Communications in Mathematical Analysis

Volume 17, Number 2, pp. 131–150 (2014) ISSN 1938-9787 www.math-res-pub.org/cma

Commutators of Convolution Type Operators with Piecewise Quasicontinuous Data

ISAAC DE LA CRUZ-RODRÍGUEZ*

Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, México

Yuri I. Karlovich[†]

Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, México

Iván Loreto-Hernández[‡]

Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, México

(Communicated by Vladimir Rabinovich)

Abstract

Applying the theory of Calderón-Zygmund operators, we study the compactness of the commutators $[aI, W^0(b)]$ of multiplication operators aI and convolution operators $W^0(b)$ on weighted Lebesgue spaces $L^p(\mathbb{R}, w)$ with $p \in (1, \infty)$ and Muckenhoupt weights w for some classes of piecewise quasicontinuous functions $a \in PQC$ and $b \in PQC_{p,w}$ on the real line \mathbb{R} . Then we study two C^* -algebras Z_1 and Z_2 generated by the operators $aW^0(b)$, where a, b are piecewise quasicontinuous functions admitting slowly oscillating discontinuities at ∞ or, respectively, quasicontinuous functions on \mathbb{R} admitting piecewise slowly oscillating discontinuities at ∞ . We describe the maximal ideal spaces and the Gelfand transforms for the commutative quotient C^* -algebras $Z_i^{\pi} = Z_i/\mathcal{K}$ (i = 1, 2) where \mathcal{K} is the ideal of compact operators on the space $L^2(\mathbb{R})$, and establish the Fredholm criteria for the operators $A \in Z_i$.

AMS Subject Classification: Primary 47B47; Secondary 45E10, 46J10, 47A53, 47G10.

Keywords: Convolution type operator, piecewise quasicontinuous function, slowly oscillating function, *BMO* and *VMO* functions, commutator, maximal ideal space, Gelfand transform, Fredholmness.

^{*}E-mail address: antidotepower@hotmail.com

[†]E-mail address: karlovich@uaem.mx

[‡]E-mail address: ilh48eagle@gmail.com

1 Introduction

Let $\mathcal{B}(X)$ denote the Banach algebra of all bounded linear operators acting on a Banach space *X*, let $\mathcal{K}(X)$ be the closed two-sided ideal of all compact operators in $\mathcal{B}(X)$, and let $\mathcal{B}^{\pi}(X) = \mathcal{B}(X)/\mathcal{K}(X)$ be the Calkin algebra of the cosets $A^{\pi} := A + \mathcal{K}(X)$, where $A \in \mathcal{B}(X)$. An operator $A \in \mathcal{B}(X)$ is said to be *Fredholm*, if its image is closed and the spaces ker *A* and ker A^* are finite-dimensional (see, e.g., [9]). Equivalently, $A \in \mathcal{B}(X)$ is Fredholm if and only if the coset A^{π} is invertible in the algebra $\mathcal{B}^{\pi}(X)$.

A measurable function $w : \mathbb{R} \to [0, \infty]$ is called a weight if the preimage $w^{-1}(\{0, \infty\})$ of the set $\{0, \infty\}$ has measure zero. For 1 , a weight w belongs to the*Muckenhoupt* $class <math>A_p(\mathbb{R})$ if

$$c_{p,w} := \sup_{I} \left(\frac{1}{|I|} \int_{I} w^{p}(x) dx \right)^{1/p} \left(\frac{1}{|I|} \int_{I} w^{-q}(x) dx \right)^{1/q} < \infty,$$

where 1/p + 1/q = 1, and supremum is taken over all intervals $I \subset \mathbb{R}$ of finite length |I|.

In what follows we assume that $1 and <math>w \in A_p(\mathbb{R})$, and consider the weighted Lebesgue space $L^p(\mathbb{R}, w)$ equipped with the norm

$$||f||_{L^p(\mathbb{R},w)} := \left(\int_{\mathbb{R}} |f(x)|^p w^p(x) dx\right)^{1/p}$$

As is known (see, e.g., [11] and [5]), the Cauchy singular integral operator $S_{\mathbb{R}}$ given by

$$(S_{\mathbb{R}}f)(x) = \lim_{\varepsilon \to 0} \frac{1}{\pi i} \int_{\mathbb{R} \setminus (x-\varepsilon, x+\varepsilon)} \frac{f(t)}{t-x} dt, \ x \in \mathbb{R},$$
(1.1)

is bounded on every space $L^p(\mathbb{R}, w)$ with $1 and <math>w \in A_p(\mathbb{R})$.

Let $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ denote the *Fourier transform*,

$$(\mathcal{F}f)(x) := \int_{\mathbb{R}} f(t)e^{itx}dt, \ x \in \mathbb{R}$$

A function $a \in L^{\infty}(\mathbb{R})$ is called a *Fourier multiplier* on $L^{p}(\mathbb{R}, w)$ if the convolution operator $W^{0}(a) := \mathcal{F}^{-1}a\mathcal{F}$ maps the dense subset $L^{2}(\mathbb{R}) \cap L^{p}(\mathbb{R}, w)$ of $L^{p}(\mathbb{R}, w)$ into itself and extends to a bounded linear operator on $L^{p}(\mathbb{R}, w)$. Let $M_{p,w}$ stand for the Banach algebra of all Fourier multipliers on $L^{p}(\mathbb{R}, w)$ equipped with the norm $||a||_{M_{p,w}} := ||W^{0}(a)||_{\mathcal{B}(L^{p}(\mathbb{R}, w))}$.

Letting $\mathcal{B}_{p,w} := \mathcal{B}(L^p(\mathbb{R}, w))$ and $\mathcal{K}_{p,w} := \mathcal{K}(L^p(\mathbb{R}, w))$ for $p \in (1, \infty)$ and $w \in A_p(\mathbb{R})$, we consider the Banach subalgebra

$$\mathfrak{A}_{p,w} := \operatorname{alg}(aI, W^0(b): a \in PQC, b \in PQC_{p,w}) \subset \mathcal{B}_{p,w}$$
(1.2)

generated by all multiplication operators aI ($a \in PQC$) and all convolution operators $W^0(b) = \mathcal{F}^{-1}b\mathcal{F}$ ($b \in PQC_{p,w}$), where the algebras $PQC \subset L^{\infty}(\mathbb{R})$ and $PQC_{p,w} \subset M_{p,w}$ of piecewise quasicontinuous functions are defined in Section 2. The Banach algebra $\mathfrak{A}_{p,w}$ in the case of slowly oscillating and piecewise slowly oscillating functions a, b was studied in [16]–[18].

In the present paper, applying the theory of Calderón-Zygmund operators (see, e.g., [25], [12]), we study the compactness of the commutators

$$[aI, W^{0}(b)] = aW^{0}(b) - W^{0}(b)aI \in \mathfrak{A}_{p,w}$$
(1.3)

of multiplication operators aI and convolution operators $W^0(b)$ on weighted Lebesgue spaces $L^p(\mathbb{R}, w)$ with $p \in (1, \infty)$ and Muckenhoupt weights w for some classes of piecewise quasicontinuous functions $a \in PQC$ and $b \in PQC_{p,w}$. Obtained results extend those in [10, Lemmas 7.1–7.4], which are related to piecewise continuous functions a, b, and those in [1, Theorem 4.2, Corollary 4.3] and [17, Theorem 4.6], which are related to piecewise slowly oscillating functions a, b, to wider classes of piecewise quasicontinuous functions a, b on weighted Lebesgue spaces $L^p(\mathbb{R}, w)$. Then we study two C^* -subalgebras Z_1 and Z_2 of the C^* -algebra $\mathfrak{A}_{2,1}$ given by (1.2), which are generated by the operators $aW^0(b)$, where a, b are piecewise quasicontinuous functions admitting slowly oscillating discontinuities at ∞ or, respectively, quasicontinuous functions on \mathbb{R} admitting piecewise slowly oscillating discontinuities at ∞ . We describe the maximal ideal spaces and the Gelfand transforms for the commutative quotient C^* -algebras $Z_i^{\pi} = Z_i/\mathcal{K}$ (i = 1, 2) where \mathcal{K} is the ideal of compact operators on the space $L^2(\mathbb{R})$, and establish the Fredholm criteria for the operators $A \in Z_i$.

The paper is organized as follows. In Section 2, following [23] and [24] (also see [9]), we introduce the algebras of quasicontinuous and piecewise quasicontinuous functions, and their subalgebras of slowly oscillating and piecewise slowly oscillating functions. In Section 3 we describe the maximal ideal spaces of these commutative algebras. In Section 4 we study the compactness of commutators (1.3) with piecewise quasicontinuous data functions *a*, *b*. Finally, in Section 5, using the results of Section 4, we describe the maximal ideal spaces and the Gelfand transforms for the commutative C^* -algebras Z_i^{π} (*i* = 1,2) and study the Fredholmness of operators $A \in Z_i$.

