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Abstract

We give the complete description of nonlinear control systems of the class C1 with multi-dimensional control that are
linearizable by means of changes of variables of the class C2.
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1 Introduction and statement of the problem

In this paper we consider the linearizability problem for systems of the form

ẋ = f (x,u), x ∈ Q ⊂ Rn, u ∈ Rr, (1.1)

where the vector function f (x,u) is continuously differentiable, i.e., f (x,u) ∈C1(Q×Rr). System (1.1) is linearizable,
if there exists a nonsingular change of variables z = F(x) such that in the new variables the system has a linear (more
precisely, an affine) form

ż = Az+Bu+ c, z ∈ Rn, u ∈ Rr. (1.2)
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The close statement of the problem concerns feedback linearizability: the system (1.1) is feedback linearizable, if there
exists a nonsingular change of variables z = F(x) and a nonsingular change of the control v = g(x,u), which reduce the
system to the linear form

ż = Az+Bv.

In the class C∞, the conditions of linearizability and feedback linearizability are well known [6, 2, 7]. However, such
smoothness requirements are not necessary: for a special class of triangular systems the feedback linearizability prob-
lem was considered for the class C1 [5].

For nonlinear systems (1.1) with one-dimensional control (i.e., with r = 1), the conditions of linearizability and
feedback linearizability in the class C1 were obtained in [8]. It turned out that the Lie brackets technique, which is
commonly used for C∞-smoothness systems, can be successfully applied in the problem of linearizability. Let us explain
this point more specifically. We use the standard notation for the Lie brackets, [a(x),b(x)] = (b(x))xa(x)− (a(x))xb(x),
and ad0

ab(x) = b(x), adk
ab(x) = [a(x),adk−1

a b(x)], k ≥ 1. Then, if a nonlinear system with one-dimensional control is
linearizable, it has the affine form, i.e., f (x,u) = a(x)+ b(x)u, where vector fields a(x), b(x) are of class C1(Q) and
all their Lie brackets adk

ab(x) necessarily exist and are of class C1(Q). It is worth noting that for feedback linearizable
systems one should introduce some new vector fields instead of adk

ab(x), since they, generally, do not exist.
The present paper deals with the linearizability problem for systems with multi-dimensional control and comple-

ments the approach and the results of [8]. Namely, we study the linearizability problem for systems of the form (1.1),
which means the mappability to affine systems of the form (1.2); we suppose that affine systems are controllable and
the number of controls cannot be reduced, that is,

rank(B,AB, . . . ,An−1B) = n and rankB = r. (1.3)

Definition 1.1. We say that a control system of the form (1.1), where f (x,u) ∈ C1(Q×Rr), is locally linearizable in
the domain Q, if there exists a change of variables

z = F(x) ∈C2(Q) such that det(F(x))x ̸= 0, x ∈ Q, (1.4)

which reduces the system (1.1) to a linear form (1.2), (1.3).

Analogously to [8], we seek a change of variables, which is defined in the domain (not in a neighborhood); however,
we require only local invertibility (in this sense our approach is close to [3]). In the next section, we give a criterion of
local linearizability, which turns to be close to the criterion in the case C∞ [7].

2 Conditions of linearizability

Theorem 2.1. A nonlinear system of the form (1.1), where f (x,u) ∈C1(Q×Rr), is locally linearizable in the domain
Q if and only if there exist integers ℓ1, . . . , ℓr ≥ 1, ℓ1 + · · ·+ ℓr = n, such that the following conditions hold:

(A) f (x,u) = a(x)+
r
∑

i=1
bi(x)ui, where a(x),b1(x), . . . ,br(x) ∈C1(Q);

(B1) vector functions adk
abs(x), s = 1, . . . ,r, k = 0, . . . , ℓs, exist and belong to the class C1(Q);

(B2) rankM(x) = n for x ∈ Q, where

M(x) = (b1(x), . . . ,adℓ1−1
a b1(x), . . . ,br(x), . . . ,adℓr−1

a br(x)),

(B3) [adk
abs(x),ad j

abq(x)] = 0, x ∈ Q, for all s,q = 1, . . . ,r, k = 0, . . . , ℓs, j = 0, . . . , ℓq.

