space of complex analytic functions F on C,
such that f |F(s)? “dA(s) < oo, where s = x+iy. One can also define little Hankel operators

S 4 on this space as we did in LZ(C+,dA(s)) We shall use the same notation S ¢,F¢,,h¢ to
denote little Hankel operators on L2 (Cy, “a’A(s)) and it will be clear from the context on
which space we are considering these operators. Finally, let L2 ((0 00), & T ) be the space of
complex-valued, absolutely square-integrable, measurable functions on (0, o) with respect
to the measure -

o+l

Let D ={z € C: |z] < 1} be the open unit disk in the complex plane C. Let L*(D,dA)
be the space of complex-valued, square-integrable, measurable functions on D with re-
spect to the normalized area measure dA(z) = }—rdxdy. Let Lﬁ(D) be the closed subspace
consisting of those functions in L*(D,dA) that are analytic. The space LZ(D) is called
the Bergman space of the open unit disk D. The functions {e,(z)}" ) ={ Vn+ 17"} | form

an orthonormal basis for LZ(ID)). The function K(z,w) = we D is the reproduc—

1
(I=awp> ©

(o8]

ing kernel [21] of LZ(D). If f(z) = Zanz” is holomorphic in D, a simple calculation
n=0

0 2
show that f | f(z)IQdA(z) = Z |a_,:-|1 . Consequently, f € Lﬁ(D) if and only if the last ex-
D n=0 n

pression is finite. The scalar product of f and g(z) = anzn, f.g € Lg(D), is given by
n=0

L2D). If f(2) = ) anen(2) € L(D)
n=0 n=0
then a, is called the n™ Fourier coefficient of f. Let L*(ID) be the space of complex-valued,
essentially bounded, Lebesgue measurable functions on D. For ¢ € L*(ID), the little Hankel
operator iy is a mapping from L2(D) into L2(D) defined by hef = P(¢f), where P is the pro-
jection operator from L*(D,dA) onto L(ZI(ID)) = {]_” 1 fe Lg(D)}. Let S 4 be the mapping from
Lg(D) into LZ(D) defined by S f = P(J(¢f)) where J is the mapping from L*(D,dA) into
itself such that J f(z) = f(z). Notice that J is unitary and JS 4 f = J(P(J(¢[))) = JPJ(¢f) =
I_D(qh f) = hgf for all f e LZ(D). Let I'y be the mapping from Lg(D) into LZ(D) defined
by I'yf = PMyJ f, where My is the mapping from L*(D,dA) into L*(D,dA) defined by
Myf = ¢f. Thus Ty f = PMyJf = P(¢(2)f(2)) = PU($@)f(2))) = S jof for all f e L2(D).

(fvé')Lg(D) =
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Hence I'y = S j4.
For —1 < @ < o0, let dA,, be the probability measure on D defined by

dAq(2) = (@+ 1)(1 = |z*)*dA(2).

Let L2(D,dA,) be the space of all measurable functions on the unit disk D for which the
norm

Hﬂﬁ=m+Dl;ﬂm%L%¥W¢M@<w.

The weighted Bergman space Lg(]D,dAa) is the subspace of functions in L*(dA,) that are
analytic and Lg(dAc,) is a closed subspace of L*(dA,). For convenience, we shall write
[*(D,dA,) = L**(D) and Lﬁ(D,dAa) = LZ’“(D). Let P, be the orthogonal projection from
the Hilbert space L?(dA,) onto the closed subspace L2(dA,), given by

PJ@=LK%wmmwmm

where K¥(z,w) = K(z,w)'*? = W,z,w € D is the reproducing kernel of Lg(dAa). Let
¢ be a measurable function on D. The little Hankel operator with symbol ¢ denoted by £y
is defined by hyf = Po(¢f). f € L2(dA,) where P, is the orthogonal projection from the

Hilbert space L*(dA,) onto L2(dA,), conjugates of functions in Lﬁ(dAa). Let L*(dA,) be
the space of complex-valued, essentially bounded, measurable functions on D with respect
to the measure dA, and H*(dA,) be the subspace consisting of those functions that are
analytic in L*(dA,). In this paper we shall consider only those symbols ¢ that are bounded
and lie in H* + H®, where H*(dA,) constitutes the conjugates of functions in H*(dA,). If
¢ € H™, then hy = 0. Let I's be the map from L2(dA,) into L2(dA,) such that Ty f = Po(¢J f)
for all f € LZ(dAa) where J is the mapping from L*(dA,) onto L*(dA,) such that Jf(z) =
f(@). Note that J is unitary. It can be checked that the operators I'y is unitarily equivalent to
an operator h(p for some ¥ € L*(dA,).

Let z = {=2. Hence 2Res = 2=z |Z| )

e . Recall that an analytic function F € L2 “4(C,) if and

only 1ff |F(s)|2 x%dxdy < oo, Let f(z) F( 1+Z) 1+Z Thus F € L ?(C,) if and only if

2\
fvoﬁ T4 a0 <o

11 +22 |1+

2

2f(2)

TRz (1-12%)*dA(z) < 0. Hence F € L>%(C,) if and

This is possible if and only if f

only if 7 ETACI NS L>*(D). Therefore f € L>*(D) if and only if —>—— F(s) € L>*(C,). For

14z a+2

G € H*(C,), the little Hankel operator

(] + )n+2

TG : L2(Cy, x%dA(s)) = L2(C,, X°dA(s))

is defined by _

TcU)(s) = Pop(G(5)U(s))
where U € L%(CJr, x“dZ(s)) where P,z is the orthogonal projection of Lg(c+, x“dX(s)) onto
Lﬁ(CJr,xﬁdX(s)). The operator fG is bounded. For proof see [11].
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For h(t) € L*((0, 00), df), we define the Laplace transform H(s) = (Lh)(s) = fooo e Sh(n)dt.
Then (L™ H)(?) = ﬁ fQH(s)e“ds, where Q is the contour {Res = y} for any y > 0.
The layout of this paper is as follows: In §2, we consider a class of integral operators

B+l a+l

(Kgu)(t) = f B L e+ DU, @B > -1
0 (t+71

)2

defined on L*(0, ) and show that these integral operators K, are unitarily equivalent to the
little Hankel operators fG defined from LZ’“(C}) into Lz’ﬁ (C,), where G = L(t‘¥ g(t)) and

the little Hankel operator TG is unitarily equivalent to the little Hankel operator I'y defined
S\a+2
from Lﬁ’”(D) into Li"g (D) where ¢(z) = (ﬁ)wr G(Mz). In §3, we calculate the norm of

the integral operator K, and obtain a genelr:liization of Hardy-Hilbert’s integral inequality.
Applications of the inequality are also established . In §4, we concentrate on weighted
Bergman-Hilbert matrices. We obtain the corresponding discrete version Hardy-Hilbert
inequality which gives the norm of the companion matrices of the weighted Bergman-
Hilbert matrices We show that the Bergman-Hilbert matrix A has no maximizing vector
and ||A|| < Z as an operator from P2 into itself and the corresponding companion matrix B
has norm 1. In section §5 and §6 we obtain generalizations of Hardy-Hilbert inequality for

vector-valued functions and operator-valued functions.

2 Little Hankel operators between weighted Bergman spaces

In this section we consider a class of bounded integral operators defined on L%(0, 00) (called
weighted Hankel integral operators) and show that these operators are unitarily equivalent
to little Hankel operators between weighted Bergman spaces of the open unit disk D. The
weighted Hankel integral operator K, from L?((0,00),dt) into itself is defined by

B+l a+l

(Kqu)(1) = f ) “—Twug(f +Du(r)dr.
0 (t+7

)2

We have shown that these operators are unitarily equivalent to little Hankel operators be-
tween weighted Bergman spaces of the disk. In Theorem 2.1, we show that for g€ L' N L?,
the operator K, is bounded and ||K|| < [Igll;.

Theorem 2.1. If g(t) € L'((0, 00),df) N L2((0, c0),dt) then the weighted Hankel integral op-
erator K, is well-defined and bounded with ||K,|| < ||gll; .