2 Algebras of piecewise quasicontinuous functions

2.1 BMO and VMO

Let Γ be the unit circle $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ or the real line \mathbb{R} . Given a locally integrable function $f \in L^1_{loc}(\Gamma)$ and a finite interval I on Γ , let |I| denote the length of I and let

$$I(f) := |I|^{-1} \int_{I} f(t) dt$$

denote the average of f over I. For a > 0, consider the quantities

$$M_{a}(f) := \sup_{|I| \le a} |I|^{-1} \int_{I} |f(t) - I(f)| dt,$$

$$M_{0}(f) := \lim_{a \to 0} M_{a}(f), \quad ||f||_{*} := \lim_{a \to \infty} M_{a}(f).$$
(2.1)

The function $f \in L^1_{loc}(\Gamma)$ is said to have bounded mean oscillation, $f \in BMO(\Gamma)$, if $||f||_* < \infty$. The space $BMO(\Gamma)$ is a Banach space under the norm $||\cdot||_*$, provided that two functions differing by a constant are identified. A function $f \in BMO(\Gamma)$ is said to have vanishing mean oscillation, $f \in VMO(\Gamma)$, if $M_0(f) = 0$. As is well known (see, e.g., [23]), $VMO(\Gamma)$ is a closed subspace of $BMO(\Gamma)$.

Let $\mathbb{R} := \mathbb{R} \cup \{\infty\}$. Consider the homeomorphism $\gamma : \mathbb{T} \to \mathbb{R}$, $\gamma(t) = i(1+t)/(1-t)$. By [11, Chapter VI, Corollary 1.3], $f \in BMO(\mathbb{R})$ if and only if $f \circ \gamma \in BMO(\mathbb{T})$, and the norms

of these functions are equivalent. On the other hand,

$$VMO := \{ f \circ \gamma^{-1} : f \in VMO(\mathbb{T}) \}$$

$$(2.2)$$

is a proper closed subspace of $VMO(\mathbb{R})$. Since $VMO(\mathbb{T})$ is the closure of $C(\mathbb{T})$ in $BMO(\mathbb{T})$ (see, e.g., [11, p. 253]), (2.2) implies the following property of VMO.

Proposition 2.1. *VMO is the closure in* $BMO(\mathbb{R})$ *of the set* $C(\dot{\mathbb{R}})$ *.*

2.2 The C^* -algebras SO^{\diamond} and QC

Let $\Gamma \in \{\dot{\mathbb{R}}, \mathbb{T}\}$. For a bounded measurable function $f : \Gamma \to \mathbb{C}$ and a set $I \subset \Gamma$, let

$$\operatorname{osc}(f, I) = \operatorname{ess\,sup}\{|f(t) - f(s)| : t, s \in I\}.$$

Following [2, Section 4], we say that a function $f \in L^{\infty}(\Gamma)$ is *slowly oscillating at a point* $\eta \in \Gamma$ if for every $r \in (0, 1)$ or, equivalently, for some $r \in (0, 1)$,

$$\lim_{\varepsilon \to 0} \operatorname{osc}(f, \Gamma_{r\varepsilon, \varepsilon}(\eta)) = 0 \text{ for } \eta \neq \infty \text{ and } \lim_{\varepsilon \to \infty} \operatorname{osc}(f, \Gamma_{r\varepsilon, \varepsilon}(\eta)) = 0 \text{ for } \eta = \infty$$

where

$$\Gamma_{r\varepsilon,\varepsilon}(\eta) := \begin{cases} \{z \in \Gamma : r\varepsilon \le |z-\eta| \le \varepsilon\} & \text{if } \eta \neq \infty, \\ \{z \in \Gamma : r\varepsilon \le |z| \le \varepsilon\} & \text{if } \eta = \infty. \end{cases}$$

For each $\eta \in \Gamma$, let $SO_n(\Gamma)$ denote the C^* -subalgebra of $L^{\infty}(\Gamma)$ defined by

$$SO_{\eta}(\Gamma) := \{ f \in C_b(\Gamma \setminus \{\eta\}) : f \text{ slowly oscillates at } \eta \},\$$

where $C_b(\Gamma \setminus \{\eta\}) := C(\Gamma \setminus \{\eta\}) \cap L^{\infty}(\Gamma)$. Hence, setting $SO_{\lambda} := SO_{\lambda}(\mathbb{R})$ for all $\lambda \in \mathbb{R}$, we conclude that

$$SO_{\infty} = \left\{ f \in C_b(\dot{\mathbb{R}} \setminus \{\infty\}) : \lim_{x \to +\infty} \operatorname{osc}\left(f, \left[-x, -x/2\right] \cup \left[x/2, x\right]\right) = 0 \right\},$$

$$SO_{\lambda} = \left\{ f \in C_b(\dot{\mathbb{R}} \setminus \{\lambda\}) : \lim_{x \to 0} \operatorname{osc}\left(f, \lambda + \left(\left[-x, -x/2\right] \cup \left[x/2, x\right]\right)\right) = 0 \right\}$$

for $\lambda \in \mathbb{R}$. Let SO^{\diamond} be the minimal C^* -subalgebra of $L^{\infty}(\mathbb{R})$ that contains all the C^* -algebras SO_{λ} with $\lambda \in \mathbb{R}$. In particular, SO^{\diamond} contains $C(\mathbb{R})$.

Lemma 2.2. [17, Lemma 2.1] Let $\lambda \in \mathbb{R}$, $a \in SO_{\lambda}$, and let $\gamma : \mathbb{T} \to \mathbb{R}$ be the homeomorphism given by $\gamma(t) = i(1+t)/(1-t)$. Then $a \circ \gamma \in SO_{\eta}(\mathbb{T})$ where $\eta := \gamma^{-1}(\lambda)$.

Corollary 2.3. [17, Corollary 2.2] For every $\lambda \in \mathbb{R}$, the mapping $a \mapsto a \circ \beta_{\lambda}$ defined by the homeomorphism

$$\beta_{\lambda}: \dot{\mathbb{R}} \to \dot{\mathbb{R}}, \ x \mapsto \frac{\lambda x - 1}{x + \lambda}$$

is an isometric isomorphism of the C^{*}-algebra SO_{λ} onto the C^{*}-algebra SO_{∞} .

Let H^{∞} be the closed subalgebra of $L^{\infty}(\mathbb{R})$ that consists of all functions being nontangential limits on \mathbb{R} of bounded analytic functions on the upper half-plane. According to [23] and [24], the C^* -algebra QC of quasicontinuous functions on \mathbb{R} is defined by

$$QC := (H^{\infty} + C(\mathbb{R})) \cap (H^{\infty} + C(\mathbb{R})) = VMO \cap L^{\infty}(\mathbb{R}).$$
(2.3)

Theorem 2.4. [17, Theorem 4.2] *The* C^* *-algebra SO* $^\circ$ *is contained in the* C^* *-algebra QC of quasicontinuous functions on* \mathbb{R} *.*

2.3 Fourier multipliers

Let $C^n(\mathbb{R})$ be the set of all *n* times continuously differentiable functions $a : \mathbb{R} \to \mathbb{C}$, and let $V(\mathbb{R})$ be the Banach algebra of all functions $a : \mathbb{R} \to \mathbb{C}$ with finite total variation

$$V(a) := \sup \left\{ \sum_{i=1}^{n} |a(t_i) - a(t_{i-1})| : -\infty < t_0 < t_1 < \dots < t_n < +\infty, \ n \in \mathbb{N} \right\}$$

where the supremum is taken over all finite partitions of the real line \mathbb{R} and the norm in $V(\mathbb{R})$ is given by $||a||_V = ||a||_{L^{\infty}(\mathbb{R})} + V(a)$. As is known (see, e.g., [13, Chapter 9]), every function $a \in V(\mathbb{R})$ has finite one-sided limits at every point $t \in \mathbb{R}$.

Let *PC* be the *C*^{*}-algebra of all functions on \mathbb{R} having finite one-sided limits at every point $t \in \dot{\mathbb{R}}$. If $a \in PC$ has finite total variation, then $a \in M_{p,w}$ for all $p \in (1, \infty)$ and all $w \in A_p(\mathbb{R})$ according to Stechkin's inequality

$$\|a\|_{M_{n,w}} \le \|S_{\mathbb{R}}\|_{\mathcal{B}(L^{p}(\mathbb{R},w))}(\|a\|_{L^{\infty}(\mathbb{R})} + V(a))$$
(2.4)

(see, e.g., [10, Theorem 2.11] and [8]), where the Cauchy singular integral operator $S_{\mathbb{R}}$ is given by (1.1).

The following result obtained in [19, Corollary 2.10] supply us with another class of Fourier multipliers in $M_{p,w}$.