Proof is almost obvious for C∞-smooth systems. Our goal is to give arguments, which are correct in the class C1.
Necessity can be proved completely analogously to [8, Propositions 2 and 4].
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Sufficiency. First, we note that (B1) and (B2) imply

adℓs
a bs(x) =

r

∑
k=1

ℓk−1

∑
i=0

νs,ℓs
k,i (x)adi

abk(x), x ∈ Q,

where νs,ℓs
k,i (x) are some functions defined on Q. Moreover, due to (B1) and (B2), νs,ℓs

k,i (x) ∈C1(Q). Now we show that

νs,ℓs
k,i (x) are constant. For any 1 ≤ m ≤ r and 0 ≤ p ≤ ℓm −1 we have

[adp
abm(x),adℓs

a bs(x)] =
r

∑
k=1

ℓk−1

∑
i=0

(
(νs,ℓs

k,i (x))xadp
abm(x)

)
adi

abk(x)+
r

∑
k=1

ℓk−1

∑
i=0

νs,ℓs
k,i (x)[adp

abm(x),adi
abk(x)] = 0,

hence, conditions (B2) and (B3) imply

(νs,ℓs
k,i (x))xadp

abm(x) = 0 for 1 ≤ m ≤ r, 0 ≤ p ≤ ℓm −1.

Using (B2) once more, we get νs,ℓs
k,i (x) = const ≡ νs,ℓs

k,i . Thus,

adℓs
a bs(x) =

r

∑
k=1

ℓk−1

∑
i=0

νs,ℓs
k,i adi

abk(x), 1 ≤ s ≤ r.

Therefore, adm
a bs(x) exist and belong to the class C1(Q) for all m ≥ ℓs and 1 ≤ s ≤ r, and moreover,

adm
a bs(x) =

r

∑
k=1

ℓk−1

∑
i=0

νs,m
k,i adi

abk(x), 1 ≤ s ≤ r, m ≥ ℓs, (2.1)

where νs,m
k,i are certain constants.

Now, let us fix any q such that 1 ≤ q ≤ r. Consider the following system of n partial differential equations

(φ(x))xad j
abs(x) = 0, 1 ≤ s ≤ r, 0 ≤ j ≤ ℓs −1, (s, j) ̸= (q, ℓq −1),

(φ(x))xadℓq−1
a bq(x) = 1,

(2.2)

or, in the matrix form,
(φ(x))xM(x) = ep,

where ep is a unit row vector with 1 on the p-th place, p = ℓ1 + · · ·+ ℓq. Due to condition (B2), this system can be
rewritten as

(φ(x))x = h(x), where h(x) = ep(M(x))−1 ∈C1(Q). (2.3)

It is well known that the necessary and sufficient condition of solvability of this system is

∂hi(x)
∂x j

=
∂h j(x)

∂xi
, i, j = 1, . . . ,n. (2.4)

Moreover, Q is a domain, and therefore, is simply connected, hence, the condition (2.4) implies the solvability of (2.2)
in Q [4, Chapter VI]. Let us prove (2.4). Denote by hT (x) the column vector, which is the transpose of h(x), and denote
by Mk(x), k = 1, . . . ,n, the columns of the matrix M(x). Let ⟨·, ·⟩ be the inner product. Then, due to the definition,

(hT (x),Mk(x)⟩= const.

Differentiating the both sides of this equality w.r.t. x and then multiplying by Ms(x), we get

⟨(hT (x))xMs(x),Mk(x)⟩+ ⟨hT (x),(Mk(x))xMs(x)⟩= 0.
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Substituting s instead of k and vice versa, we get

⟨(hT (x))xMk(x),Ms(x)⟩+ ⟨hT (x),(Ms(x))xMk(x)⟩= 0.

Due to condition (B3),
[Ms(x),Mk(x)] = (Mk(x))xMs(x)− (Ms(x))xMk(x) = 0.

Hence,
⟨(hT (x))xMs(x),Mk(x)⟩= ⟨(hT (x))xMk(x),Ms(x)⟩ for any k,s = 1, . . . ,n.