Proof. Let f,he L*((0,0),dr) be such that [Ifll;2 <1 and [|A||;2 < 1. Then,

‘f (Kgf)(t)h(t)dt‘ 5 g(t +7)f(n)h(t)dtdr|.

a+p+2

(t+7)2

B+l a+l
This result follows from [8] since the modulus of ”—LM does not exceed 1. O
(t+71)
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In Thecgem 2.2, we show tEat for G € H*(C,), the little Hankel operator fg from
LZ((CJr,x“dA(s)) into LZ(CJr,xﬁdA(s)), with 8> @ > —1 is unitarily equivalent to the integral

operator K, where G = L(t% g(t)).

Theorem %;2’ For B > a > —1, the little Hankel operator FG from Lg(CJr,x“a’Z(s)) into
L2(C,,x%dA(s)) with symbol G € H*(C.) is unitarily equivalent to the integral operator K,

defined above where G = L(t@ g(t)).

Proof. For &> -1, notice that —tr = £(x*)(21). Let S : L*((0,00),dr) — L? ((o, o), ,5’51) be
such that

SO =1 f@).
LetT : L? ((O, 00), [ﬁ‘%) — L2((0, 00),df) be such that

T =17 f(0).

It can easily be checked that S and 7' are unitary maps. Let K, be the operator unitarily
equivalent to K by the relation
Ky=T"K;S™".
Then the operator
= dt dt
K, L? ((0, 00), t—l) - L’ ((o, c0), tﬁ—l)

satisfies

(Knu)(s) = (T K, " u)(s)

- f ” Sﬁ—jwh(s +Du(t)dt.
0 (s+1) 2
LetG(s)=L (z’% g(t)), UGs)=L (t"T“ u(t)) and (TgU)(s) = Pop(G(s)U(5)) = R(s). Then
(G()HU), F(s)) = (R(s), F (s))
for all F € L2(C,,**dA(s)). Thus
(G(s), UGF(s)) = (R(s), F (s))

for all F € L2(C,,x*dA(s)). Also U(s) = £(¢*3 @) (s). Thus

00 Ba asl _ p+1 dt
fo t2 g(t)(t 1 M(t))*(fﬁ2 f(f))tﬁﬁ

:footﬂ;lr(t)tﬁ;lmﬂ

0 t’8+1
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where * denotes convolution, =y f(O = LTHF(s)}, T r(f) = L7Y{R(s)} and

(t%“ﬁ(;)) * (tﬁ%l f(t)) = fo T“T“ﬁ(r)(t—f)ﬁ%lf(t—f)df
= f 5 u(t)(t— T)ﬁ%lf(l —7)dT.
0

Hence

00 p-a a+l B+l dt

fo t g(t)(t u(t)) (t S (t)) yom]

= f & g(t)( f T u(T)(t T) 2 f (t- T)dT) Zf]
0 0

e pa asl pri—  d7
f: fro(x+T) gx+1)T 2 u(r)x f(x)mdx

= f‘”[ %g(}hﬂ')r 2 u(T)}x T f(x)dx

0| Jr=0 (x+7
) fol xﬁlﬂ (’? (x ’ ”))Of)x = f0dx
:f:; Eg(x% ))(x)x T2 ﬁ+1

|
[l o

Thus <(Eg (x"§1 LZ((o i ) = <xl% r(x),x[ilf(x)>L2((o’oo)’£l).

Hence (K (x"3'u)) (x) = x'F r(x) = £~ I{R(s)} and £ (K, (x*F u))(s) =R(s) = TgU)(s). O

u))(x),x’%‘f(x))

In Theorem 2.3, we have shown that for G € L*(C,), the little Hankel operator FG from
L[Z;"(CJr) into L,zl’B(CJr) is unitarily equivalent to the little Hankel operator I'y, from LLZ,"’(]D)

into L2#(D), where () = (12)" G(M2)

1+z
Theorem 2.3. Let G(s) € L*(C,). Then the little Hankel operatorfg defined from Lg”(@;)
into Li’ﬁ (Cy) by G is equivalent to the little Hankel operator Iy from Lﬁ’a(D) into Lﬁ’ﬁ (D)
\a+2
determined by the function ¢(z) = (ﬁ)mr G(Mz).

1+z
Proof. Let W : L>%(D) — L>%(C,) be defined by
(Wg)(s) 2+ (Ms) :
= S s

where Ms = %—: The inverse map W~ : Lﬁ’“(@,) — Lﬁ’“(D) satisfies

-1 _n5+l
WG)(@) = 28 VrG (M) s,
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where Mz = 122, Further, we shall define V : L;¥(C,) - L# (D) by (VG)(2) = 22“ \/‘ G(Mz)(m)ﬁ+2
1

where Mz = 1—Z The inverse map V! : LZB (D) —> Lzﬂ (C,) satisfies (V™ 1g)(s) = g(M S)——= (1+s)ﬁ+2
It can easily be checked that V and W are unitary maps. Notice that the operator W can
also be defined from L>*(D) into L>%(C,) and similarly V can be defined from L¥5(Cy)

into L>#(D) and are also unitary on these spaces. Then v,ZW = ||z"||62, =(a+1) f |z|2”(1 -
D

1
ZP)?dAZ) = (@ + 1) f V(1= dx = (@ + e DT@ED 11 Hence vy ~

F(n +a+2)
n‘ngl n>1and { } is an orthonormal basis for L ‘(D).

Let Paﬁ be the orthogonal projection of L %(C,) onto LZB (Cy4) and P,p be the orthog-
onal projection of L>%(D) onto L>*(D). Define the map J: [**(C,) - L2 “2(C,) such that
Jf(s) = f(s). We shall show that VrGW( )= r¢( ). That is, FGW( L )=vIr ()
Notice that

TaW(57) = PuGI(W())

= PoGT(22 5 () k)

(1+5)2+2

_ P22l 1 (1)
= Pa/,BG( \/7—1 Vn,(r(I*'E) (1+§)(y+2)

= VP (G2 (5 )

7'!' Vna 1+5 (1_'_30&2

24 N _lz\"
= V_IPQ/,B(Z‘Z/‘ 1‘ 2§+1 \/E( iJrZ) (]+1)H—2G(MZ)(1+Z):H—2)
+z 1

= V_IPQ,B (2a+2 tzﬂ (lTﬁLE) GMz2)——— (1+2)a+2 )

V1o (45 ()

Let ¢(2) = G(Mz)(l—?) . Then

FGW( < ): v—lpaﬁ(w( < ))
Y Y

7
_vIr ( )
Vn,a

Thus VFGW(Vn a) Iy (vn 0) and Tg is unitarily equivalent to I'y. O
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3 Hardy-Hilbert’s integral inequality

In this section we calculate the norm of the integral operator K, and obtain a generalization
of Hardy-Hilbert’s integral inequality. Applications of the inequality are also established.
Ifp>1, 11-7 + é = Land f(£),g() 20,0 < [[7 fP()dt < 00 and 0 < [[* g9(1)dt < oo, then

f"" ""f()6)<g’(y)dmy< .”” (fwfp(t)d;)p(foog"(t)dt)q, (3.1
o Jo x+y Sln(;) 0 0

/S
sin(%)
(3.1) is known as Hardy—Hilb]ert’s integral inequality. The inequality plays an important
role in analysis and its application (see [14]). In the last decade many generalizations and

refinements of the inequality were also obtained. We formulate the S—function as (see [13]):

where the constant factor is still best possible (see [10]). The integral inequality

0 1
- p=1 g, _
B(Pa‘])—fo (1+[)P+qt dt—B(qap)’ paq>0 (32)

Further, the Holder’s inequality with weight (see [13]) is as follows:
Ifp>1, % + é =1,w()>0,f,g>0,feLl(E)and g € L{(E), then

f w(t)f(t)g(t)d(t)S{ f w(r)ff’(r)d(r)}” { f w(t)g‘f(t)d(t)}q; (3.3)
E E E

if p < 1(p # 0); with the above assumption, the reverse of (3.3) holds, where the equality
in the above two cases holds if and only if there exists non-negative real numbers c; and ¢,
such that they are not all zero and

c1fP(f) = c89(t),a.e. in E.
In Theorem 3.1, we obtain a generalization of Hardy-Hilbert’s integral inequality.