Theorem 2.5. If $a \in C^3(\mathbb{R} \setminus \{0\})$ and $||D^ka||_{L^{\infty}(\mathbb{R})} < \infty$ for all k = 0, 1, 2, 3, where (Da)(x) = xa'(x) for $x \in \mathbb{R}$, then the convolution operator $W^0(a)$ is bounded on every weighted Lebesgue space $L^p(\mathbb{R}, w)$ with $1 and <math>w \in A_p(\mathbb{R})$, and

 $||a||_{M_{p,w}} \le c_{p,w} \max\{||D^k a||_{L^{\infty}(\mathbb{R})}: k = 0, 1, 2, 3\} < \infty,$

where the constant $c_{p,w} \in (0,\infty)$ depends only on p and w.

2.4 Banach algebras $C_{p,w}(\dot{\mathbb{R}})$, $C_{p,w}(\overline{\mathbb{R}})$ and $PC_{p,w}$

Let *PC* stand for the *C*^{*}-algebra of piecewise continuous functions $f : \mathbb{R} \to \mathbb{C}$. We denote by $C_{p,w}(\mathbb{R})$ (resp., $C_{p,w}(\mathbb{R})$, $PC_{p,w}$) the closure in $M_{p,w}$ of the set of all functions $a \in C(\mathbb{R})$ (resp., $a \in C(\mathbb{R})$, $a \in PC$) of finite total variation (see [10]). Obviously, by (2.4), $C_{p,w}(\mathbb{R})$, $C_{p,w}(\mathbb{R})$ and $PC_{p,w}$ are Banach subalgebras of $M_{p,w}$, and

$$C_{p,w}(\dot{\mathbb{R}}) \subset C(\dot{\mathbb{R}}), \ C_{p,w}(\overline{\mathbb{R}}) \subset C(\overline{\mathbb{R}}), \ PC_{p,w} \subset PC.$$

2.5 Banach algebras $SO_{p,w}^{\diamond}$ and $QC_{p,w}$

For $\lambda \in \mathbb{R}$, we consider the commutative Banach algebras

$$SO_{\lambda}^{3} := \left\{ a \in SO_{\lambda} \cap C^{3}(\mathbb{R} \setminus \{\lambda\}) : \lim_{x \to \lambda} (D_{\lambda}^{k}a)(x) = 0, \ k = 1, 2, 3 \right\}$$

equipped with the norm

$$||a||_{SO^3_{\lambda}} := \max\{||D^k_{\lambda}a||_{L^{\infty}(\mathbb{R})}: k = 0, 1, 2, 3\},\$$

where $(D_{\lambda}a)(x) = (x - \lambda)a'(x)$ for $\lambda \in \mathbb{R}$ and $(D_{\lambda}a)(x) = xa'(x)$ if $\lambda = \infty$. By Theorem 2.5, $SO_{\lambda}^{3} \subset M_{p,w}$ for all $p \in (1, \infty)$ and all $w \in A_{p}(\mathbb{R})$. Let $SO_{\lambda,p,w}$ denote the closure of SO_{λ}^{3} in $M_{p,w}$, and let $SO_{p,w}^{\diamond}$ be the Banach subalgebra of $M_{p,w}$ generated by all the algebras $SO_{\lambda,p,w}$ $(\lambda \in \mathbb{R})$. Because $M_{p,w} \subset M_{2} = L^{\infty}(\mathbb{R})$, we conclude that $SO_{p,w}^{\diamond} \subset SO^{\diamond}$.

To define an $M_{p,w}$ -analogue of the C^* -algebra QC, we need the following weighted analogue of the Krasnoselskii theorem [20, Theorem 3.10] on interpolation of compactness (see, e.g., [15, Theorem 5.2]), which follows from the Stein-Weiss interpolation theorem (see, e.g., [4, Corollary 5.5.4]).

Theorem 2.6. Suppose $1 < p_i < \infty$, w_i are weights in $L_{loc}^{p_i}(\mathbb{R})$, and $T \in \mathcal{B}(L^{p_i}(\mathbb{R}, w_i))$ for i = 1, 2. If the operator T is compact on the space $L^{p_1}(\mathbb{R}, w_1)$, then T is compact on every space $L^p(\mathbb{R}, w)$ where

$$\frac{1}{p} = \frac{1-\theta}{p_1} + \frac{\theta}{p_2}, \quad w = w_1^{1-\theta} w_2^{\theta}, \quad 0 < \theta < 1.$$
(2.5)

Let $p \in (1, \infty)$ and $w \in A_p(\mathbb{R})$. By the stability of Muckenhoupt weights (see, e.g., [5, Section 2.8]), there exists an $\varepsilon_0 \in (0, p-1)$ such that $w^{1+\varepsilon} \in A_{p_0}(\mathbb{R})$ for all $\varepsilon \in (-\varepsilon_0, \varepsilon_0)$ and all $p_0 \in (p - \varepsilon_0, p + \varepsilon_0)$. Then, in particular, $w^{1+\varepsilon} \in L^{p_0}_{loc}(\mathbb{R})$ (see, e.g., [5, Lemma 4.6, Theorem 4.15]). According to the proof of [15, Corollary 5.3], let \mathcal{E} denote the set of all $\varepsilon > 0$ such that $w_{\varepsilon} \in A_{p_{\varepsilon}}(\mathbb{R})$, where

$$p_{\varepsilon} := p/[1 + (1 - p/2)\varepsilon], \quad w_{\varepsilon} := w^{1+\varepsilon}.$$

$$(2.6)$$

Taking then $p_1 = 2$, $w_1 = 1$, $p_2 = p_{\varepsilon}$, $w_2 = w_{\varepsilon}$ and $\theta = (1 + \varepsilon)^{-1}$, we infer from Theorem 2.6 that (2.5) holds for all $\varepsilon \in \mathcal{E}$, which implies due to [4, Corollary 5.5.4] that

$$M_{p_{\varepsilon},w_{\varepsilon}} \subset M_{p,w}$$
 for all $p \in (1,\infty)$, $w \in A_p(\mathbb{R})$ and $\varepsilon \in \mathcal{E}$. (2.7)

Thus, Theorem 2.6 gives the following.

Corollary 2.7. If $p \in (1, \infty)$, $w \in A_p(\mathbb{R})$ and an operator T is compact on the space $L^2(\mathbb{R})$ and is bounded on the weighted Lebesgue space $L^{p_{\varepsilon}}(\mathbb{R}, w_{\varepsilon})$ for some $\varepsilon \in \mathcal{E}$, where p_{ε} and w_{ε} are given by (2.6), then the operator T is compact on the space $L^p(\mathbb{R}, w)$.

By analogy with [14], we define the set $\mathcal{R}_{p,w} := \bigcup_{\varepsilon \in \mathcal{E}} M_{p_{\varepsilon},w_{\varepsilon}}$. Along with QC given by (2.3), we introduce its $M_{p,w}$ -analogue $QC_{p,w}$ as the closure in $M_{p,w}$ of the set $QC \cap \mathcal{R}_{p,w}$. Obviously, in view of (2.7) and the inclusion $SO_{\lambda}^{3} \subset M_{p,w}$ for all $p \in (1,\infty)$ and all $w \in A_{p}(\mathbb{R})$, we obtain

$$QC_{p,w} \subset QC \cap M_{p,w} \subset QC$$
 and $SO_{p,w}^{\diamond} \subset QC_{p,w}$.

2.6 Banach algebras $PSO_{p,w}^{\diamond}$ and $PQC_{p,w}$

Let $PSO^{\diamond} = \operatorname{alg}(PC, SO^{\diamond})$ be the C^* -subalgebra of $L^{\infty}(\mathbb{R})$ generated by the C^* -algebras PCand SO^{\diamond} , and let $PSO^{\diamond}_{p,w} = \operatorname{alg}(PC_{p,w}, SO^{\diamond}_{p,w})$ be the Banach subalgebra of $M_{p,w}$ generated by the Banach algebras $PC_{p,w}$ and $SO^{\diamond}_{p,w}$.

Let PQC = alg(PC, QC) be the C^* -algebra of piecewise quasicontinuous functions generated in $L^{\infty}(\mathbb{R})$ by the C^* -algebras PC and QC, and let $PQC_{p,w} = alg(PC_{p,w}, QC_{p,w})$ denote the Banach subalgebra of $M_{p,w}$ generated by the Banach algebras $PC_{p,w}$ and $QC_{p,w}$.

Clearly,

136

$$PSO_{p,w}^{\diamond} \subset PSO, \quad PQC_{p,w} \subset PQC, \quad PSO_{p,w}^{\diamond} \subset PQC_{p,w}.$$

3 The maximal ideal spaces of functional algebras

3.1 The maximal ideal space of the Banach algebra $SO_{p,w}^{\diamond}$

In what follows, let $M(\mathcal{A})$ denote the maximal ideal space of a commutative Banach algebra \mathcal{A} . If *C* is a Banach subalgebra of \mathcal{A} and $\lambda \in M(C)$, then the set $M_{\lambda}(\mathcal{A}) := \{\xi \in M(\mathcal{A}) : \xi|_{C} = \lambda\}$ is called the fiber of $M(\mathcal{A})$ over λ . Hence for every Banach algebra $\mathcal{A} \subset L^{\infty}(\mathbb{R})$ with $M(C(\mathbb{R}) \cap \mathcal{A}) = \mathbb{R}$ and every $\lambda \in \mathbb{R}$, the fiber $M_{\lambda}(\mathcal{A})$ denotes the set of all characters (multiplicative linear functionals) of \mathcal{A} that annihilate the set $\{f \in C(\mathbb{R}) \cap \mathcal{A} : f(\lambda) = 0\}$. As usual, for all $a \in \mathcal{A}$ and all $\xi \in M(\mathcal{A})$, we put $a(\xi) := \xi(a)$.