This means that the matrix (hT (x))x is symmetric, i.e., (2.4) holds. Therefore, the system (2.3), or, what is the same, the
system (2.2) has a solution; since h(x) ∈C1(Q), this solution is necessarily of class C2(Q). (It is defined uniquely up to
a constant.)

For any q = 1, . . . ,r, let us choose a solution of the system (2.2) and denote it by φq(x) ∈ C2(Q). We note that
equalities (2.1) give

(φq(x))xadm
a bs(x) = const ≡ ym

q,s for 1 ≤ s ≤ r, m ≥ 0, (2.5)

where, in particular,
ym

q,q = 0 if 0 ≤ m ≤ ℓq −2,
yℓq−1

q,q = 1,
ym

q,s = 0 if 1 ≤ s ≤ r, s ̸= q and 0 ≤ m ≤ ℓs −1.
(2.6)

Below we use the standard notation L0
aφ(x) = φ(x) and Lk

aφ(x) = (Lk−1
a φ(x))xa(x) for k ≥ 1. Let us prove that

Lk
aφq(x) exist for all k ≥ 0, and, moreover,

Lk
aφq(x) ∈C2(Q) for k ≥ 0, (2.7)

(Lk
aφq(x))xad j

abs(x) = (−1)ky j+k
q,s for 1 ≤ s ≤ r, k ≥ 0, j ≥ 0. (2.8)

We use the induction on k. For k = 0, there is nothing to prove. Suppose (2.7), (2.8) hold for k = d ≥ 0. Then, using
the symmetry of (Ld

aφq(x))xx, we get

(Ld+1
a φq(x))xad j

abs(x) =
(
(Ld

aφq(x))xa(x)
)

xad j
abs(x) =

=
(
(Ld

aφq(x))xad j
abs(x)

)
xa(x)− (Ld

aφq(x))xad j+1
a bs(x) = (−1)d+1y j+d+1

q,s for 1 ≤ s ≤ r, j ≥ 0,

what implies (2.8) for k = d +1. Hence,
(Ld+1

a φq(x))xM(x) = const,

therefore, (2.7) holds for k = d +1. By induction, (2.7), (2.8) are proved.
Let us denote σ1 = 0 and σq = ℓ1+ · · ·+ℓq−1 for q= 2, . . . ,r, and consider the change of variables z= F(x)∈C2(Q)

of the form
zσq+k = Fσq+k(x) = Lk−1

a φq(x), 1 ≤ q ≤ r, 1 ≤ k ≤ ℓq. (2.9)

First, we prove that the functions Fσq+k(x) are independent. Assume the converse; then det(F(x))x = 0 for some x ∈ Q.
Hence, there exists a vector v ̸= 0 such that (F(x))xv = 0. Let us express v as a linear combination of columns of the
matrix M(x), i.e., v = ∑r

s=1 ∑ℓs−1
j=0 µs, jad j

abs(x). Using (2.8), we get

(Lk−1
a φq(x))x

r

∑
s=1

ℓs−1

∑
j=0

µs, jad j
abs(x) =

r

∑
s=1

ℓs−1

∑
j=0

µs, j(−1)k−1yk+ j−1
q,s = 0 for any 1 ≤ q ≤ r, 1 ≤ k ≤ ℓq. (2.10)

It is convenient to put µs, j = 0 if j < 0. Then, (2.10) and (2.6) imply

r

∑
s=1

ℓs−1

∑
j=ℓs−k+1

µs, jyk+ j−1
q,s +µq,ℓq−k = 0 for any 1 ≤ q ≤ r, 1 ≤ k ≤ ℓq.
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Choosing successively k = 1, . . . ,max{ℓ1, . . . , ℓr} for q = 1, . . . ,r, we get that the set of numbers µs, j is trivial, hence,
v = 0; this contradicts our supposition. Thus, the functions (2.9) are independent, i.e., det(F(x))x ̸= 0, x ∈ Q.

Let us find the form of the system in the new variables. We fix any q = 1, . . . ,r. Then for 1 ≤ k ≤ ℓq we get

żσq+k = (Fσq+k(x))x

(
a(x)+

r

∑
i=1

bi(x)ui

)
= (Lk−1

a φq(x))xa(x)+
r

∑
i=1

(Lk−1
a φq(x))xbi(x)ui =

= Lk
aφq(x)+

r

∑
i=1

(Lk−1
a φq(x))xad0

abi(x)ui = Lk
aφq(x)+

r

∑
i=1

(−1)k−1yk−1
q,i ui.

