Communications in Mathematical Analysis

Volume 17, Number 2, pp. 359–365 (2014) ISSN 1938-9787 www.math-res-pub.org/cma

CONDITIONS OF LINEARIZABILITY FOR MULTI-CONTROL SYSTEMS OF THE CLASS C¹

K. V. Sklyar*

University of Szczecin, Wielkopolska 15, Szczecin 70-451, Poland

S. YU. IGNATOVICH[†]

Department of Differential Equations and Control, Kharkov National University, Svobody sqr. 4, Kharkov 61077, Ukraine

V. O. Skoryk[‡]

Department of Differential Equations and Control, Kharkov National University, Svobody sqr. 4, Kharkov 61077, Ukraine

(Communicated by Vladimir Rabinovich)

Abstract

We give the complete description of nonlinear control systems of the class C^1 with multi-dimensional control that are linearizable by means of changes of variables of the class C^2 .

AMS Subject Classification: Primary: 93B18; Secondary:93C10.

Keywords: Systems with multi-dimensional control; Linearizability problem; C^1 -smooth nonlinear control systems; Lie brackets technique.

1 Introduction and statement of the problem

In this paper we consider the linearizability problem for systems of the form

$$\dot{x} = f(x, u), \ x \in Q \subset \mathbb{R}^n, \ u \in \mathbb{R}^r,$$
(1.1)

where the vector function f(x, u) is continuously differentiable, i.e., $f(x, u) \in C^1(Q \times \mathbb{R}^r)$. System (1.1) is linearizable, if there exists a nonsingular change of variables z = F(x) such that in the new variables the system has a linear (more precisely, an affine) form

$$\dot{z} = Az + Bu + c, \quad z \in \mathbb{R}^n, \, u \in \mathbb{R}^r.$$
(1.2)

^{*}E-mail address: sklar@univ.szczecin.pl

[†]E-mail address: ignatovich@ukr.net

[‡]E-mail address: skoryk@univer.kharkov.ua

The close statement of the problem concerns feedback linearizability: the system (1.1) is feedback linearizable, if there exists a nonsingular change of variables z = F(x) and a nonsingular change of the control v = g(x, u), which reduce the system to the linear form

$$\dot{z} = Az + Bv.$$

In the class C^{∞} , the conditions of linearizability and feedback linearizability are well known [6, 2, 7]. However, such smoothness requirements are not necessary: for a special class of *triangular systems* the feedback linearizability problem was considered for the class C^1 [5].

For nonlinear systems (1.1) with one-dimensional control (i.e., with r = 1), the conditions of linearizability and feedback linearizability in the class C^1 were obtained in [8]. It turned out that the Lie brackets technique, which is commonly used for C^{∞} -smoothness systems, *can be* successfully applied in the problem of linearizability. Let us explain this point more specifically. We use the standard notation for the Lie brackets, $[a(x), b(x)] = (b(x))_x a(x) - (a(x))_x b(x)$, and $ad_a^0 b(x) = b(x)$, $ad_a^k b(x) = [a(x), ad_a^{k-1}b(x)]$, $k \ge 1$. Then, if a nonlinear system with one-dimensional control is linearizable, it has the affine form, i.e., f(x, u) = a(x) + b(x)u, where vector fields a(x), b(x) are of class $C^1(Q)$ and *all their Lie brackets* $ad_a^k b(x)$ *necessarily exist and are of class* $C^1(Q)$. It is worth noting that for feedback linearizable systems one should introduce some new vector fields instead of $ad_a^k b(x)$, since they, generally, do not exist.

The present paper deals with the linearizability problem for systems with multi-dimensional control and complements the approach and the results of [8]. Namely, we study the linearizability problem for systems of the form (1.1), which means the mappability to affine systems of the form (1.2); we suppose that affine systems are controllable and the number of controls cannot be reduced, that is,

$$\operatorname{rank}(B, AB, \dots, A^{n-1}B) = n \text{ and } \operatorname{rank}B = r.$$
(1.3)

Definition 1.1. We say that a control system of the form (1.1), where $f(x, u) \in C^1(Q \times \mathbb{R}^r)$, is *locally linearizable in the domain Q*, if there exists a change of variables

$$z = F(x) \in C^2(Q) \text{ such that } \det(F(x))_x \neq 0, \ x \in Q,$$

$$(1.4)$$

which reduces the system (1.1) to a linear form (1.2), (1.3).