Theorem 3.1. Suppose %+% =1,1<p<oo, felLP(0,00),g€L90,00),a> —%I,ﬂ> —%,f,gz

0. ghenoo yﬁ
x“ —(x

SB(Q’+1”8+ l)(fwfp(x)dx)p (foogq(y)dy)q 3.4
q pP 0 0

and the constant factor B(a/ + }1, B+ 117) is the best possible.
Proof. We shall first establish that if p > 1, [lJ + g{ =1l,a> —é,ﬁ > —%,f,g > 0, satisfy 0 <

fo‘” fP(x)dx < ooand 0 < fow g4(x)dx < oo then fom fooo %f(x)g(y)dxdy

1

< B(a+l,ﬁ+ l)(fmfp(x)dx)p (foogq(x)dx)q; 3.5
q p 0 0
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where the constant factor B(a + cl,’ B+ %) is the best possible.
By Holder’s inequality (3.3), we obtain

f f (x+y)a+,8+1 —————= f(x)g(y)dxdy

X\ (\E
f f (x+y)a+ﬁ+1 (;) f(X)()_C) gOy)dxdy

([ it )

(f f (x+y)“+ﬁ+1gq(y)dx‘ly) (3.7)
g yﬁ—— % 00 ) xa_%y[p.% é
[f {f (x+y)(1+ﬂ+1dy fP(x)dx fo f(; de Iy .

If equality holds in (3.6), then there exists non-negative constants c; and c,, such that
they are not all zero and

)ﬁ fp()—cz yB

( _|_y)a/+,3+l ( )a+ﬁ+l gq(y)7 a.e.in (0, Oo) X (0, 00)

It follows therefore that

c1xfP(x) = c2yg9(y) = ¢3,a.e.in (0,00) X (0, 0),

where c3 is a constant. Without loss of generality, suppose that ¢; # 0. Then we have

(o9 (o) 1
f fP(x)dx = S —dx = oo,
0 €1 Jo

X

which contradicts our assumption that 0 < fooo fP(x)dx < oo. Hence strict inequality holds
in (3.6). Putting 7 = <, we get from (3.2) that

00 a+ yﬁ—* 00 1 Ge)-1 1 1
0 <x+y>a+ﬁ+‘dy T 7 di=Blat o pro). (338)
Similarly, we have
1 1
00 x(l—; +E 00 1 i 1 1
f —)iﬁﬂdx:f Wﬂﬁw) ldt:B(a/+—,/3+—). 3.9
0o (x+y) o (I+10) qg P

Then from (3.6), we get (3.5). For the best constant factor, let for 0 < € < g(8+ %),

fs(x):{ _qj if x € (0,1),

x 7 ifxe[l, o).
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0 if x€(0,1),
ge(x) = _lre |
x ¢ ifxe[l,00).

Then

. L L
( f f”(x)dx) ( f g%y)dy) . (3.10)
0 0 €

Also

f f %fe(x)ge(y)dxdy

_lse _l+e
f fl (x+y)“+ﬁ+1x ry 4 dxdy
_ s
=f X f ) ———dy|dx
1 1 (x+y)athel

00 00 tﬂ—ﬁ
_ ~(1+€) _ )_’
_j; X [ . —(1 TS dt|dx (Settingt==,x>1)

00 00 — 00 1 — Lte

=f x 9y f Zﬁ—th —f K149 fx Zﬁ—th dx
1 0 (1 + t)a+,6'+1 1 0 (1 + t)a+,6+1

=5 -1 (say).

By (3.2), we have

and
o 1
X 1+e
I < f x40 (f zﬂ‘th]dx

1 f f —(1+ﬁ+ﬂ)dx

l _€E

trTy

€
(,3+ i 5)(,3+ st
=0O(1)

Hence

foo foo iff(x)gf(y)dxdyz lB(cx+l+f,,8+l—f)—0(1)- (3.11)
0 Jo (x+y)rthl € 9 9 P q

If the constant factor B(a/ + é, B+ 117) in (3.5) is not the best possible, then there exists a pos-
itive constant C < B(af + é, B+ %), such that (3.5) is still valid if we replace B(a + é, B+ %)
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by C. In particular, by (3.10) and (3.11), we have
1 1
B(a+ L T f)—eo(l)
q9 4 P 4

00 00 xa/yﬁ
se| [ sy

<eC (foo ff(x)dx)p (fw gZ(x)dx)q .
0 0

Hence B(a + %I,ﬁ+ %) < C as € — 0*. This contradiction leads to the conclusion that the
constant factor in (3.5) is the best possible. It now follows from (3.5) that

[ [ et sgontaar

:fo fo (x-l-xy%e_xf () g(dxdy

SB(CZ+1,,8+ l)(fwe_”fp(x)dx)p (fooe_qygq(y)dy)q 3.12)
q p 0 0

SB(a/+l,ﬁ+l)(fwfp(x)dx)p(fwgq(y)dy)q.
q p 0 0

It thus remains to show that the constant factor 1 in the inequality

foo e P fP(x)dx < foofp(x)dx (3.13)
0 0

is the best possible.
Suppose there exists a constant k,0 < k < 1 such that

f e P fP(x)dx < kf fP(x)dx (3.14)
0 0
for all f € LP(0,c0).
Setting
1 < L1og 1
Toy) = > P k
flx) {O, x>110g%,

o0 plogx 1.1 .
we havef (fT)p(x)dx:fp kdx: Elogyhence f1 e LP(0,00). Now
0 0

fm(e—PX—k)(f*)P(x)dxz l+Elog(k). (3.15)
0 p p

e
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Consider the function g(t) = —e "+ 1 —kpt,t € [0,00). Then g’(t) = pe ” —kp = 0 for t =
%log% and g’ (f) = —p?e P <0 fort = %log % Hence g(7) > g(0) for ¢ = %log % Therefore
1 +klog(§) > 0. Now from (3.15) we get

f oo(e—f’x — k(NP (x)dx > 0.
0

This is a contradiction to the assumption (3.14) and we thus show that the constant factor

1 in the inequality (3.13) is the best possible. Again the constant factor ( ) is the best

possible in the Hardy-Hilbert’s integral inequality (3.1). Hence the result follows.

Corollary 3.2. If f,g € L*(—0, 00), then
| Tooshte= 9172 fohg(0sc] < 211 otz
Proof. Consider the map W : L*(0,00) — L*(—00,00) defined by

WF(E) = V2e' f(e™).

The operator W is an unitary operator . Let f be a continuous function with compact support

in (0,00) and h(x +y) = W,x = ¢%,y = ¢2%. Define K, : L*(0,00) — L*(0,00) by

(Knf)(x) = f o (3.16)

We proceed to show that K, = W*CW, where C : L[*(—00,00) —> L*(—00,0) is defined as

€nw=4 [ teoshe-s12rs)as.
Notice theItoo

© x o,
(Knf)(x) = VENTO)
0o (x+y)?
foo etesf(ezs)Zezs s
oo (th +625)2
_ 00 \/_eteteSf(eZS)zeZS
- \ref (€21 + ¢25)2 ds
_ \/_eSf(eZA)ze%eZt
- \/>€t e2t + e2S 2 ds
B Wf(s)ds
B Z\fe’ oo [e2+ers\2
2eles )

| < Wf(s)ds
2V2et oo (et_szes_t )2

= ﬁ‘[m[cosh(t—s)]_ZWf(S)dS
= (W'CW/f)(x),
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since if g € L?(—c0, c0) then f;’) = 7 g( logx) =W*g(x). Thus K;, = W*CW, where C is

the convolution with % That is,

1 (o)
€nw=3 [ Teoshie=s12(s)ds.
Since K} and C are unitarily equivalent hence ||C|| = 1 and

KCF, @ < 1Nl 200,00 181122 (~c0,00)-

Thus
< 201 f 22— 00,000 181l 22(=00,00)

' f B [cosh(z — )] 72 f(s)g()dsdt

O

Theorem 3.3 shows also that the integral operator (K, f)(x) = f u(x,y) f(x)dx, where
0

e(\f\D

is also bounded from L”(0, c0) into L9(0,00) and [IK, || = ===, where 1 + ==

u(x,y) =
1.