For 1 ≤ k ≤ ℓq −1 we have Lk
aφq(x) = Fσq+k+1(x) = zσq+k+1. Let us express Lℓq

a φq(x) via z j. Due to (2.8), we get

(Lℓq
a φq(x))xM(x) = wq, (F(x))xM(x) = Y,

where wq is a constant row and Y is a constant nonsingular matrix. Then

(Lℓq
a φq(x))xM(x) = wqY−1(F(x))xM(x),

what gives Lℓq
a φq(x)−wqY−1F(x) = const. Hence, Lℓq

a φq(x) = ∑n
j=1 pq jz j + pq0 for some numbers pq0, . . . , pqn. Thus,

żσq+k = zσq+k+1 +
r

∑
i=1

(−1)k−1yk−1
q,i ui, k = 1, . . . , ℓq −1,

żσq+ℓq =
n

∑
j=1

pq jz j + pq0 +
r

∑
i=1

(−1)ℓq−1yℓq−1
q,i ui, q = 1, . . . ,r.

This means that the system in the new variables has the form (1.2). Let us note that (F(x))xa(x) = AF(x) + c,
(F(x))xbs(x) = Bs, where Bs is the s-th column of the matrix B. By our supposition, ℓ1, . . . , ℓr ≥ 1, hence, condition (B2)
implies that b1(x), . . . ,br(x) are linearly independent. One can show analogously to [8, Lemma 1] that the condition
F(x) ∈C2(Q) gives (F(x))xad j

abs(x) = (−1) jA jBs, j ≥ 0. Since (F(x))x is nonsingular, we get (1.3) from (B2). �

Remark 2.2. For the case r = 1, Theorem 2.1 implies that condition (B4) of [8, Theorem 3] follows from the other
conditions of the theorem.

Remark 2.3. In Theorem 2.1, one can try to consider integers ℓ1, . . . , ℓn depending on the point x. More specifically,
suppose Q is covered by several domains, each of which has its own set of numbers ℓ1, . . . , ℓn satisfying (B1)–(B3) (in
the intersection of two such domains the both sets can be used). However, since Q is connected, representation (2.1)
shows that all such sets of numbers are suitable for all points of Q.

Remark 2.4. Recall that the controllability indices [1, 9] are defined as follows: put w0 = 0, w j = rank(B, . . . ,A j−1B),
j ≥ 1, then controllability indices are nq = max{ j : w j −w j−1 ≥ q}, q = 1, . . . ,r. It is well known that each system (1.2)
satisfying (1.3) can be reduced to the canonical form

żσq+k = zσq+k+1, k = 1, . . . ,nq −1,

żσq+nq =
n
∑
j=1

pq jz j + pq0 +usq + ∑
i :ni<nq

dqiusi , q = 1, . . . ,r, (2.11)

where σ1 = 0, σq = n1 + · · ·+nq−1 for q = 2, . . . ,r, and {s1, . . . ,sr} is a permutation of the set {1, . . . ,r}. We note that
the numbers ℓ1, . . . , ℓr from Theorem 2.1 not necessarily coincide with the controllability indices. For example, for the
system

ż1 = z2, ż2 = z4 +u2, ż3 = z4, ż4 = u1,
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one can choose ℓ1 = 3, ℓ2 = 1 or ℓ1 = ℓ2 = 2; however, only the second pair really gives the controllability indices.
Let us re-number b1, . . . ,br so that ℓ1 ≥ ·· · ≥ ℓr. One can show that ℓ1, . . . , ℓr coincide with the controllability

indices if, in addition to conditions of Theorem 2.1,

adℓq
a bq(x) ∈ Lin{adk

abs(x) : 1 ≤ s ≤ r, 0 ≤ k ≤ min{ℓq, ℓs −1}}, x ∈ Q, q = 1, . . . ,r. (2.12)

Example 2.5. Consider the system of the class C1

ẋ1 = x2 + x2
2|x2|, ẋ2 =

x4
1+3x2|x2| +

1
1+3x2|x2|u2, ẋ3 =

x4
1−3|x3|x3

, ẋ4 = u1, (2.13)

in the domain Q = {x ∈R4 : x2 >− 1√
3
, x3 <

1√
3
}. For brevity, denote f (x) = x+x2|x|, g(x) = x−x2|x|, then the system

can be rewritten as
ẋ1 = f (x2), ẋ2 =

x4
f ′(x2)

+ 1
f ′(x2)

u2, ẋ3 =
x4

g′(x3)
, ẋ4 = u1.