Analogously to [8], we seek a change of variables, which is defined in the domain (not in a neighborhood); however, we require only local invertibility (in this sense our approach is close to [3]). In the next section, we give a criterion of local linearizability, which turns to be close to the criterion in the case C^{∞} [7].

2 Conditions of linearizability

Theorem 2.1. A nonlinear system of the form (1.1), where $f(x, u) \in C^1(Q \times \mathbb{R}^r)$, is locally linearizable in the domain Q if and only if there exist integers $\ell_1, \ldots, \ell_r \ge 1$, $\ell_1 + \cdots + \ell_r = n$, such that the following conditions hold:

(A)
$$f(x,u) = a(x) + \sum_{i=1}^{n} b_i(x)u_i$$
, where $a(x), b_1(x), \dots, b_r(x) \in C^1(Q)$;

(B1) vector functions $ad_a^k b_s(x)$, s = 1, ..., r, $k = 0, ..., \ell_s$, exist and belong to the class $C^1(Q)$; (B2) rankM(x) = n for $x \in Q$, where

$$M(x) = (b_1(x), \dots, \mathrm{ad}_a^{\ell_1 - 1} b_1(x), \dots, b_r(x), \dots, \mathrm{ad}_a^{\ell_r - 1} b_r(x)).$$

(B3) $[ad_a^k b_s(x), ad_a^j b_q(x)] = 0, x \in Q$, for all $s, q = 1, ..., r, k = 0, ..., \ell_s, j = 0, ..., \ell_q$.

Proof is almost obvious for C^{∞} -smooth systems. Our goal is to give arguments, which are correct in the class C^1 . *Necessity* can be proved completely analogously to [8, Propositions 2 and 4].

Sufficiency. First, we note that (B1) and (B2) imply

$$\mathrm{ad}_a^{\ell_s}b_s(x)=\sum_{k=1}^r\sum_{i=0}^{\ell_k-1}\mathsf{v}_{k,i}^{s,\ell_s}(x)\mathrm{ad}_a^ib_k(x),\quad x\in Q,$$

where $v_{k,i}^{s,\ell_s}(x)$ are some functions defined on Q. Moreover, due to (B1) and (B2), $v_{k,i}^{s,\ell_s}(x) \in C^1(Q)$. Now we show that $v_{k,i}^{s,\ell_s}(x)$ are constant. For any $1 \le m \le r$ and $0 \le p \le \ell_m - 1$ we have

$$[\mathrm{ad}_{a}^{p}b_{m}(x),\mathrm{ad}_{a}^{\ell_{s}}b_{s}(x)] = \sum_{k=1}^{r}\sum_{i=0}^{\ell_{k}-1} \left((\mathbf{v}_{k,i}^{s,\ell_{s}}(x))_{x}\mathrm{ad}_{a}^{p}b_{m}(x) \right) \mathrm{ad}_{a}^{i}b_{k}(x) + \sum_{k=1}^{r}\sum_{i=0}^{\ell_{k}-1} \mathbf{v}_{k,i}^{s,\ell_{s}}(x) [\mathrm{ad}_{a}^{p}b_{m}(x),\mathrm{ad}_{a}^{i}b_{k}(x)] = 0,$$

hence, conditions (B2) and (B3) imply

$$(\mathbf{v}_{k,i}^{s,\ell_s}(x))_x \mathrm{ad}_a^p b_m(x) = 0 \text{ for } 1 \le m \le r, \ 0 \le p \le \ell_m - 1.$$

Using (B2) once more, we get $v_{k,i}^{s,\ell_s}(x) = const \equiv v_{k,i}^{s,\ell_s}$. Thus,

$$\mathrm{ad}_{a}^{\ell_{s}}b_{s}(x) = \sum_{k=1}^{r}\sum_{i=0}^{\ell_{k}-1} \mathrm{v}_{k,i}^{s,\ell_{s}}\mathrm{ad}_{a}^{i}b_{k}(x), \ 1 \leq s \leq r.$$

Therefore, $ad_a^m b_s(x)$ exist and belong to the class $C^1(Q)$ for all $m \ge \ell_s$ and $1 \le s \le r$, and moreover,

$$\mathrm{ad}_{a}^{m}b_{s}(x) = \sum_{k=1}^{r} \sum_{i=0}^{\ell_{k}-1} \mathsf{v}_{k,i}^{s,m} \mathrm{ad}_{a}^{i}b_{k}(x), \quad 1 \le s \le r, \ m \ge \ell_{s},$$
(2.1)

where $v_{k,i}^{s,m}$ are certain constants.