SlIl

Theorem 3.3. Let l + 1 =1,1 < p<oo,feLl(0,00),g € LI0,00), f,g >0, then

00 _(\f“'\/—) 1 ) é
f f gy < )( f f"(x)dx) ( f g‘f(y)dy) and the
0

constant factor is the best posszble

sm( )

Proof. Using Hardy-Hilbert’s inequality (3.1), we obtain

o (00 - (VEHP)
f f Y etdxdy
0 Jo xX+y

s o N % o N q
e ([Cervirwa ([ erieom)

T 0 P(o0d » 0 40 7
<
S o [ o) ([ sroras
asePVi<1forte (0, 00). It remains to show that the constant factor 1 in the inequality
f e PV P X < f FP(x)dx (3.17)
0 0

is the best possible. Suppose there exists a constant k,0 < k < 1, such that

f e fPdx <k f N FP(x)dx (3.18)
0 0

for all f € L”(0,00). Setting

2
fT(x):{ 1, OSxS(I%logZI%)

0, x>(%log% ,
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o (5logt) 1. 1)
Wehavef (fk)p(x)dx=f dx:(—log%) .HencefTeU’(O,oo). Now
0 0 p

© 2 k k
f @ PV -l dx = =+ = (log -).
0 p p\ e
Consider the function

1 2
g(t) = —2( Vie PVl 4 ;e‘p ‘ﬁ) + ” — kpt; hence g(0) = 0.

Further,
-pi —pi_ —p)eP Vi
g =—2|¢ L Nte?™=p) (=p)e .
2t 2Vt 2p VNt
1 p 1 _ \/'
=2|—-S———|ePV—k
[M 2 2%] P
=pe Vi~ kp.

e _pi 1 . _ (1 1)2
Therefore g"’(t) = pe P V(- p)- T Now putting ¢ = (; log Z) , we have

’ 1 1 2 —p(llogl)
g Elog; =pe "7 EE(=p)-

1

2(%log%)

_-p ]
2 L(-logk)
3
= Pk <0.
2logk

2 2
Hence g’(¢) =0 for t = (% log %) and g”’(r) < 0 for t = (%log %) . Thus g(#) > g(0) for t =
2 (o)
(% log %) . Therefore f (e7? v _ k(f tp )dx > 0. This is a contradiction to the assumption

0
(3.1) which shows that the constant factor 1 in the inequality (3.17) is the best possible.

Again the constant factor =2+ is the best possible in the Hardy-Hilbert’s integral inequality.

sin( % )
The result follows: O

In Corollary 3.4, we further generalize the inequality obtained in Corollary 3.2.

Corollary 3.4. If f,g € L*(—0,00) and «,8 > —1, then

f [cosh(t — )7 @D f(s)g(t)dsdt| < 2P| £l 12 —co.00) 181l 2(co.00)-
0
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Proof. Consider the map W : L%(0,c0) — L?(—c0, 00) defined by Wf(r) = V2e'f(e*). The
operator W is an unitary operator. Let f be a continuous function with compact support in

(0,00) and x = €*,y = ¢**. Then

(Knf)(x)

f * XY f(y)dy
0 ( x+ y)a+/3+1

00 20zt 2,Bs f(eZS) 2€2Sds
f e2t + e2s)a+ﬂ+l

f xf 2¢° f(e)-2¢" - 2! . 2BS (g

eZt eZs)a+,B+l
Wf(s)ds e(2ﬁ+])s 282al

\ﬁ . (€2t + @25)a+B+1
Wf(s)ds e(2ﬁ+1)s 26(2(t+1)l . 2a+,8+1
= ('W’?f o2 4 p2s)a il
| ) 00 Wf(S) e(2ﬁ+1)s a—0 . 26(20+1)t . e,B—a

2 20 e’ - (€2 + e25)+p+]
| | < Wf(s)ds
V2et 2 ) 0 g s \atB]
( 2ele’ )

= #ﬁf [cosh(t — )] @D W f(s5)ds
= (W'CW)) ),

since if g € L?(—c0, 00), then £0 _ \f g( log x) = W*g(x). Thus K;, = W*CW, where C is

\f

the convolution with (cosh?)~@**+D_That is,

(CH) =

SatB I [cosh(z — 5)] @D f(s5)ds.

Since Kj and C are unitarily equivalent, hence ||C|| = 1 and

|<Cf’g>| < ||f||L2(—oo,oo)”g“L2(—oo,c>o)'

Thus

f B [cosh(t — )] @D £(5)g(t)d sdt
0

For a, > 0, Aleksandrov and Peller [1] studied the integral operator

(3% f)(x) = fo h(x 448 ().

< 2a+ﬁ||f||L2(—oo,oo)“g“LZ(—oo,oo) .

(3.19)

Clearly, if & is a locally integrable function on (0, c0), the right hand side of (3.19) is well
defined for smooth functions f with compact support in (0, c0). The integral on the right
hand side of (3.19) also makes sense if 4 is an infinitely differentiable function with com-
pact support in (0, c0). Integral operator SZ’ﬁ are called distorted Hankel integral operators.

These operators are studied in detail in Aleksandrov and Peller [1].
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For a = =1, the operator SZ”B coincides with the Hankel integral operator K n, where
K, : L2(0,00) —> L2(0, 00) is defined as (. f)(x) = f h(x +y)f(y)dy. For a locally inte-
0

grable function £ on (0, 00), the weighted Hankel integral operator KZ"B is defined by
KN = [P sy
0

where h(x+y) =

( " )2 , for smooth functions f with compact support in (0, o). The operator

KZ'& are analogous of weighted Hankel matrices form {(j+ 1)*(k + l)ﬁ;l/( J+k)}ji=0, where

Y is a function analytic in the unit disk. For @ = 8 = 0, the operator KZ"B = 7?/1. Let a,8>0.
We introduce the unitary operator A, on L*(0,0) defined by

(Ag f)(x) = 7“’ ~3 f(xv), f € L2(0,00).

Suppose £ is a locally integrable function on (0, c0). Then

This can be verified as follows: Observe that (A; )x)= B x/%‘% f(x%). Hence

(Aa TP AL )(x) = A TGP Bt
) ‘/BA‘”(IO h(x“ﬂﬁ)yg‘%f(yg)dy)

= % X fo h(x+9)y2 2 F(P)dy
= ﬁl mxi_l /3 g
Va B Jo

=ﬁf xi_%zﬁ_%h(ﬁz)f(z)dz

1 ( Abdt
o A

As a result of this it is not difficult to find the norm of a weighted Hankel integral operator
if we can calculate the norm of the corresponding distorted Hankel operator and vice versa.

Dh(x+2)f (z)zﬁ

4 Norm of the Bergman Hilbert matrix

Let >(U) be the Hardy space of functions which are holomorphic in the upper half palne
U and for which

IIfIIi,z(U) = supf If (x+ iy)PPdx < oo.
y>0 J -0
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For 0 < p < o0 and a > —1, let AP? be the Bergman space of functions f which are holomor-
phic in U and which satisfy

T f G+ in)lPy*ddy < co.
U

We define integration of arbitrary order using the Fourier transform. For any complex
number w with Re(w) > 0 and function f in any of the A?* we define the integral of f of
order w, I’ f, by

(I f) =17 F (@),

Here fis the Fourier transform of the distributional boundary values 1in(1) f(x+iy). These
y—

operators have the expected action on basic building blocks. That is,
I(@=07 = cz=0™",

where ¢ is a constant. We define the general differentiation operators D" by D" = 177"
Rochberg [17] studied the Schatten class properties of weighted Hankel integral operators
for complex «, 8. He showed that the operator KZ’ﬁ acting on functions defined on (0, o) by