Identifying the points $\lambda \in \mathbb{R}$ with the evaluation functionals δ_{λ} on \mathbb{R} , $\delta_{\lambda}(f) = f(\lambda)$ for $f \in C(\mathbb{R})$, we infer that the maximal ideal space $M(SO^{\diamond})$ of SO^{\diamond} is of the form

$$M(SO^{\diamond}) = \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(SO^{\diamond}), \qquad (3.1)$$

where $M_{\lambda}(SO^{\diamond}) := \{\xi \in M(SO^{\diamond}) : \xi|_{C(\mathbb{R})} = \delta_{\lambda}\}$ are fibers of $M(SO^{\diamond})$ over $\lambda \in \mathbb{R}$. Applying Corollary 2.3 and [3, Proposition 5], we infer that for every $\lambda \in \mathbb{R}$,

$$M_{\lambda}(SO^{\diamond}) = M_{\lambda}(SO_{\lambda}) = M_{\infty}(SO_{\infty}) = (\operatorname{clos}_{SO_{\infty}^{*}}\mathbb{R}) \setminus \mathbb{R},$$
(3.2)

where $\operatorname{clos}_{SO_{\infty}^*}\mathbb{R}$ is the weak-star closure of \mathbb{R} in SO_{∞}^* , the dual space of SO_{∞} .

The fiber $M_{\infty}(SO_{\infty})$ is related to the partial limits of a function $a \in SO_{\infty}$ at infinity as follows (see [6, Corollary 4.3] and [1, Corollary 3.3]).

Proposition 3.1. If $\{a_k\}_{k=1}^{\infty}$ is a countable subset of SO_{∞} and $\xi \in M_{\infty}(SO_{\infty})$, then there exists a sequence $\{g_n\} \subset \mathbb{R}_+$ such that $g_n \to \infty$ as $n \to \infty$, and for every $t \in \mathbb{R} \setminus \{0\}$ and every $k \in \mathbb{N}$, $\lim_{n\to\infty} a_k(g_n t) = \xi(a_k)$.

Lemma 3.2. [17, Lemma 3.5] If $1 , <math>w \in A_p(\mathbb{R})$ and $\lambda \in \mathbb{R}$, then the maximal ideal spaces of $SO_{\lambda,p,w}$ and SO_{λ} coincide as sets, that is, $M(SO_{\lambda,p,w}) = M(SO_{\lambda})$.

Fix $p \in (1, \infty)$ and $w \in A_p(\mathbb{R})$. Analogously to (3.1) we obtain

$$M(S O_{p,w}^{\diamond}) = \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(S O_{p,w}^{\diamond}).$$
(3.3)

Lemma 3.2 and relations (3.2) imply that

$$M_{\lambda}(SO_{p,w}^{\diamond}) = M_{\lambda}(SO_{\lambda,p,w}) = M_{\lambda}(SO_{\lambda}) = M_{\infty}(SO_{\infty})$$
(3.4)

for every $\lambda \in \mathbb{R}$. Applying (3.3), (3.4) and (3.1) we arrive at the following result.

Theorem 3.3. [17, Theorem 3.6] If $1 and <math>w \in A_p(\mathbb{R})$, then the maximal ideal spaces of $S O_{p,w}^{\diamond}$ and $S O^{\diamond}$ coincide as sets, $M(S O_{p,w}^{\diamond}) = M(S O^{\diamond})$.

3.2 The maximal ideal space of the C*-algebra QC

Identifying the points $\lambda \in \mathbb{R}$ with the evaluation functionals δ_{λ} on \mathbb{R} , we conclude by analogy with (3.1) that the maximal ideal space M(QC) of the C^* -algebra QC of quasicontinuous functions $a : \mathbb{R} \to \mathbb{C}$ is of the form

$$M(QC) = \bigcup_{\lambda \in \dot{\mathbb{R}}} M_{\lambda}(QC),$$

where $M_{\lambda}(QC) := \{\xi \in M(QC) : \xi|_{C(\mathbb{R})} = \delta_{\lambda}\}$ are fibers of M(QC) over $\lambda \in \mathbb{R}$.

Let $H^{\infty}(\mathbb{T})$ be the C^* -subalgebra of $L^{\infty}(\mathbb{T})$ that consists of all functions being nontangential limits on \mathbb{T} of bounded analytic functions on the unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. In what follows we identify the fibers $M_{\lambda}(QC)$ ($\lambda \in \mathbb{R}$) of the C^* -algebra QC with the fibers $M_t(QC(\mathbb{T}))$ for $t = (\lambda - i)/(\lambda + i) \in \mathbb{T}$ of the C^* -algebra $QC(\mathbb{T})$ of quasicontinuous functions on \mathbb{T} ,

$$QC(\mathbb{T}) := (H^{\infty}(\mathbb{T}) + C(\mathbb{T})) \cap (\overline{H^{\infty}(\mathbb{T})} + C(\mathbb{T})) = VMO(\mathbb{T}) \cap L^{\infty}(\mathbb{T}).$$
(3.5)

Let \mathcal{G} be the set of all averaging functionals of the form

$$f_I(a) = \frac{1}{|I|} \int_I a(t) |dt| \quad (a \in QC(\mathbb{T})), \tag{3.6}$$

where *I* runs the set \mathcal{L} of all arcs of \mathbb{T} and |I| means the length of *I*. Let us identify arcs $I \subset \mathbb{T}$ with functionals f_I given by (3.6). According to [24], $M(QC(\mathbb{T}))$ consists of all functionals in the weak-star closure of \mathcal{G} in the dual space $(QC(\mathbb{T}))^*$ of (3.5) that do not belong to \mathcal{G} .

Given $t \in \mathbb{T}$, let $M_t^{\pm}(QC(\mathbb{T}))$ be the set of all $\xi \in M_t(QC(\mathbb{T}))$ such that $\xi(a) = 0$ if $a \in QC(\mathbb{T})$ and $\limsup_{\tau \to t^{\pm}} |a(\tau)| = 0$, respectively, where $\tau \to t^+$ (resp., $\tau \to t^-$) means that $\tau \in \mathbb{T}$ tends to *t* from the right (resp., from the left).

For $t \in \mathbb{T}$ and c > 0, let $\mathcal{G}_{t,c}$ denote the set of arcs $I \in \mathcal{L}$ such that the distance between tand the center of I (measured along \mathbb{T}) does not exceed c|I|. In particular, $\mathcal{G}_{t,0}$ is the set of arcs with center t. Let $M_t^0(QC(\mathbb{T}))$ be the set of functionals in the fiber $M_t(QC(\mathbb{T}))$ that lie in the weak-star closure of $\mathcal{G}_{t,0}$. By [24], $M_t^0(QC(\mathbb{T}))$ coincides with the set of functionals in $M_t(QC(\mathbb{T}))$ that lie in the weak-star closure of $\mathcal{G}_{t,c}$ for any c > 0.

Lemma 3.4. [24, Lemma 8] For every $t \in \mathbb{T}$, $M_t^+(QC(\mathbb{T})) \cap M_t^-(QC(\mathbb{T})) = M_t^0(QC(\mathbb{T}))$ and $M_t^+(QC(\mathbb{T})) \cup M_t^-(QC(\mathbb{T})) = M_t(QC(\mathbb{T})).$

3.3 The maximal ideal spaces of the C^* -algebras PSO^{\diamond} and PQC

For $\Gamma \in \{\mathbb{R}, \mathbb{T}\}$, let $PC(\Gamma)$ be the C^* -algebra of piecewise continuous functions $f : \Gamma \to \mathbb{C}$. The maximal ideal space $M(PC(\Gamma))$ of $PC(\Gamma)$ can be identified with the set $\Gamma \times \{0, 1\}$, and its fibers over points $t \in \Gamma$ are the doubletons $M_t(PC(\Gamma)) = \{(t, 0), (t, 1)\}$, where

$$f(t,0) = f(t-0)$$
 and $f(t,1) = f(t+0)$ for all $f \in PC(\Gamma)$, (3.7)

and $f(\infty, 0) = f(+\infty)$, $f(\infty, 1) = f(-\infty)$.