Now, let us fix any q such that $1 \le q \le r$. Consider the following system of n partial differential equations

$$\begin{aligned} (\varphi(x))_{x} \mathrm{ad}_{a}^{j} b_{s}(x) &= 0, \quad 1 \le s \le r, \ 0 \le j \le \ell_{s} - 1, \ (s, j) \ne (q, \ell_{q} - 1), \\ (\varphi(x))_{x} \mathrm{ad}_{a}^{\ell_{q} - 1} b_{q}(x) &= 1, \end{aligned}$$

$$(2.2)$$

or, in the matrix form,

$$(\mathbf{\phi}(x))_x M(x) = e_p,$$

where e_p is a unit row vector with 1 on the *p*-th place, $p = \ell_1 + \cdots + \ell_q$. Due to condition (B2), this system can be rewritten as

$$(\varphi(x))_x = h(x), \text{ where } h(x) = e_p(M(x))^{-1} \in C^1(Q).$$
 (2.3)

It is well known that the necessary and sufficient condition of solvability of this system is

$$\frac{\partial h_i(x)}{\partial x_j} = \frac{\partial h_j(x)}{\partial x_i}, \quad i, j = 1, \dots, n.$$
(2.4)

Moreover, *Q* is a domain, and therefore, *is simply connected*, hence, the condition (2.4) implies the solvability of (2.2) in *Q* [4, Chapter VI]. Let us prove (2.4). Denote by $h^T(x)$ the column vector, which is the transpose of h(x), and denote by $M_k(x)$, k = 1, ..., n, the columns of the matrix M(x). Let $\langle \cdot, \cdot \rangle$ be the inner product. Then, due to the definition,

$$(h^{I}(x), M_{k}(x)) = const.$$

Differentiating the both sides of this equality w.r.t. x and then multiplying by $M_s(x)$, we get

$$\langle (h^T(x))_x M_s(x), M_k(x) \rangle + \langle h^T(x), (M_k(x))_x M_s(x) \rangle = 0$$

Substituting s instead of k and vice versa, we get

$$\langle (h^T(x))_x M_k(x), M_s(x) \rangle + \langle h^T(x), (M_s(x))_x M_k(x) \rangle = 0.$$

Due to condition (B3),

$$[M_s(x), M_k(x)] = (M_k(x))_x M_s(x) - (M_s(x))_x M_k(x) = 0.$$

Hence,

$$\langle (h^T(x))_x M_s(x), M_k(x) \rangle = \langle (h^T(x))_x M_k(x), M_s(x) \rangle$$
 for any $k, s = 1, \dots, n$.

This means that the matrix $(h^T(x))_x$ is symmetric, i.e., (2.4) holds. Therefore, the system (2.3), or, what is the same, the system (2.2) has a solution; since $h(x) \in C^1(Q)$, this solution is necessarily of class $C^2(Q)$. (It is defined uniquely up to a constant.)

For any q = 1, ..., r, let us choose a solution of the system (2.2) and denote it by $\varphi_q(x) \in C^2(Q)$. We note that equalities (2.1) give

$$(\varphi_q(x))_x \mathrm{ad}_a^m b_s(x) = const \equiv y_{q,s}^m \text{ for } 1 \le s \le r, \ m \ge 0,$$

$$(2.5)$$

where, in particular,

$$y_{q,q}^{m} = 0 \text{ if } 0 \le m \le \ell_q - 2, y_{q,q}^{\ell_q - 1} = 1, y_{q,s}^{m} = 0 \text{ if } 1 \le s \le r, \ s \ne q \text{ and } 0 \le m \le \ell_s - 1.$$
(2.6)

Below we use the standard notation $L^0_a \varphi(x) = \varphi(x)$ and $L^k_a \varphi(x) = (L^{k-1}_a \varphi(x))_x a(x)$ for $k \ge 1$. Let us prove that $L^k_a \varphi_q(x)$ exist for all $k \ge 0$, and, moreover,

$$L_a^k \varphi_q(x) \in C^2(Q) \text{ for } k \ge 0, \tag{2.7}$$

 $\geq 0,$

$$(L^k_a \varphi_q(x))_x \mathrm{ad}^j_a b_s(x) = (-1)^k y^{j+k}_{q,s} \text{ for } 1 \le s \le r, \ k \ge 0, \ j \ge 0.$$
(2.8)