(K™ f)(x) = f —

is equal to DYH_.DP with D**c = b and ‘H, is the Hankel operator defined on H?(U) by
H,.f = Q(cf) and Q is the orthogonal projection from L*(R,dx) onto H2(U) = {? cfeHXU )} .
Alternatively, these operators K,‘;’ﬂ can be regarded as Hankel type operators on the Bergman
space AP?. Fractional integration gives a unitary equivalence of A”? and H?(U) and hence
can be used to pull these operators over to H>(U). When this is done (by straight forward
Fourier transform calculation) the resulting operators are of the form K}(f’ﬁ .ForgeL'nI?
Partington [15] has shown that the integral operator

)M S B(s+ 0 f (e

Ko )0 = fo g(x + ) fO)dy

on L?(0,c0) is unitarily equivalent to the Hankel operator I'¢ defined on H 2(C,) where
G =Lgand Tg is unitarily equivalent to the Hankel operator Iy, defined on H (D), where

(o) = <2,

In thls paper we establish that for @, 8 > —1 the integral operator
00 xayﬁ
(Ko f)(x) = fo Wg(x +y)f(y)dy

defined on L?(0,c0) is unitarily equivalent to the little Hankel operator TG defined from
Lﬁ’“(@r) into Lﬁ’ﬁ (Cy)whereG=L (t[% g) and fG is unitarily equivalent to the little Hankel

—\a+2
operator I'y, defined from L,zl"’ (D) into Lﬁ’ﬂ (D) where ¢(z) = (ﬁ)mr G(M?z). From Theorem

1+z
2.2 and Theorem 2.3, it follows that for & € L' N L?, the integral operators K;:’ﬂ,a,ﬂ >
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—1 on L?(0,c0) are unitarily equivalent to little Hankel operators I'y =S4 defined from

the weighted Bergman space LZ’“(D) into LZ’B (D). For ¢ € H*(D),$(z) = Z?ﬁ(—n)z”, the
n=0
matrix of Sy with respect to the orthonormal basis {e,(2)},”, = { n+1z" } of LZ(D) is

given by
Vi+14/j+1
i+j+1

(o0

(Sgej.er) = B(=(i+))), i,j 2 0.

Thus §4 = DzB D,, where y(e?) = Z ¢( k)e *¢ = ¢« ¢;. The function ¢ is the con-
:0

volution on the circle of ¢ = Z@(—k)e‘”‘g (the boundary value function of ¢) with the func-
k=0

- . 1 .
tion ¢ (e) = Z me"ke, BJ is the operator on Lﬁ(D) having a classical Hankel matrix

with respect to the standard orthonormal basis of L2(D) with symbol W and Dye i=4/jt+1e;
for all j > 0. Hence

VT VT~

it j+2 — 5 ¢+ j+1),ij=0.

(S gej.ei) =
For example, if we take E(eie) = —i(m—0),0 <6 <2x. Then a € L*™(T), where T be the unit
circle and if

(o]
¢(610) — Z aneme’
n=—o0o0

then

{0 ifn=0;
M -1 ifnzo0,

and the matrix of S ,~ with respect to the orthonormal basis of H>(T) is the Hilbert matrix

eiyg

= [l. +Jl. i o Let ¢ = z¢ be the harmonic extension of e ¢ into D. That is, ¢» = ¢"?¢(the
boundary value function of ¢,). Notice that the matrix of the little Hankel operator S ;4 with
respect to the standard orthonormal basis of L2(D) is equal to

VATV

G2 .

A =la;;] =(D2B Dsej,e;) =

ey

which is called the Bergman Hilbert matrix. Thus A is the Schur multiplication of the

Vir1fj+1
]. Let B = [b;j], where b;; = (li+j+2;2 )

The matrix B is called the homogeneous companion of A. Notice that a;; = m; JH’Jﬁ and
0 <m;; <1 for all i and j. Since [[I'|| = 7 (see [4]), hence [|A]| < [|[]|. It is not difficult to
see that the Hilbert matrix I' as an operator on /*(Z,) is unitarily equivalent to the integral
operator

matrices [m;;] and the Hilbert matrix I" = [l. +J1.+1

K () = fo e+ ) f Gy, f € 2(0,00),
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—X

where Fﬁ(x) = 67 On the other hand, the Carleman’s operator on L*(0,00) given by

(G4)x) = fo B +3) )y,

where h(x) = % and the operator ®, is unitarily equivalent to the Hankel operator H defined

on H?(T) whose matrix representation with respect to the standard orthonormal basis is

1
5

)
I
[\
DUl Qul— © =
vl Qulm O
D s Ol
wi— O

Let M denotes the Mellin transform on L?(0, c0) defined by

My(s) = fow x* ! f(x)dx.

[
(E) = fo s

for f € L*(0,0). It is easy to see that MEgf(s) = m(s)Mp(s). This can be verified as follows:
Notice that

and

M (s) = fo # N EfH
B fmfwxs_l \/}Wf()’)dydx
0 0
S

(x+y)?

_ “ s—1
—fo (1+x)2dxfo y o fdy.

Thus Mg (s) = m(s)Mp(s), where

00 xs—%
m(s)zj(; (x+1)2dx

(1 1
—2 S|mcosecrn|s 2

1
o(E) = closure of range {m(z + it) ‘te R}

Hence

= Range{tcosech t : t € (0,00)} = [0, 1].

VED

(x+y)? 15

The operator B is not unitarily equivalent to the integral operator E and the kernel
not a decreasing function in either variable.
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Let H be a separable Hilbert space and let £(H) denote the set of all bounded linear
operators from the Hilbert space H into itself and LC(H) denote the set of all compact
operators in L(H). Let T € L(H). A maximizing vector for T is a non-zero vector x € H
such that ||Tx|| = [|T]| ||x||. Thus a maximizing vector for T is one at which T attains its norm.
On a Banach space, even rank 1 operators need not have maximizing vectors. The operator
Mx(t) = tx(¢),0 < t < 1, is bounded on L?*(0,1) but has no maximizing vector. However,
compact operators on Hilbert spaces do have maximizing vectors.

Suppose T € L(Lﬁ(D)) and o (T") denote the spectrum of 7. To determine ||7’||, one may
investigate the spectrum of the operator 7*T. Since T*T is self-adjoint, its spectral radius
equals ||[T*T|| = IT]1%. We define the essential norm of T’ € .L(L(%(D)) denoted by ||T||. as

ITlle = inf{IT - K| : K € LO(L;(D))}.

The essential spectrum of T (denoted by o.(T)) is defined to be the spectrum of the
element T + LC(LZ(D)) in .[:(LZ(D)) / LC(Lﬁ(ID))). The essential spectral radius of 7, which
we write ro(T) = sup{|d| : A € o.(T)}. If T is self-adjoint, o.(T') consists of limit points of
o(T) or eigenvalues of infinite multiplicity and o(T)\o.(T') consists of isolated eigenvalues
of finite multiplicity. Further, ||T|| = sup{|A| : 4 € o(T)} and ||T||. = sup{|d] : 1 € o.(T)}. It
is not difficult to see that o.(T) C o°(T). Whenever T is a normal operator, any point in the
spectrum of 7 that does not belong to o.(T) must be an eigenvalue of finite multiplicity. It
is not difficult to show that ||T*T||, = ||T||§ for any bounded operator 7. Hence ro(T) = ||T||.
whenever T is self-adjoint. Similarly, the spectral radius of T = r(T) = ||T||, if T is a self-
adjoint operator.

Lemma 4.1. Let T € L(L2(D)). The function f € L2(D) is a maximizing vector for T if and
only if T*T f = ||T|I*f.

Proof. Suppose T*T f = ||T||>f. Then

ITAIP =(T £, T
=(T*Tf.f)
= (ITIf. /)
= ITIPIA1P.
Hence ||T f|| = |IT|| || ]l and f is maximizing vector for T'.

Conversely, suppose that ||T f|| = ||T|| || f]|. Then

ITIPIAP = IT £1P
=(Tf.Tf)
=(T*Tf.f)
<IT*T AN IFI
<IITIPIAIP.

Thus T*T f is a scalar multiple of f and in fact [|[T*T f]| = |IT|]’|lf|| and since T*T is a
positive operator, we obtain T*T f = |12 f. O
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Proposition 4.2. [fT € L(Lﬁ(D)) and ||T|le < ||T|| then T has a maximizing vector.