By [2, Section 4] and [16, Section 3], the maximal ideal space of the C^* -algebra $PSO^{\diamond} \subset L^{\infty}(\mathbb{R})$ is of the form

$$M(PSO^{\diamond}) = \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PSO^{\diamond}), \quad M_{\lambda}(PSO^{\diamond}) = M_{\lambda}(SO^{\diamond}) \times \{0,1\} = \bigcup_{\xi \in M_{\lambda}(SO^{\diamond})} \{(\xi,0),(\xi,1)\},$$

where, for every $\lambda \in \mathbb{R}$ and every $(\xi, \mu) \in M_{\lambda}(SO^{\diamond}) \times \{0, 1\}$, we have

$$(\xi,\mu)|_{SO^\circ} = \xi, \quad (\xi,\mu)|_{C(\mathbb{R})} = \lambda, \quad (\xi,\mu)|_{PC} = (\lambda,\mu).$$

For all $\xi \in M(S O^{\diamond})$, we put $\xi^- := (\xi, 0)$ and $\xi^+ := (\xi, 1)$.

Let $PQC(\mathbb{T})$ denote the C^{*}-subalgebra of $L^{\infty}(\mathbb{T})$ generated by the C^{*}-algebras $PC(\mathbb{T})$ and $QC(\mathbb{T})$. By [24] (also see [9, Section 3.3]), there is a natural mapping

 $w: M(PQC(\mathbb{T})) \to M(QC(\mathbb{T})) \times \{0, 1\}$

which is given as follows: for $y \in M(PQC(\mathbb{T}))$, let $\xi = y|_{QC(\mathbb{T})}$, $t = y|_{C(\mathbb{T})}$, and $v = y|_{PC(\mathbb{T})}$; if v = (t, 0) (resp., v = (t, 1)), then $w(y) = (\xi, 0)$ (resp., $w(y) = (\xi, 1)$). Hence, $M(PQC(\mathbb{T}))$ is a subset of the set $M(QC(\mathbb{T})) \times \{0, 1\}$. By analogy with (3.7), we obtain

$$M(PQC(\mathbb{T})) = \bigcup_{t \in \mathbb{T}} M_t(PQC(\mathbb{T})) = \bigcup_{t \in \mathbb{T}} \bigcup_{\xi \in M_t(QC(\mathbb{T}))} M_{\xi}(PQC(\mathbb{T})).$$

The fibers $M_{\xi}(PQC(\mathbb{T}))$ for $\xi \in M(QC(\mathbb{T}))$ are described as follows.

Theorem 3.5. [24, Section 5] Let $\xi \in M_t(QC(\mathbb{T}))$ for $t \in \mathbb{T}$. Then

$$M_{\xi}(PQC(\mathbb{T})) = \begin{cases} \{(\xi,0)\} & \text{if } \xi \in M_t^-(QC(\mathbb{T})) \setminus M_t^0(QC(\mathbb{T})), \\ \{(\xi,1)\} & \text{if } \xi \in M_t^+(QC(\mathbb{T})) \setminus M_t^0(QC(\mathbb{T})), \\ \{(\xi,0),(\xi,1)\} & \text{if } \xi \in M_t^0(QC(\mathbb{T})). \end{cases}$$

4 Compactness of commutators of convolution type operators

Given $1 and <math>w \in A_p(\mathbb{R})$, we consider the Banach algebra $\mathcal{B}_{p,w}$ and its ideal of compact operators $\mathcal{K}_{p,w}$. In case $w \equiv 1$ we abbreviate $\mathcal{B}_{p,1}$ and $\mathcal{K}_{p,1}$ to \mathcal{B}_p and \mathcal{K}_p , respectively. The notation $C_p(\mathbb{R})$, $C_p(\mathbb{R})$, PC_p and $SO_{\infty,p}$ is understood analogously.

For two algebras \mathcal{A} and \mathcal{B} contained in a Banach algebra C, we denote by $alg(\mathcal{A}, \mathcal{B})$ the Banach subalgebra of C generated by the algebras \mathcal{A} and \mathcal{B} .

First we recall three known results on the compactness of commutators.

Lemma 4.1. [10, Lemmas 7.1–7.4] *Let* 1 < *p* < ∞.

- (a) If $a \in PC$, $b \in PC_p$, and $a(\pm \infty) = b(\pm \infty) = 0$, then $aW^0(b), W^0(b)aI \in \mathcal{K}_p$.
- (b) If $a \in C(\mathbb{R})$ and $b \in PC_p$, or $a \in PC$ and $b \in C_p(\mathbb{R})$, then $[aI, W^0(b)] \in \mathcal{K}_p$.
- (c) If $a \in C(\overline{\mathbb{R}})$ and $b \in C_p(\overline{\mathbb{R}})$, then $[aI, W^0(b)] \in \mathcal{K}_p$.

Theorem 4.2. [1, Theorem 4.2, Corollary 4.3] If $1 and either <math>a \in alg(SO_{\infty}, PC)$ and $b \in SO_{\infty,p}$, or $a \in SO_{\infty}$ and $b \in alg(SO_{\infty,p}, PC_p)$, or $a \in alg(SO_{\infty}, C(\overline{\mathbb{R}}))$ and $b \in alg(SO_{\infty,p}, C_p(\overline{\mathbb{R}}))$, then $[aI, W^0(b)] \in \mathcal{K}_p$.

Theorem 4.3. [17, Theorem 4.6] Let $p \in (1, \infty)$ and $w \in A_p(\mathbb{R})$. If $a \in PSO^{\diamond}$ and $b \in SO_{p,w}^{\diamond}$, or $a \in SO^{\diamond}$ and $b \in PSO_{p,w}^{\diamond}$, or $a \in alg(SO_{\infty}, C(\overline{\mathbb{R}}))$ and $b \in alg(SO_{\infty,p,w}, C_{p,w}(\overline{\mathbb{R}}))$, then $[aI, W^0(b)] \in \mathcal{K}_{p,w}$.

We say that two functions $a, b \in L^{\infty}(\mathbb{R})$ are equivalent at ∞ $(a \stackrel{\infty}{\sim} b)$ if

$$\lim_{N \to \infty} \|a - b\|_{L^{\infty}(\mathbb{R} \setminus [-N,N])} = 0.$$

$$(4.1)$$

Applying the theory of Calderón-Zygmund operators, we establish the following compactness result for weighted Lebesgue spaces.

Theorem 4.4. If $p \in (1, \infty)$, $w \in A_p(\mathbb{R})$ and one of the following conditions holds:

- (i) $a \in PQC$ and $b \in SO_{p,w}^{\diamond}$,
- (ii) $a \in SO^{\diamond}$ and $b \in PQC_{p,w}$,
- (iii) $a \in PQC, b \in PQC_{p,w}, a \stackrel{\infty}{\sim} c, b \stackrel{\infty}{\sim} d and c \in SO^{\diamond}, d \in SO_{p,w}^{\diamond}$
- (iv) $a \in alg(QC, C(\overline{\mathbb{R}}))$ and $b \in alg(SO_{p,w}^{\diamond}, C_{p,w}(\overline{\mathbb{R}}))$,
- (v) $a \in \operatorname{alg}(SO^{\diamond}, C(\overline{\mathbb{R}}))$ and $b \in \operatorname{alg}(QC_{p,w}, C_{p,w}(\overline{\mathbb{R}}))$,
- (vi) $a \in alg(QC, C(\overline{\mathbb{R}})), b \in alg(QC_{p,w}, C_{p,w}(\overline{\mathbb{R}})), a \stackrel{\infty}{\sim} c, b \stackrel{\infty}{\sim} d and c \in alg(SO^{\diamond}, C(\overline{\mathbb{R}})), d \in alg(SO^{\diamond}_{p,w}, C_{p,w}(\overline{\mathbb{R}})),$

then the commutator $[aI, W^0(b)]$ is compact on the space $L^p(\mathbb{R}, w)$.

Proof. Since every function $b \in QC_{p,w}$ can be approximated in $M_{p,w}$ by functions $b_n \in QC \cap M_{p_{\varepsilon},w_{\varepsilon}}$ for some $\varepsilon \in \mathcal{E}$, where p_{ε} and w_{ε} are given by (2.6), and since all functions b in the algebras $SO_{p,w}, C_{p,w}(\mathbb{R})$ and $PC_{p,w}$ can be also approximated in $M_{p,w}$ by functions b_n in $SO \cap M_{p_{\varepsilon},w_{\varepsilon}}, C(\mathbb{R}) \cap M_{p_{\varepsilon},w_{\varepsilon}}$ and $PC \cap M_{p_{\varepsilon},w_{\varepsilon}}$, respectively, we conclude from Corollary 2.7 that the commutators $[aI, W^0(b_n)]$ will be compact on the space $L^p(\mathbb{R}, w)$ for all functions a and b in conditions (i)–(vi) of the theorem if these commutators will be compact on the space $L^2(\mathbb{R})$. Consequently, in that case, in view of the equality

$$\lim_{n\to\infty} \left\| [aI, W^0(b_n)] - [aI, W^0(b)] \right\|_{\mathcal{B}(L^p(\mathbb{R}, w))} = 0,$$

the commutator $[aI, W^0(b)]$ will be compact on the space $L^p(\mathbb{R}, w)$ as well.