We use the induction on k. For k = 0, there is nothing to prove. Suppose (2.7), (2.8) hold for $k = d \ge 0$. Then, using the symmetry of $(L_a^d \varphi_q(x))_{xx}$, we get

$$(L_a^{d+1}\varphi_q(x))_x \mathrm{ad}_a^j b_s(x) = ((L_a^d \varphi_q(x))_x a(x))_x \mathrm{ad}_a^j b_s(x) = \\ = ((L_a^d \varphi_q(x))_x \mathrm{ad}_a^j b_s(x))_x a(x) - (L_a^d \varphi_q(x))_x \mathrm{ad}_a^{j+1} b_s(x) = (-1)^{d+1} y_{q,s}^{j+d+1} \text{ for } 1 \le s \le r, j$$

what implies (2.8) for k = d + 1. Hence,

$$(L_a^{d+1}\varphi_q(x))_x M(x) = const,$$

therefore, (2.7) holds for k = d + 1. By induction, (2.7), (2.8) are proved.

Let us denote $\sigma_1 = 0$ and $\sigma_q = \ell_1 + \dots + \ell_{q-1}$ for $q = 2, \dots, r$, and consider the change of variables $z = F(x) \in C^2(Q)$ of the form

$$z_{\sigma_q+k} = F_{\sigma_q+k}(x) = L_a^{k-1}\varphi_q(x), \quad 1 \le q \le r, \ 1 \le k \le \ell_q.$$
(2.9)

First, we prove that the functions $F_{\sigma_q+k}(x)$ are independent. Assume the converse; then $\det(F(x))_x = 0$ for some $x \in Q$. Hence, there exists a vector $v \neq 0$ such that $(F(x))_x v = 0$. Let us express v as a linear combination of columns of the matrix M(x), i.e., $v = \sum_{s=1}^r \sum_{j=0}^{\ell_s - 1} \mu_{s,j} \operatorname{ad}_a^j b_s(x)$. Using (2.8), we get

$$(L_a^{k-1}\varphi_q(x))_x \sum_{s=1}^r \sum_{j=0}^{\ell_s - 1} \mu_{s,j} \mathrm{ad}_a^j b_s(x) = \sum_{s=1}^r \sum_{j=0}^{\ell_s - 1} \mu_{s,j} (-1)^{k-1} y_{q,s}^{k+j-1} = 0 \text{ for any } 1 \le q \le r, \ 1 \le k \le \ell_q.$$
(2.10)

It is convenient to put $\mu_{s,j} = 0$ if j < 0. Then, (2.10) and (2.6) imply

$$\sum_{s=1}^{r} \sum_{j=\ell_s-k+1}^{\ell_s-1} \mu_{s,j} y_{q,s}^{k+j-1} + \mu_{q,\ell_q-k} = 0 \text{ for any } 1 \le q \le r, \ 1 \le k \le \ell_q.$$

Choosing successively $k = 1, ..., \max{\{\ell_1, ..., \ell_r\}}$ for q = 1, ..., r, we get that the set of numbers $\mu_{s,j}$ is trivial, hence, v = 0; this contradicts our supposition. Thus, the functions (2.9) are independent, i.e., $\det(F(x))_x \neq 0, x \in Q$.

Let us find the form of the system in the new variables. We fix any q = 1, ..., r. Then for $1 \le k \le \ell_q$ we get

$$\begin{aligned} \dot{z}_{\sigma_q+k} &= (F_{\sigma_q+k}(x))_x \Big(a(x) + \sum_{i=1}^r b_i(x)u_i \Big) = (L_a^{k-1}\varphi_q(x))_x a(x) + \sum_{i=1}^r (L_a^{k-1}\varphi_q(x))_x b_i(x)u_i = \\ &= L_a^k \varphi_q(x) + \sum_{i=1}^r (L_a^{k-1}\varphi_q(x))_x \mathrm{ad}_a^0 b_i(x)u_i = L_a^k \varphi_q(x) + \sum_{i=1}^r (-1)^{k-1} y_{q,i}^{k-1} u_i. \end{aligned}$$