We have

a(x) =


f (x2)

x4
f ′(x2)

x4
g′(x3)

0

 , b1(x) = e4, b2(x) =


0
1

f ′(x2)

0
0

 , adab1(x) =


0

− 1
f ′(x2)

− 1
g′(x3)

0

 , adab2(x) =−e1, ad2
ab1(x) = e1,

and ad2
ab2(x) = ad3

ab1(x) = 0. Hence, conditions of Theorem 2.1 hold with ℓ1 = 3, ℓ2 = 1 and ℓ1 = 2, ℓ2 = 2.
First, let us choose ℓ1 = 3, ℓ2 = 1. Then ad1

ab2(x) ̸∈ Lin{ad0
ab1(x),ad0

ab2(x),ad1
ab1(x)}, i.e., in this case the condition

(2.12) does not hold. A linearizing change of variables is defined by the system

(φ1(x))xb1(x) = 0, (φ1(x))xadab1(x) = 0, (φ1(x))xad2
ab1(x) = 1, (φ1(x))xb2(x) = 0,

(φ2(x))xb1(x) = 0, (φ2(x))xadab1(x) = 0, (φ2(x))xad2
ab1(x) = 0, (φ2(x))xb2(x) = 1,

what gives
∂φ1(x)

∂x1
= 1,

∂φ1(x)
∂x2

= 0,
∂φ1(x)

∂x3
= 0,

∂φ1(x)
∂x4

= 0,

∂φ2(x)
∂x1

= 0,
∂φ2(x)

∂x2

1
f ′(x2)

= 1,
∂φ2(x)

∂x2

1
f ′(x2)

+
∂φ2(x)

∂x3

1
g′(x3)

= 0,
∂φ2(x)

∂x4
= 0.

As a solution, let us choose φ1(x) = x1, φ2(x) = f (x2)−g(x3); then a linearizing change of variables can be chosen as

z1 = φ1(x) = x1, z2 = Laφ1(x) = f (x2), z3 = φ2(x) = L2
aφ1(x) = x4, z4 = φ2(x) = f (x2)−g(x3),

and system (2.13) is reduced to
ż1 = z2, ż2 = z3 +u2, ż3 = u1, ż4 = u2.

We note that this system is not of the form (2.11).
Now we choose ℓ1 = 2, ℓ2 = 2; these numbers obviously satisfy the condition (2.12). In this case we get the system

(φ1(x))xb1(x) = 0, (φ1(x))xadab1(x) = 1, (φ1(x))xb2(x) = 0, (φ1(x))xadab2(x) = 0,

(φ2(x))xb1(x) = 0, (φ2(x))xadab1(x) = 0, (φ2(x))xb2(x) = 0, (φ2(x))xadab2(x) = 1,

what gives
∂φ1(x)

∂x1
= 0,

∂φ1(x)
∂x2

= 0,
∂φ1(x)

∂x3
=−g′(x3),

∂φ1(x)
∂x4

= 0,
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∂φ2(x)
∂x1

=−1,
∂φ2(x)

∂x2
= 0,

∂φ2(x)
∂x3

= 0,
∂φ2(x)

∂x4
= 0.

We can choose φ1(x) =−g(x3), φ2(x) =−x1; then a linearizing change of variables can be chosen in the form

z1 = φ1(x) =−g(x3), z2 = Laφ1(x) =−x4, z3 = φ2(x) =−x1, z4 = Laφ2(x) =− f (x2),

and system (2.13) is reduced to the form

ż1 = z2, ż2 =−u1, ż3 = z4, ż4 = z2 −u2.

Multiplying all zi by −1, we get the system of the form (2.11).
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