Thus, according to Corollary 2.7, it is sufficient to prove the compactness of the commutator $[aI, W^0(b)]$ under conditions (i)–(vi) on functions *a* and *b* only on the space $L^2(\mathbb{R})$, which implies its compactness on all the spaces $L^p(\mathbb{R}, w)$. Then conditions (i)–(vi) can be rewritten in the form

- (i') $a \in PQC$ and $b \in SO^{\diamond}$,
- (ii') $a \in SO^{\diamond}$ and $b \in PQC$,
- (iii') $a, b \in PQC, a \stackrel{\infty}{\sim} c, b \stackrel{\infty}{\sim} d \text{ and } c, d \in SO^{\diamond},$
- (iv') $a \in alg(QC, C(\overline{\mathbb{R}}))$ and $b \in alg(SO^{\diamond}, C(\overline{\mathbb{R}}))$,
- (v') $a \in \operatorname{alg}(SO^{\diamond}, C(\overline{\mathbb{R}}))$ and $b \in \operatorname{alg}(QC, C(\overline{\mathbb{R}}))$,

(vi')
$$a, b \in \operatorname{alg}(QC, C(\overline{\mathbb{R}})), a \stackrel{\infty}{\sim} c, b \stackrel{\infty}{\sim} d \text{ and } c, d \in \operatorname{alg}(SO^{\diamond}, C(\overline{\mathbb{R}})).$$

Under the transform $A \mapsto \mathcal{F}A\mathcal{F}^{-1}$, the cases (ii') and (v') are reduced to the cases (i') and (iv'), respectively. Indeed, $\mathcal{F}a\mathcal{F}^{-1} = W^0(\tilde{b})$ and $\mathcal{F}W^0(b)\mathcal{F}^{-1} = \tilde{a}I$ where $\tilde{b}(x) = a(-x)$ and $\tilde{a} = b$. Thus, it only remains to prove the assertion in the cases (i'), (iii'), (iv') and (vi').

Case (i'). Since *PQC* is the *C*^{*}-subalgebra of $L^{\infty}(\mathbb{R})$ generated by the *C*^{*}-algebras *PC* and *QC*, it is sufficient to prove part (i') for the pair $a \in QC$, $b \in SO^{\circ}$ only, because for the pair $a \in PC$, $b \in SO^{\circ}$ the compactness of the commutator $[aI, W^0(b)]$ follows from Theorem 4.3. Since SO° is the *C*^{*}-subalgebra of $L^{\infty}(\mathbb{R})$ generated by all the *C*^{*}-algebras SO_{λ} ($\lambda \in \mathbb{R}$), and since SO_{λ} is the closure of SO_{λ}^{3} in $L^{\infty}(\mathbb{R})$, it remains to prove part (i') for the pair $a \in QC$, $b \in SO_{\lambda}^{3}$.

If $\lambda \in \{0, \infty\}$, then we proceed similarly to the proof of [17, Theorem 4.6]. It follows from [19, Lemma 2.2] that the distribution $K = \mathcal{F}^{-1}b$ for $b \in SO_{\lambda}^{3}$ agrees with a function $K(\cdot)$ differentiable on $\mathbb{R} \setminus \{0\}$ and such that

$$|K(x)| \le A_0 |x|^{-1}, \quad |K'(x)| \le A_1 |x|^{-2} \quad \text{for all} \quad x \in \mathbb{R} \setminus \{0\},$$
 (4.2)

where the constants A_{α} ($\alpha = 0, 1$) are estimated by

$$A_{\alpha} \leq C_{\alpha} \max\{ \|D^k b\|_{L^{\infty}(\mathbb{R})} : k = 0, 1, 2, 3 \},\$$

(Db)(x) = xb'(x) for $x \in \mathbb{R}$ and the constants $C_{\alpha} \in (0, \infty)$ depend only on α . Hence $K(\cdot)$ is a classical Calderón-Zygmund kernel, and the convolution operator $W^0(b)$ can be considered as the Calderón-Zygmund operator given by

$$(Tf)(x) = \text{v.p.} \int_{\mathbb{R}} K(x-y)f(y)dy \text{ for } x \in \mathbb{R},$$
 (4.3)

where *T* is bounded on every weighted Lebesgue space $L^p(\mathbb{R}, w)$ with $1 and <math>w \in A_p(\mathbb{R})$ (see, e.g., Theorem 2.5). In particular, the second condition in (4.2) implies that there is a constant $A_2 \in (0, \infty)$ such that

$$|K(x-y) - K(x)| \le A_2 |y|^{\delta} |x|^{-1-\delta} \quad \text{for } |x| \ge 2|y| > 0,$$
(4.4)

where $\delta \in (0, 1)$. Moreover, because the convolution operator $W^0(b)$ is bounded on the space $L^2(\mathbb{R})$, we conclude from [25, p. 291, Proposition 2] that

$$\sup_{0 < r < R < \infty} \left| \int_{r < |x| < R} K(x) dx \right| < \infty.$$
(4.5)

Since conditions (4.2), (4.4) and (4.5) for the operator $T = W^0(b)$ represented in the form (4.3) are fulfilled, we infer from [12, Theorem 7.5.6] that there exists a constant $C \in (0, \infty)$ such that

$$\left\| [aI, W^{0}(b)] \right\|_{\mathcal{B}_{2}} \le C \|a\|_{*}$$
(4.6)

for every $a \in BMO(\mathbb{R})$, where $\mathcal{B}_2 = \mathcal{B}(L^2(\mathbb{R}))$ and $\|\cdot\|_*$ is given by (2.1). On the other hand, by Theorem 2.4, every function $a \in QC$ belongs to the Banach space *VMO*. Hence,

in view of Proposition 2.1, for every $a \in QC$ there exists a sequence $\{a_n\} \in C(\mathbb{R})$ such that $\lim_{n \to \infty} ||a - a_n||_* = 0$, and therefore, by (4.6),

$$\lim_{n \to \infty} \left\| [aI, W^0(b)] - [a_n I, W^0(b)] \right\|_{\mathcal{B}_2} = \lim_{n \to \infty} \left\| [(a - a_n)I, W^0(b)] \right\|_{\mathcal{B}_2} = 0.$$
(4.7)

But $[a_n I, W^0(b)] \in \mathcal{K}_2$ for all $a_n \in C(\mathbb{R})$ and all $b \in SO_{\lambda}$ ($\lambda \in \mathbb{R}$) in virtue of Theorem 4.3. Thus, we deduce from (4.7) that the commutator $[aI, W^0(b)]$ is compact on the space $L^2(\mathbb{R})$ for every $a \in QC$ and every $b \in SO_{\lambda}$ with $\lambda \in \{0, \infty\}$. Note that the compactness of the commutator $[aI, W^0(b)]$ for such a, b also follows from [26, Theorem 2] because $QC \subset VMO$ and $W^0(b)$ is a classical Calderón-Zygmund operator.

Let $e_{\mu}(x) := e^{i\mu x}$ for all $\mu, x \in \mathbb{R}$. The case $a \in QC$ and $b \in SO_{\lambda}$ ($\lambda \in \mathbb{R} \setminus \{0\}$) is reduced to the previous one for $\lambda = 0$ according to the equality

$$e_{\lambda}[aI, W^{0}(b)]e_{-\lambda}I = [aI, W^{0}(b_{0})]$$

where $b_0(x) = b(x + \lambda)$ for $x \in \mathbb{R}$ and hence $b_0 \in SO_0$, which completes the proof of part (i').

Case (iii'). Since $a, b \in PQC$ and $a \sim c \sim \widetilde{c}$, $b \sim d \sim \widetilde{d}$, where $c, d \in SO^{\circ}$ and $\widetilde{c}, \widetilde{d} \in SO_{\infty}$, we conclude that

$$a = \widetilde{c} + (a - \widetilde{c}), \quad b = \widetilde{d} + (b - \widetilde{d}), \quad a - \widetilde{c}, \ b - \widetilde{d} \in QC,$$

$$(4.8)$$

and, according to (4.1),

$$\lim_{N \to \infty} \operatorname{ess\,sup}_{|x| \ge N} |a(x) - \widetilde{c}(x)| = 0, \quad \lim_{N \to \infty} \operatorname{ess\,sup}_{|x| \ge N} |b(x) - \widetilde{d}(x)| = 0.$$
(4.9)

By (4.8), the commutator $[aI, W^0(b)]$ is represented in the form

$$[aI, W^{0}(b)] = [\widetilde{c}I, W^{0}(\widetilde{d})] + [\widetilde{c}I, W^{0}(b - \widetilde{d})] + [(a - \widetilde{c})I, W^{0}(\widetilde{d})] + [(a - \widetilde{c})I, W^{0}(b - \widetilde{d})].$$
(4.10)

By Theorem 4.2, the commutator $[\tilde{c}I, W^0(\tilde{d})]$ with $\tilde{c}, \tilde{d} \in SO_{\infty}$ is compact on the space $L^2(\mathbb{R})$. By part (i'), the commutator $[(a - \tilde{c})I, W^0(\tilde{d})]$ is also compact on $L^2(\mathbb{R})$ because $a - \tilde{c} \in QC$ and $\tilde{d} \in SO_{\infty}$. This implies due to part (ii'), which is equivalent to part (i'), that the commutator $[\tilde{c}I, W^0(b - \tilde{d})]$ with $\tilde{c} \in SO_{\infty}$ and $b - \tilde{d} \in QC$ is also compact on $L^2(\mathbb{R})$.