For $1 \le k \le \ell_q - 1$ we have $L_a^k \varphi_q(x) = F_{\sigma_q+k+1}(x) = z_{\sigma_q+k+1}$. Let us express $L_a^{\ell_q} \varphi_q(x)$ via z_j . Due to (2.8), we get

$$(L_a^{\ell_q}\varphi_q(x))_x M(x) = w_q, \quad (F(x))_x M(x) = Y,$$

where w_q is a constant row and Y is a constant nonsingular matrix. Then

$$(L_a^{\ell_q}\varphi_q(x))_x M(x) = w_q Y^{-1}(F(x))_x M(x),$$

what gives $L_a^{\ell_q} \varphi_q(x) - w_q Y^{-1} F(x) = const$. Hence, $L_a^{\ell_q} \varphi_q(x) = \sum_{j=1}^n p_{qj} z_j + p_{q0}$ for some numbers p_{q0}, \dots, p_{qn} . Thus,

$$\dot{z}_{\sigma_q+k} = z_{\sigma_q+k+1} + \sum_{i=1}^{r} (-1)^{k-1} y_{q,i}^{k-1} u_i, \quad k = 1, \dots, \ell_q - 1,$$
$$\dot{z}_{\sigma_q+\ell_q} = \sum_{j=1}^{n} p_{qj} z_j + p_{q0} + \sum_{i=1}^{r} (-1)^{\ell_q - 1} y_{q,i}^{\ell_q - 1} u_i, \quad q = 1, \dots, r.$$

This means that the system in the new variables has the form (1.2). Let us note that $(F(x))_x a(x) = AF(x) + c$, $(F(x))_x b_s(x) = B_s$, where B_s is the *s*-th column of the matrix *B*. By our supposition, $\ell_1, \ldots, \ell_r \ge 1$, hence, condition (B2) implies that $b_1(x), \ldots, b_r(x)$ are linearly independent. One can show analogously to [8, Lemma 1] that the condition $F(x) \in C^2(Q)$ gives $(F(x))_x ad_a^j b_s(x) = (-1)^j A^j B_s$, $j \ge 0$. Since $(F(x))_x$ is nonsingular, we get (1.3) from (B2). \Box

Remark 2.2. For the case r = 1, Theorem 2.1 implies that condition (B4) of [8, Theorem 3] follows from the other conditions of the theorem.

Remark 2.3. In Theorem 2.1, one can try to consider integers ℓ_1, \ldots, ℓ_n depending on the point *x*. More specifically, suppose *Q* is covered by several domains, each of which has its own set of numbers ℓ_1, \ldots, ℓ_n satisfying (B1)–(B3) (in the intersection of two such domains the both sets can be used). However, since *Q* is connected, representation (2.1) shows that all such sets of numbers are suitable for all points of *Q*.

Remark 2.4. Recall that the *controllability indices* [1, 9] are defined as follows: put $w_0 = 0$, $w_j = \text{rank}(B, ..., A^{j-1}B)$, $j \ge 1$, then controllability indices are $n_q = \max\{j : w_j - w_{j-1} \ge q\}$, q = 1, ..., r. It is well known that each system (1.2) satisfying (1.3) can be reduced to the canonical form

$$\dot{z}_{\sigma_q+k} = z_{\sigma_q+k+1}, \quad k = 1, \dots, n_q - 1, \\ \dot{z}_{\sigma_q+n_q} = \sum_{j=1}^n p_{qj} z_j + p_{q0} + u_{s_q} + \sum_{i:n_i < n_q} d_{qi} u_{s_i}, \quad q = 1, \dots, r,$$
(2.11)

where $\sigma_1 = 0$, $\sigma_q = n_1 + \cdots + n_{q-1}$ for $q = 2, \ldots, r$, and $\{s_1, \ldots, s_r\}$ is a permutation of the set $\{1, \ldots, r\}$. We note that the numbers ℓ_1, \ldots, ℓ_r from Theorem 2.1 not necessarily coincide with the controllability indices. For example, for the system

$$\dot{z}_1 = z_2, \ \dot{z}_2 = z_4 + u_2, \ \dot{z}_3 = z_4, \ \dot{z}_4 = u_1,$$

one can choose $\ell_1 = 3$, $\ell_2 = 1$ or $\ell_1 = \ell_2 = 2$; however, only the second pair really gives the controllability indices.