Proof. Consider the positive operator 7*T. Notice that
ro(T*T) = IT*Tlle = ITI; <IITI? = |1 T*TIl = H(T*T).

Therefore ||T||%, the largest element of the spectrum of T*T, does not belong to the essential
spectrum. Since any self adjoint operator is normal, ||7||> must be an eigenvalue of finite
multiplicity. Consequently, 7*7 has an eigenvector corresponding to ||7||> on which the
operator T attains its norm. O

Lemma4.3. LetR = (rij);x;zo , is self-adjoint, r;; > 0 and Z rijpj<Mpijforalli=0,1,2,---.
\ =
ThenRf =Mf,f € lel(D), implies (f,e;) =kp;,j=0,1,2---. for some constant k.

Proof. Let fj=(f,e;),j=0,1,2,---. Then

2 2
erijfj = ZZ‘/;U\/_\/;U
i=0 | j=0 i=0 |j=0 \/_
SIAS riflfil?
i=0 \ j=0 =0 Pi
L
= i ij
i=0 =0 P
0 |f]|2 ()
<M| > =N rps
j=0 Pj iz
< M? [Z | fj|2]
Jj=0
: :
T fi - > 7l fil .
Now [IRfll = Milfllimplies > (i voj)| V== =| D rpi| | D, =] - Thatis,
=0 VPil S =0 i
equality holds in the Cauchy-Schwarz inequality. Hence f; = kp; for all j=0,1,2,--- and
for some constant k. o

Lemma 4.4. The following hold: (i) ||A|| < % (u) ||B|| = 1. (iii) The norm ||A|| is an isolated
eigenvalue of A of finite multiplicity. (iv) The operator A as an operator from I into I* has
a maximizing vector.

Proof. To prove (i), let p; = ¢; = ‘/% Applying Schur test (see [3], p. 30), we obtain

D= 7T Z

2
— (z+]+1)

and

Zb”p’ B WZ (l+J+2)2
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. L. : . . .
Since - Z o is a strictly decreasing function of r, we obtain

rl-r

k>r
('+1)i ! <i L
LG T 4?6

o0 2
Thus it follows that Z a;jjpi < (%) p;j- By symmetry,

i=

2 2
T T
ajjpj < (E)Pi and ||All < <

r

I
(=]

J

S 1 1
Further, since Z — 7 <= T we obtain
pary (i+j+2) Jj+

i1 1
Z (i+ ]+2)2 i+l '
VNS The kernel K satisfies the hypothesis of Theorem

(x+y)?

Hence ||B|| < 1. Now let K(x,y) =
318 of [10] with p =2 and

(o) (o] 1
K:f K(x,l)x_;dx:f dx=1.
0 o (I+x)?

Using [10] one can show that ||B|| > 1. Therefore ||B|| = 1. This proves (ii).

Vit A1 23+ j)+3

i+j+1 (i+j+D)(i+j+2) "

Since agp = 1, we have ||A]| > 1. Let C = [¢;;], where ¢;j = a;;—b;;. Thus ¢;; =

Since Z c;; < oo, the matrix C is Hilbert-Schmidt.That is, B is a compact perturbation of
i,j=0
A. It is also not difficult to see that ||A]|, = ||B||. = 1. To verify this, suppose ||Bl|. < ||B|| = 1.

Then it follows that 1 is an eigenvalue of B. Now, since Z p? = Z L is divergent, it
= =

follows from Lemma 4.3 that this is impossible. Thus ||All. = ||B|le = 1 and ||A — C|| = ||A]l,

giving the best compact approximant of A. We also have 1 = ||A]|, <||A]| and hence there are

points in 0 (A) which do not belong to o.(A). In particular, ||A]| is such a point. Since A is

self-adjoint, all these points are eigenvalues of A. It follows from Proposition 4.2 that the

operator A has a maximizing vector and ||A|| is an isolated eigenvalue of finite multiplicity.

This proves (iii) and (iv). It follows by Lemma 4.3 that %2 cannot be an eigenvalue and
hence ||A|| < Z. This proves (i). O

Remark 4.5. The matrix B as an operator on 2 is self-adjoint, positive, o(B) = 0.(B) =
0.(A) =[0,1] and B dose not have isolated eigenvalues of finite multiplicity in [0, 1].

. . . . @ ©
In general, one can consider the generalized companion matrices e of the
(m+n)(1+ﬁ+l mn=1

me nﬁ

weighted Bergman Hilbert matrices Trn )T BT

. In the following theorem, we establish that
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. @, o0 . . .
the norm of the matrix (W) | as an operator from /2 into itself is B(a/ + % B+ %)
mn=

where —% <a,B< % In fact, we prove a more general result.

<a<

Theorem 4.6. Let p > 1,%+}1 = 1,—é %,—% <B< (11. If ay, b, >0,mn=1,2,3,---

satisfy 0 < Zafn <ooand0<ZbZ < o0, then

m=1 n=1

Zz(mlnn;iﬂﬂa’”b <B(“+ ﬁ+p)[z ] (qu) ; .1

m=1n=1

where the constant factor B(af + é, B+ %) is the best possible. In particular

l)fora/——and,B— , we have
mrn? p 1
) Zl(mm)zambn{;am] (Zb) , @2)

ii)fora/:,B:%andpzqu,wehave

» b < Z Z b . 4.3)
Proof Rearranging the terms and using Holder’s inequality, we obtain

@B
Z Z (m -Tn)n‘”ﬁ” b

m=1n=1

1

s[i[i%( )l )(i[i(mfn;ﬁﬁﬂ( )llbq]. (4.4)

m=1 1Lln=

Forg < %I, using (3.8) we obtain
(e8] B 1
Z m®n (m)q=ma+$z 1 . 1
p (m+n)a+,6'+1 (m+n)<z+,6’+1 né_’B
I " 1 1
<m 4 . dt
nzz;fn_l (m+t)a+ﬂ+l té_ﬁ
00 (x+ltﬁ—l
q q
_ f mor
0 (m+t)"+ﬁ+1

[+52)
=Bla+-,0+—].
q p
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Similarly for a < [—1), using (3.9) we obtain
1

- m®nP n\» 1 1
Z(m+n)“+/5+1 (—) <B(a+c—l,ﬁ+;).

m=1

Hence (4.1) follows from (4.4). For the best constant factor, we take for 0 < € < g(8 +

1/p),
l+e
an=m » (m=>1)
and
— 1+e
by=n"1 (nx1)
Then
Zaﬁz 1+Zm1+e < 1+f1 x edx = 1+Z'
m=1 m=1
Similarly
ZEZ <l+-
€
n=1
Hence
(o) L (o]
| — ! 1
(ZagJ {Zb,‘{] <l+-
m=1 n=1

17 eil_o  eql_
m=1n=1 (m+”)a+ﬁ+ mrt e pate P

_lte  _lte
f fl (x+y)"+ﬁ+] “x P -y 4 dxdy

> — B( +—+- ﬁ+l——) Q).
€ q9 4 P 4

4.5)

(4.6)

If the constant factor B(a/ + é, B+ 117) in (4.1) is not the best possible, then there exists a pos-

itive constant C < B(af + é, B+ %), such that (4.1) is still valid if we replace B (a + é,,B + %)
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by C. In particular, by (4.5) and (4.6), we have

B(a/+l+f,,8+l—f)—60(l)
q q

o s
<i62£1:£:(n1:i¢£ﬁﬁ+1 b
<eci )[i ]

Hence B(a+ %I,,B+ %) < C as € — 0*. This contradiction leads to the conclusion that the
constant factor in (4.1) is the best possible.
O

We shall refer the inequality (4.2) as Bergman-Hilbert inequality as it involves the com-
panion matrix of the Bergman-Hilbert matrix.

S Generalized Hilbert inequality for vector valued functions

In this section, we generalize the Bergman-Hilbert inequality (4.2) for vector-valued func-
tions. Here we consider sequences (x;,) whose terms are elements of a separable Hilbert
(o]

spaces H and such that 0 < Z ||xn||2 < o0. We observe that in the discrete case the in-
n=o
equality involves inner products and in the continuous case the inequality involves integral

operator with matrix-valued kernels.