Finally, in view of (4.10), it remains to prove the compactness on $L^2(\mathbb{R})$ of the commutator $[(a - \tilde{c})I, W^0(b - \tilde{d})]$ with functions $a - \tilde{c}, b - \tilde{d} \in QC$ that vanish at ∞ . We infer from (4.9) that

$$\left\| (a - \widetilde{c})(1 - \widetilde{\chi}_n) \right\|_{L^{\infty}(\mathbb{R})} = 0, \quad \left\| (b - \widetilde{d})(1 - \widetilde{\chi}_n) \right\|_{L^{\infty}(\mathbb{R})} = 0, \tag{4.11}$$

where the functions $\tilde{\chi}_n \in C(\mathbb{R})$ for $n \in \mathbb{N}$ are given by

$$\widetilde{\chi}_n(x) = \begin{cases} 1 & \text{if } |x| \le n, \\ n+1-|x| & \text{if } n < |x| < n+1, \\ 0 & \text{if } |x| \ge n+1. \end{cases}$$

Then from (4.11) it follows that

$$[(a-\widetilde{c})I, W^0(b-\widetilde{d})] = \lim_{n \to \infty} [(a-\widetilde{c})\widetilde{\chi}_n I, W^0(\widetilde{\chi}_n(b-\widetilde{d}))], \qquad (4.12)$$

where the limit is taken in the operator norm. Since

$$[(a-\widetilde{c})\widetilde{\chi}_n I, W^0(\widetilde{\chi}_n(b-\widetilde{d}))] = (a-\widetilde{c})(\widetilde{\chi}_n W^0(\widetilde{\chi}_n))W^0(b-\widetilde{d}) - W^0(b-\widetilde{d})(W^0(\widetilde{\chi}_n)\widetilde{\chi}_n I)(a-\widetilde{c})I,$$

and since the operators $\tilde{\chi}_n W^0(\tilde{\chi}_n)$ and $W^0(\tilde{\chi}_n)\tilde{\chi}_n I$ are compact on the space $L^2(\mathbb{R})$ due to Lemma 4.1(a), we obtain the compactness of all commutators

$$\left[(a-\widetilde{c})\widetilde{\chi}_n I, W^0(\widetilde{\chi}_n(b-\widetilde{d}))\right] \quad (n \in \mathbb{N}).$$

Then from (4.12) it follows that the commutator $[(a - \tilde{c})I, W^0(b - \tilde{d})]$ is also compact on the space $L^2(\mathbb{R})$, which completes the proof of part (iii').

Case (iv'). The compactness of the commutator $[aI, W^0(b)]$ on the space $L^2(\mathbb{R})$ for $a \in alg(QC, C(\overline{\mathbb{R}}))$ and $b \in alg(SO^\circ, C(\overline{\mathbb{R}}))$ follows from the same property for the pairs: $a \in QC$ and $b \in SO^\circ$, $a \in QC$ and $b \in C(\overline{\mathbb{R}})$, $a \in C(\overline{\mathbb{R}})$ and $b \in SO^\circ$, and $a, b \in C(\overline{\mathbb{R}})$. For $a \in QC$ and $b \in SO^\circ$, this was proved in part (i'), for $a \in C(\overline{\mathbb{R}})$ and $b \in SO^\circ$ this follows from Theorem 4.3, for $a, b \in C(\overline{\mathbb{R}})$ this is given by Lemma 4.1(c).

Thus, it remains to prove the compactness of the commutator $[aI, W^0(b)]$ for $a \in QC$ and $b \in C(\overline{\mathbb{R}})$. Given $b \in C(\overline{\mathbb{R}})$, there exists a sequence $\{b_n\}_{n \in \mathbb{N}}$ of piecewise constant functions with finite sets of discontinuities that uniformly converges to b in $L^{\infty}(\mathbb{R})$. Then

$$[aI, W^0(b)] = \lim_{n \to \infty} [aI, W^0(b_n)],$$

and therefore the compactness of the commutator $[aI, W^0(b)]$ on $L^2(\mathbb{R})$ will follow from the compactness of the commutators $[aI, W^0(b_n)]$. Since every function b_n is of the form

$$b_n(x) = \sum_{k=1}^m c_k \operatorname{sgn}(x - t_k) \quad (x \in \mathbb{R}),$$

where c_k are complex constants and $-\infty < t_1 < t_2 < \ldots < t_m < +\infty$, we conclude from the equality $W^0(\text{sgn}((\cdot) - t_k)) = -e_{-t_k}S_{\mathbb{R}}e_{t_k}I$ that

$$[aI, W^{0}(b_{n})] = -\sum_{k=1}^{m} c_{k} e_{-t_{k}} [aI, S_{\mathbb{R}}] e_{t_{k}} I.$$
(4.13)

Because $a \in QC = (H^{\infty} + C(\mathbb{R})) \cap (\overline{H^{\infty}} + C(\mathbb{R}))$ in view of Theorem 2.4, it immediately follows from the Hartman compactness result (see, e.g., [7, Theorem 2.18]) that $[aI, S_{\mathbb{R}}] \in \mathcal{K}_2$ (also see [21, Section 2]). Consequently, we conclude from (4.13) that the commutators $[aI, W^0(b_n)]$ are compact on the space $L^2(\mathbb{R})$, which completes the proof of part (iv').

Case (vi'). By analogy with part (iii'), if $a, b \in alg(QC, C(\overline{\mathbb{R}}))$, $a \stackrel{\infty}{\sim} c, b \stackrel{\infty}{\sim} d$ and $c, d \in alg(SO^{\diamond}, C(\overline{\mathbb{R}}))$, then there are functions $\tilde{c}, \tilde{d} \in alg(SO_{\infty}, C(\overline{\mathbb{R}}))$ such that $a \stackrel{\infty}{\sim} \tilde{c}, b \stackrel{\infty}{\sim} \tilde{d}$. Then we infer from (4.8) and (4.10) that the commutator $[aI, W^0(b)]$ will be compact on $L^2(\mathbb{R})$ if the following commutators will be compact:

[*c̃I*, W⁰(*d̃*)] with *c̃*, *d̃* ∈ alg (S O_∞, C(ℝ)),
 [*c̃I*, W⁰(b − *d̃*)] with *c̃* ∈ alg (S O_∞, C(ℝ)) and b − *d̃* ∈ QC,

- 3) $[(a \widetilde{c})I, W^0(\widetilde{d})]$ with $a \widetilde{c} \in QC$ and $\widetilde{d} \in \operatorname{alg}(SO_{\infty}, C(\overline{\mathbb{R}})),$
- 4) $[(a-\tilde{c})I, W^0(b-\tilde{d})]$ with $a-\tilde{c}, b-\tilde{d} \in QC$ that satisfy (4.9).

Case 1) is covered by Theorem 4.2, case 2) was considered in part (iv'), case 3) is reduced to case 2) under the transform $A \mapsto \mathcal{F}A\mathcal{F}^{-1}$, and case 4) was treated in part (iii'). Consequently, the commutator $[aI, W^0(b)]$ is compact on $L^2(\mathbb{R})$ under conditions (vi') as well, which completes the proof of the theorem.

Open problem. Let $p \in (1, \infty)$ and $w \in A_p(\mathbb{R})$. Is the commutator $[aI, W^0(b)]$ compact on the space $L^p(\mathbb{R}, w)$ for all $a, b \in QC$?

5 Fredholm study of the commutative C^* -algebras Z_1 and Z_2

Let p = 2 and w = 1. Consider the C^* -subalgebras

144

$$Z_1 := \operatorname{alg}(aI, W^0(b): a, b \in PQC, a \stackrel{\infty}{\sim} c, b \stackrel{\infty}{\sim} d, c, d \in SO^{\diamond}),$$
(5.1)

$$Z_2 := \operatorname{alg}(aI, W^0(b): a, b \in QC, a \overset{\infty}{\sim} c, b \overset{\infty}{\sim} d, c, d \in \operatorname{alg}(SO^\diamond, C(\overline{\mathbb{R}})))$$
(5.2)

of the C^* -algebra $\mathcal{B}_2 = \mathcal{B}(L^2(\mathbb{R}))$ generated by the operators aI and $W^0(b)$ with corresponding data $a, b \in PQC$ or $a, b \in QC$. As is known (see, e.g., [17, Lemma 6.1]), the ideal $\mathcal{K} := \mathcal{K}(L^2(\mathbb{R}))$ of compact operators is contained in both the C^* -algebras Z_1 and Z_2 . By Theorem 4.4, the quotient C^* -algebras $Z_i^{\pi} := Z_i/\mathcal{K}$ (i = 1, 2) are commutative.