Let us re-number b_1, \ldots, b_r so that $\ell_1 \ge \cdots \ge \ell_r$. One can show that ℓ_1, \ldots, ℓ_r coincide with the controllability indices if, in addition to conditions of Theorem 2.1,

$$ad_a^{\ell_q}b_q(x) \in Lin\{ad_a^k b_s(x) : 1 \le s \le r, \ 0 \le k \le \min\{\ell_q, \ell_s - 1\}\}, \ x \in Q, \ q = 1, \dots, r.$$
(2.12)

Example 2.5. Consider the system of the class C^1

$$\dot{x}_1 = x_2 + x_2^2 |x_2|, \ \dot{x}_2 = \frac{x_4}{1 + 3x_2 |x_2|} + \frac{1}{1 + 3x_2 |x_2|} u_2, \ \dot{x}_3 = \frac{x_4}{1 - 3 |x_3| x_3}, \ \dot{x}_4 = u_1,$$
(2.13)

in the domain $Q = \{x \in \mathbb{R}^4 : x_2 > -\frac{1}{\sqrt{3}}, x_3 < \frac{1}{\sqrt{3}}\}$. For brevity, denote $f(x) = x + x^2|x|, g(x) = x - x^2|x|$, then the system can be rewritten as

$$\dot{x}_1 = f(x_2), \ \dot{x}_2 = \frac{x_4}{f'(x_2)} + \frac{1}{f'(x_2)}u_2, \ \dot{x}_3 = \frac{x_4}{g'(x_3)}, \ \dot{x}_4 = u_1.$$

We have

$$a(x) = \begin{pmatrix} f(x_2) \\ \frac{x_4}{f'(x_2)} \\ \frac{x_4}{g'(x_3)} \\ 0 \end{pmatrix}, \ b_1(x) = e_4, \ b_2(x) = \begin{pmatrix} 0 \\ \frac{1}{f'(x_2)} \\ 0 \\ 0 \end{pmatrix}, \ \mathrm{ad}_a b_1(x) = \begin{pmatrix} 0 \\ -\frac{1}{f'(x_2)} \\ -\frac{1}{g'(x_3)} \\ 0 \end{pmatrix}, \ \mathrm{ad}_a b_2(x) = -e_1, \ \mathrm{ad}_a^2 b_1(x) = e_1,$$

and $ad_a^2b_2(x) = ad_a^3b_1(x) = 0$. Hence, conditions of Theorem 2.1 hold with $\ell_1 = 3$, $\ell_2 = 1$ and $\ell_1 = 2$, $\ell_2 = 2$.

First, let us choose $\ell_1 = 3$, $\ell_2 = 1$. Then $ad_a^1 b_2(x) \notin Lin\{ad_a^0 b_1(x), ad_a^0 b_2(x), ad_a^1 b_1(x)\}$, i.e., in this case the condition (2.12) does not hold. A linearizing change of variables is defined by the system

$$(\varphi_1(x))_x b_1(x) = 0, \quad (\varphi_1(x))_x ad_a b_1(x) = 0, \quad (\varphi_1(x))_x ad_a^2 b_1(x) = 1, \quad (\varphi_1(x))_x b_2(x) = 0,$$

$$(\varphi_2(x))_x b_1(x) = 0, \quad (\varphi_2(x))_x ad_a b_1(x) = 0, \quad (\varphi_2(x))_x ad_a^2 b_1(x) = 0, \quad (\varphi_2(x))_x b_2(x) = 1,$$

what gives

$$\frac{\partial \varphi_1(x)}{\partial x_1} = 1, \ \frac{\partial \varphi_1(x)}{\partial x_2} = 0, \ \frac{\partial \varphi_1(x)}{\partial x_3} = 0, \ \frac{\partial \varphi_1(x)}{\partial x_4} = 0,$$
$$\frac{\partial \varphi_2(x)}{\partial x_1} = 0, \ \frac{\partial \varphi_2(x)}{\partial x_2} \frac{1}{f'(x_2)} = 1, \ \frac{\partial \varphi_2(x)}{\partial x_2} \frac{1}{f'(x_2)} + \frac{\partial \varphi_2(x)}{\partial x_3} \frac{1}{g'(x_3)} = 0, \ \frac{\partial \varphi_2(x)}{\partial x_4} = 0.$$

As a solution, let us choose $\varphi_1(x) = x_1$, $\varphi_2(x) = f(x_2) - g(x_3)$; then a linearizing change of variables can be chosen as

$$z_1 = \varphi_1(x) = x_1, \quad z_2 = L_a \varphi_1(x) = f(x_2), \quad z_3 = \varphi_2(x) = L_a^2 \varphi_1(x) = x_4, \quad z_4 = \varphi_2(x) = f(x_2) - g(x_3)$$

and system (2.13) is reduced to

$$\dot{z}_1 = z_2, \ \dot{z}_2 = z_3 + u_2, \ \dot{z}_3 = u_1, \ \dot{z}_4 = u_2$$

We note that this system is not of the form (2.11).