Theorem 5.1. Let (x,) and (y,,) be two sequences in the separable Hilbert space H such

that 0 < Z lxl? < 0o and 0 < Z lyal? < co. Then

S o Vi TV 1,y SRENRE
2 omrniar {Zn m||2} {;nmﬁ} 5.1)

m=1n=1 m=

where the constant factor 1 is the best possible.

Proof. Let H + {0} be a Hilbert space and & be an orthonormal basis for #{. The set {e €
El(z,e) # 0 for some z = x,, or y,} is countable, let us enumerate this set as the sequence
{e1,e,€3,---}. Then every x,, and y, can be expressed as

(o)
Xm = Zamkfk; Yn = ankfk,

k=1 k=1

where a,; = (X, €, buk = Yn, €. Then (x,,, y,) = Z amkEnk. By Parseval’s identity [1x,I? =
k=1

(o)

(o)
Z |amk|2, for every m and ||yn||2 = Z |bnk|2, for every n. So we have |a,x| < ||x,|| for all m
k=1 k=1
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and |b,x| < ||yl for all n. Hence for each k,z |amk|2 < oo and Z |bnk|2 < oo. Now using

m=1 n=1

Hilbert’s inequality (3.1), we have for each k,

ii '(m+ 3 |an,k||bnk|<{;|amk|} {gwnkﬁ}z.

m=1 n=1

Taking summation over k from 1 to p and using Cauchy-Schwarz inequality, we get

Zp]ii V(;f;mmknbm < {fimmu } {Zp]f) nkF}é

1 1

b e - }
ZZZ—% '2)21|amk||bnk|<{2||xm||2} {;nynnz} : (5.2)

Notice that

[ee] [e6]
ooyl = | Y kb < D el I
k=1 k=1

It follows from the relation |a,||buk| < %(Iamkl2 +|bul?) and the convergence of the series

Z |amk| and Z Ibnkl Hence letting p — oo in (5.2), we obtain (5.1). In particular for

k=1
the Hilbert space 7{ R, (5.1) reduces to the Hilbert’s inequality (3.1). Since the constant

factor 1 in (3.1) is the best possible, so we conclude that the constant factor 1 in (5.1) is the
best possible. O

We shall now present the integral version of the inequality (5.1) and derive some related
inequalities using tensor products.

Let L>©"(D,dA) denote the Hilbert space of C"—valued, norm-square integrable, mea-
surable functions on D and Lﬁ’Cn(D) the corresponding Bergman space. We notice that
L*C"(D,dA) = L2(D,dA)®C" and L>“"(D,dA) = LA(D,dA)® C" where the Hilbert space
tensor product is used. When endowed with the inner product defined by

(f&r2en.an) = fD (f(2).8(2))crdA(2), for f.g € L**(D.dA),

the spaces L*C"(D,dA) and Lﬁ’cn (D,dA) become separable Hilbert spaces. Here the mea-
sures dA(z) denotes the normalized area measure on D. If @ is a bounded, measurable M,, =
M, (C)—valued function (the algebra of n X n matrices with complex entries) in L;,(D) =

L*(D)® M, then S denotes the Hankel operator defined on Lﬁ’c" (D,dA) by

So.f = PI(®f) for f € L% (D,dA),
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where P is the orthonormal projection of LZ’C:(D, dA) onto Lﬁ’cn (D,dA) and
J: L*C'(D,dA) — L>©"(D,dA) is defined by JF(z) = F(Z) and (®f)(z) = O(2) f(z).
Let® e L;‘jln (D) and

6 0 - 0
0 e 0
oo| ) 2t

Then each entry ¢;; of ® is in L*(D) and

Sy 0 -+ 0
So =1 . ?22 . .
O O e S¢nn

This is so as L2C (D,dA) = L2 (D)@ L2(D)&--- L2(D).

n—times

Let

L*©(0,00) = L*(0,00)®C"
= L%(0,00)® L*(0,00) @ - -- & L*(0, c0).

For F,G € L>%" (0, ), the norm is defined by

1

00 2
1 |per = ( fo ||F<x)||éndx)

and the inner product is defined by
(F,G) = f (F(x),G(x))crdx.
0

With the above inner product L*C"(0,0) is a Hilbert space. For details, see [2]. Let

VXA o~y
Ty . 0 - 0
XAy o~y
O I
0 0 s Na e

X+y Xty pxn

Define By : L>©"(0,00) — L*C"(0, 00) by
BuF) = [ Ha+ PO,
0
The map By is well-defined, linear and for G € *c (0, 00),

<BHF,G>:fwfmG*(x)H(x+y)F(y)dydx,
0o Jo
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where G*(x) denotes the adjoint of G(x). Notice that

K. 0 - 0
11
0 kK - 0
By =| . 2
0 0 - K
where (Kf)(x) = f \/i\/yﬁ(ﬁy)f(y)dy,feﬁ(a 00).h(x) = < and Tyj(x) = h(x), for
0o Xty X '

alli,j=1,2,---n.

Lemma 5.2. The operator By : LZ’CH(O, 00) = L2C"(0, 00) is a bounded linear operator and
1Bull= 1.

Proof. Let F = (fl,fz,---fn)T, where f; € L2(0,oo) foralli=1,2,---,n. Then G = ByF =
(g1,82,---gn)" and g; € L*(0,00) forall i = 1,2,--- ,n. Now

1B FIP = fo B F)OZdx = fo IG O Zndx
- [ [Z|gj<x>|2]dx=z INIERE
N 1o
=, f Ky, fPdx= Y IK; fill
j=1v0 ' P
< D K PP < D IR
j=1 j=1

:,Z* fo (0P = fo [;m(x)ﬁ]dx

= f IF (x)[1Zdx
0

2
= IFI, -

Thus ||Bgl|| < 1. Now it remains to show that ||Bg|| > 1. Let f € L*(0,00) and F =
(f.0,0,--)T. Then ||F|| = || fI. So,

KK, [, = KBuF, F) < ||Bull IFI* = |Bull Ilf1?
gives 1 = ”KZ“ || <||Bgll as KZ” is self-adjoint. Hence ||Bgyl| = 1. O

Now we generalize Theorem 3.1, for the case p = g = 2, to vector-valued functions.
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Theorem 5.3. If F,G € L>©"(0,0), then
1 1
f f G*(x)H(x +y)F(y)dxdy s( f ||F(x)||é,ldx) ( f IIG(y)IIéndy) , where the con-
0 0 0 0

stant factor 1 is the best possible.

Proof. Since ||Byl|| = 1, so the result follows from the fact that
KBuF,G)| < |F|l 2 |Gl 2,
for all F,G € L>©"(0, o). O

~N0w let 51 j(ei‘)) =—i(mr—-0)e"?,0<0<2n,1<1,j<nand ¢ j(2) be the harmonic extension
of ¢;; into D.

#i 0 - 0
0 ¢ - 0
o= . . )
0 0 - ém
It is not difficult to see that
S o, o - 0
0O S .. 0
So =1 . q.bzz )
0 0 S b
is unitarily equivalent to
KE“ 0 0
0 Kj 0
BH - .22 )
0 0 KZ,,,,

where /;j(x) = -, 1 <, j < n. Hence [[So|| = 1.

Let u; = (0,0,---,0,1,0,---,0) with 1 in the k" place and y; = ¢;Q@ui,k = 1,2,---n,l =
0,1,2,---. Then {uk}Z:1 from an orthonormal basis for C" and {yy},k=1,2,---,n;1=0,1,---
form an orthonormal basis for Lﬁ’c” (D,dA) = Lg(D) ®C".

Theorem 5.4. Let F = f®x € Lﬁ‘c" (D,dA) and G= g®y € L,%’Cn (D,dA). Then

i z": VI+ IV +1{fQx,e;@ui)(g®y, ey Quy)

(27127 <lifexlligeyl.