Now we choose $\ell_1 = 2$, $\ell_2 = 2$; these numbers obviously satisfy the condition (2.12). In this case we get the system

$$\begin{aligned} (\varphi_1(x))_x b_1(x) &= 0, \quad (\varphi_1(x))_x \mathrm{ad}_a b_1(x) = 1, \quad (\varphi_1(x))_x b_2(x) = 0, \quad (\varphi_1(x))_x \mathrm{ad}_a b_2(x) = 0, \\ (\varphi_2(x))_x b_1(x) &= 0, \quad (\varphi_2(x))_x \mathrm{ad}_a b_1(x) = 0, \quad (\varphi_2(x))_x b_2(x) = 0, \quad (\varphi_2(x))_x \mathrm{ad}_a b_2(x) = 1, \end{aligned}$$

what gives

$$\frac{\partial \varphi_1(x)}{\partial x_1} = 0, \ \frac{\partial \varphi_1(x)}{\partial x_2} = 0, \ \frac{\partial \varphi_1(x)}{\partial x_3} = -g'(x_3), \ \frac{\partial \varphi_1(x)}{\partial x_4} = 0,$$

$$\frac{\partial \varphi_2(x)}{\partial x_1} = -1, \ \frac{\partial \varphi_2(x)}{\partial x_2} = 0, \ \frac{\partial \varphi_2(x)}{\partial x_3} = 0, \ \frac{\partial \varphi_2(x)}{\partial x_4} = 0.$$

We can choose $\varphi_1(x) = -g(x_3)$, $\varphi_2(x) = -x_1$; then a linearizing change of variables can be chosen in the form

$$z_1 = \varphi_1(x) = -g(x_3), \quad z_2 = L_a \varphi_1(x) = -x_4, \quad z_3 = \varphi_2(x) = -x_1, \quad z_4 = L_a \varphi_2(x) = -f(x_2),$$

and system (2.13) is reduced to the form

$$\dot{z}_1 = z_2, \ \dot{z}_2 = -u_1, \ \dot{z}_3 = z_4, \ \dot{z}_4 = z_2 - u_2.$$

Multiplying all z_i by -1, we get the system of the form (2.11).

Acknowledgments

The work was partially supported by PROMEP (México) via "Proyecto de Redes" and by Polish Ministry of Science and High Education grant N N514 238438.

References

- [1] P. Brunovský, A classification of linear controllable systems. *Kybernetika (Prague)*, 6 (1970), pp 173-188.
- [2] S. Čelikovský, Global linearization of nonlinear systems a survey. In: *Geom. in Nonlin. Control and Diff. Incl.*, Warszawa, 1995, pp 123-137.
- [3] W. Dayawansa, W. M. Boothby, and D. L. Elliot, Global state and feedback equivalence of nonlinear systems. *System and Control Lett.* **6** (1985), pp 229-234.
- [4] P. Hartman, Ordinary differential equations, New York-London-Sydney: John Wiley and Sons, Inc. XIV, 1964.
- [5] V. I. Korobov, Controllability, stability of some nonlinear systems. Differ. Uravn. 9 (1973), pp 614-619 (Russian).
- [6] A. Krener, On the equivalence of control systems and the linearization of non-linear systems. *SIAM J. Control* **11** (1973), pp 670-676.
- [7] W. Respondek, Global aspects of linearization, equivalence to polynomial forms and decomposition of nonlinear control systems. In: *Algebraic and Geometric Methods in Nonlinear Control Theory*. D.Reidel P.C., 1986, pp 257-284.
- [8] G. M. Sklyar, K. V. Sklyar, and S. Yu. Ignatovich, On the extension of the Korobov's class of linearizable triangular systems by nonlinear control systems of the class C^1 . Systems Control Lett. **54** (2005), pp 1097-1108.
- [9] W. M. Wonham, *Linear Multivariable Control: A Geometric Approach*, Applications of Mathematics **10**, Berlin-Heidelberg-New York, Springer-Verlag, 1979.