LI'=0 k=1
Proof. Notice that _
(Foyi) =(f®x,e1®@up) = (f,er){x, ux)

and _
(G, Y1) =(8®y,ey ®up) ={g,ey Xy, Um)-
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Hence
n [Se]
SoF,Gy= )" > (FoyuXG, Yy XSo k) V)
k,m=1171=0
n o) . _
= > D FoyuX Gy, X(S s ® Ien(er @), ey @it
km=1771=0
n o) -
= D0 D heXxnuig.er) 5 um)S se1®up ey @)
k,m=1]71=0
n o) -
= > D e ud (g e Grum)S gers ey )k, )
km=1171 =0
n o) -
=3 D (Fetnu)(ger) & udS gerep).
k=111 =0
Thus

i i VI+ 1V + 1{f®x,e;Qui){(g®Yy, ey @uy)

SoF,G)| =
KSoF.G)l TiTp

LI'=0 k=1
and since S¢ is a bounded linear operator in Lﬁ’cn (D,dA) and ||Sel|| = 1, we obtain

(SoF, G < I1Fll 20 g 4, IG 1l 207 5 g0 = If @I lg @ ¥l
The result follows. O

Corollary 5.5. If > " laul* <coand Y > by < oo, then

k=1 1=0 k=17=0

(S5 (£ Emer]

k=1 1=0 k=170

i Z VI+ 1V + lagb,,
(+1 +2)?

LI =0 k=1
and the constant factor 1 is the best possible.

Proof. 1t is possible to find xi, yx, k =1,2,---,n, and sequences (cl);’zo,(cl/)?zo such that

ax = xxc, by = ykcl”Z |c1|2 < oo and Z lcy |2 < oo, Let f(z) = chel and g(z) = ch, ey.

=0 I'=0 =0 I'=0
Then f,g € L2(D). So, for x = (xp)'_,,y = (n)}_, € C", we have f®x,g®y € L (D,dA).
Now

[e) n
2 2 2 2 2
@ = PP = D el Dl
=0 k=1
n

22
|l |xx]

S |l

D 1

2
la|”.

>~
Il
—_
~
1l
(=)
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Similarly,

n e

lg@yl? = > > Iby .
k=17=0
On the other hand,
(f®x,er®@ui) = f,en{x, ux)

= XxCy

=ay
and

(g®y,ey @uy) =g, ey Xy, )
= YkCy
= bkl’ .

Hence the results follows from Theorem 5.4. Since ||Se|| = 1, the constant factor 1 is the
best possible. O

6 Hankel operators with operator valued symbols

In this section we generalize the inequality (4.2) for Hilbert space valued functions. In
this case the integral operator involved have kernels that are matrix-valued (infinite matrix)
functions. Let Z be a separable infinite dimensional Hilbert space. The space L>=(D) is
defined to be the set of all (equivalence classes of) measurable, norm-square integrable,
E—valued functions defined on D. When endowed with the inner product defined by the
equation

(f.&)= L(f(z),g(z»s dA, f.g € L**(D),

the space L>Z(D) becomes a separable Hilbert space. Let LZ’E(D) be the corresponding
Bergman space. A function @ from D into L(E) is called weakly measurable in case the
complex valued function z — (®(z)x,y) is Lebesgue measurable for every x and y in E. If
® is weakly measurable then the real valued function z — ||®(z)|| is measurable and the
space of all (equivalence classes of) weakly measurable, essentially bounded, £(E)—valued
functions on D will be denoted by LZ"(E)(D). The space L‘Z’(E)(D) is a C*—algebra with the
algebraic operations defined pointwise and norm defined by the equation

[@lleo = esssupl|P@)Il, @ € L7z (D),
zeD

where ||®(2)l| = supsup KP(2)un, um),z € D, {u,},”, is the orthonormal basis for Z and in-

n m
volution is defined by the equation ®*(z) = (®(z))*. The mapping { — D) f,{ € D are
measurable for f € E. This follows from the Pettis Theorem (see [2]) as = is separable.
Let HZ"(E)(ID)) = H*(D)® L(E). For ® € LZ"(E)(D), we define the Hankel operator S¢ from

Lﬁ’E(D) into itself as Sq f = Q(J(Df)), where Q is the orthogonal projection from L>5(D)
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onto LZ’E(D) and the symbol @ f denote the function on D defined by (O f)(z) = ©(2)f(z)
and 3 : L*%(D) — L>3(D) is defined by 3F(z) = F(2). In the following theorem we extend
Theorem 5.3 for E—valued functions.

Theorem 6.1. Let H(x) = % ® Iz, where Iz is the identity operator from the Hilbert space
= into itself. Let L*>=(0,00) = L*(0,0)® E and define Ky : L*>=(0, 00) — L>%(0, 00) by

(KuF)(x) = fo H(x +y)F()dy.

Then for F,G € LZ’E(O, 00),

5 (KgF)(x),G(x))zdx

S Flr220,00) |Gl 122 (0,00)-

Proof. Let h(x) = <" and define K; € L(L*(0,0)) by
® XAy e

xX+y Xx+Yy

(K5 /)(x) = f(y)dy.

It is not difficulties to see that the operator Ky is well-defined and since L*%(0,00) =

[2(0,0)®E, we have Ky = » @K} = K;® Iz, where (K; @ I=)(f ®2) = K;f @z if f €
n=0

> ek

L*(0,c0) and z € E. Now ||Ky|| = 2l = [IKpll = 1. Thus by Cauchy-Schwarz inequal-
n=0

ity it follows that
KKuF,G)| < IKull 1Fllr220,00) G llz220,00)
= 1Fll122(0,00) G122 (0,00)-
Hence

‘ f (KuF)(x), G(x))zdx| < |IFll122(0,00) /|Gl 22 (0,00)-
0

Theorem 6.2. IfF = f®x,G = g®y € L2=(D) = L2(D)®E, then

<lifexlligeyl.

Z Z VI+ 1V + I{fQx,e;Qui){(g®y, ey uy)

- & (I+1+2)?

Proof. Let a(eia) = —i(r—6)e"?,0 < 9 < 27 and ¢ be the harmonic extension of gto D. Let
O=¢®Iz. Then ® € L°° )(D) Let S¢ be the Hankel operator from L (D) into itself with
symbol @. Notice that since LZ (D)= Lg(D)®._., we have Sp = S y®Iz. Thus [|Se|| = 1S 4|l =
1.

Let Yy = el@uk,k =0,1,2,--- and [ =0,1,2,--- . The sequence {Y};} from an orthonor-
mal basis for L>=(D). Then

KSoF,G)| = ZZ L IVT + @ x e @uig®y,er @)

By (I+1 +2)?
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Since
[(So F,G)| < ISoll IFII IG]l = I f ® xllllg @I,

the result follows. O

Corollary 6.3. Let F = f®xand G= g®y where f,g € L2(D) and x,y € E. Let ¢/(f) and
cy () denote the " and | ™ Fourier coefficients of f and g respectively. Then

i VI+ TV + Ke(f)x,cp (9)y)=

(l+ 7 +2)2 < “F”ng(D)”G”LZE(D)

LI'=0

Proof. Let Yy = el®uk,k_: 0,1,2,--- aEd [=0,1,2,---. Then the sequence {Y;} forms an
orthonormal basis for Li’“(D). Hence (F, ;) = c;/(f){x,ux) and (g, Y}y ) = ¢y (&)Y, uk)-
Also

i i VI+ IV + 1{f @ x,e;Qui){(g®Yy, ey @uy)
(I+1 +2)?

/=0 k=0

—~
\ |

o VI+ TV + Ke(f)x,up){cy (8)y, ux)
(I+1 +2)?

MS

O

1 =0 k=

~

i VI+ 1V + e(f)x, ue)ug, cp (8)y)
(I+1 +2)?

VI+ TV + Kel(f)x.ep (@)=
(I+1 +2)? '

M2 ¢ M8

~
~
Il

A'=0

Now the result follows from Theorem 6.2. O

Corollary 6.4. If Z lawl? < 0o and Z b,y | < oo, then
1k=0 7 k=0

i VI+ 1V + lagb,y
(I+1+2)?

1 1
oo 2 o) 2
2 2
= (Z lax ] [Z by | ]
k,1=0 kl'=0

kLI =0
and the constant factor 1 is sharp.

Proof. The proof is similar to the proof of Corollary 5.5. O
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