Let $e_{\lambda}(x) = e^{i\lambda x}$ for all $\lambda, x \in \mathbb{R}$, and let $U_{\lambda} = W^0(e_{\lambda})$ be the translation operator acting by the rule $(U_{\lambda}f)(x) = f(x-\lambda)$ for $x \in \mathbb{R}$.

To study the maximal ideal spaces of the commutative C^* -algebras $Z_i^{\pi} := Z_i / \mathcal{K}$ (*i* = 1,2) we need the following two evident results on limit operators (see, e.g., [17, Lemma 5.1]).

Lemma 5.1. If p = 2, and $a, b \in SO^{\diamond}$, then for every $\xi \in M_{\infty}(SO^{\diamond})$ there is a sequence $\{h_n\} \subset (0, \infty)$ such that $\lim_{n \to \infty} h_n = +\infty$, $\lim_{n \to \infty} a(h_n) = a(\xi)$, $\lim_{n \to \infty} b(h_n) = b(\xi)$ and on $L^2(\mathbb{R})$,

$$\underset{n \to \infty}{\text{s-lim}} (e_{h_n}(aI)e_{h_n}^{-1}I) = aI, \quad \underset{n \to \infty}{\text{s-lim}} (e_{h_n}W^0(b)e_{h_n}^{-1}I) = b(\xi)I, \tag{5.3}$$

$$\operatorname{s-lim}_{n \to \infty} \left(U_{-h_n}(aI) U_{h_n} \right) = a(\xi) I, \quad \operatorname{s-lim}_{n \to \infty} \left(U_{h_n}(aI) U_{-h_n} \right) = a(\xi) I, \tag{5.4}$$

$$s-\lim_{n \to \infty} (U_{-h_n} W^0(b) U_{h_n}) = W^0(b), \quad s-\lim_{n \to \infty} (U_{h_n} W^0(b) U_{-h_n}) = W^0(b).$$
(5.5)

Lemma 5.2. If p = 2, and $a, b \in alg(SO^{\diamond}, C(\overline{\mathbb{R}}))$, then for every $\xi^{\pm} \in M_{\infty}(alg(SO^{\diamond}, C(\overline{\mathbb{R}})))$ there is a sequence $\{h_n\} \subset (0, \infty)$ such that $\lim_{n \to \infty} h_n = +\infty$, $\lim_{n \to \infty} a(\mp h_n) = a(\xi^{\pm})$, $\lim_{n \to \infty} b(\mp h_n) = b(\xi^{\pm})$ and, on the space $L^2(\mathbb{R})$,

$$s-\lim_{n \to \infty} (e_{h_n}(aI)e_{h_n}^{-1}I) = aI, \quad s-\lim_{n \to \infty} (e_{\mp h_n}W^0(b)e_{\mp h_n}^{-1}I) = b(\xi^{\pm})I,$$

$$s-\lim_{n \to \infty} (U_{-h_n}(aI)U_{h_n}) = a(\xi^{-})I, \quad s-\lim_{n \to \infty} (U_{h_n}(aI)U_{-h_n}) = a(\xi^{+})I,$$

$$s-\lim_{n \to \infty} (U_{-h_n}W^0(b)U_{h_n}) = W^0(b), \quad s-\lim_{n \to \infty} (U_{h_n}W^0(b)U_{-h_n}) = W^0(b).$$

We identify the fibers $M_{\lambda}(QC)$ and $M_{\tau}(QC(\mathbb{T}))$, where $\tau = (\lambda - i)/(\lambda + i)$, by the rule $\xi \in M_{\lambda}(QC) \mapsto \zeta \in M_{\tau}(QC(\mathbb{T}))$, which implies the identification of the fibers $M_{\xi}(PQC)$ and $M_{\zeta}(PQC(\mathbb{T}))$. Thus, the fibers $M_{\xi}(PQC)$ for $\xi \in M(QC)$ are actually described by Theorem 3.5.

Theorem 5.3. The maximal ideal space $M(Z_1^{\pi})$ of the commutative quotient C^* -algebra Z_1^{π} is homeomorphic to the set

$$\Omega_{1} := \left(\bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC) \times M_{\infty}(SO^{\diamond})\right) \cup \left(M_{\infty}(SO^{\diamond}) \times \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC)\right) \cup \left(M_{\infty}(SO^{\diamond}) \times M_{\infty}(SO^{\diamond})\right)$$
(5.6)

equipped with topology induced by the product topology of

$$\Big(\bigcup_{\lambda\in\mathbb{R}}M_{\lambda}(PQC)\cup M_{\infty}(SO^{\diamond})\Big)\times\Big(\bigcup_{\lambda\in\mathbb{R}}M_{\lambda}(PQC)\cup M_{\infty}(SO^{\diamond})\Big),$$

where $M_{\lambda}(PQC) = \bigcup_{\xi \in M_{\lambda}(QC)} M_{\xi}(PQC)$. The Gelfand transform $\Gamma_1 : Z_1^{\pi} \to C(\Omega_1), A^{\pi} \mapsto \mathcal{A}(\cdot, \cdot)$

is defined on the generators $A^{\pi} = (aW^0(b))^{\pi}$ of the algebra Z_1^{π} , where $a, b \in PQC$, $a \stackrel{\infty}{\sim} c, b \stackrel{\infty}{\sim} d$ and $c, d \in SO^{\diamond}$, by

$$\mathcal{A}(\xi,\eta) = a(\xi)b(\eta) \quad for \ all \quad (\xi,\eta) \in \Omega_1.$$
(5.7)

Proof. If J is a maximal ideal of the commutative C^* -algebra Z_1^{π} , then

$$J \cap \{aI + \mathcal{K} : a \in PQC, a \stackrel{\infty}{\sim} c, c \in SO^{\diamond}\} \text{ and } J \cap \{W^0(b) + \mathcal{K} : b \in PQC, b \stackrel{\infty}{\sim} d, d \in SO^{\diamond}\}$$

are maximal ideals of the commutative C^* -algebras

$$\{aI + \mathcal{K}: a \in PQC, a \stackrel{\infty}{\sim} c, c \in SO^{\diamond}\} \text{ and } \{W^0(b) + \mathcal{K}: b \in PQC, b \stackrel{\infty}{\sim} d, d \in SO^{\diamond}\}, (5.8)$$

respectively (see [9, Lemma 1.33]). Therefore, taking into account the relations

$$M(\{aI + \mathcal{K} : a \in PQC, a \stackrel{\infty}{\sim} c, c \in SO^{\diamond}\}) = \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC) \cup M_{\infty}(SO^{\diamond}),$$

$$M(\{W^{0}(b) + \mathcal{K} : b \in PQC, b \stackrel{\infty}{\sim} d, d \in SO^{\diamond}\}) = \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC) \cup M_{\infty}(SO^{\diamond}),$$

(5.9)

we conclude that for every point

$$(\xi,\eta) \in \left(\bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC) \cup M_{\infty}(SO^{\diamond})\right) \times \left(\bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC) \cup M_{\infty}(SO^{\diamond})\right),$$

there exists the closed two-sided (not necessarily maximal) ideal $I^{\pi}_{\xi,\eta}$ of the C*-algebra Z^{π}_1 generated by the maximal ideals

$$\{aI + \mathcal{K}: a \in PQC, a \stackrel{\infty}{\sim} c, c \in SO^{\diamond}, \xi(a) = 0\}, \\ \{W^{0}(b) + \mathcal{K}: b \in PQC, b \stackrel{\infty}{\sim} d, d \in SO^{\diamond}, \eta(b) = 0\}$$
(5.10)

of the commutative C^{*}-algebras (5.8), respectively. Thus, in virtue of (5.9), the maximal ideal space of Z_1^{π} can be identified with a subset of

$$\Big(\bigcup_{\lambda\in\mathbb{R}}M_{\lambda}(PQC)\cup M_{\infty}(SO^{\diamond})\Big)\times\Big(\bigcup_{\lambda\in\mathbb{R}}M_{\lambda}(PQC)\cup M_{\infty}(SO^{\diamond})\Big).$$

Fix $(\xi, \eta) \in \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC) \times \bigcup_{\tau \in \mathbb{R}} M_{\tau}(PQC)$. Then $\xi \in M_{\lambda}(PQC)$ and $\eta \in M_{\tau}(PQC)$ for some $\lambda, \tau \in \mathbb{R}$. Given $a, b \in PQC$, we choose functions $a_1, b_1 \in C(\mathbb{R})$ such that $a_1(\lambda) = a(\xi)$, $b_1(\tau) = b(\eta)$, and $a_1(\infty) = b_1(\infty) = 0$. Then

$$aW^{0}(b) = T_{1} + T_{2} + T_{3} + T_{4}, (5.11)$$

where

$$T_1 = (a - a_1)W^0(b - b_1), \ T_2 = (a - a_1)W^0(b_1), \ T_3 = a_1W^0(b - b_1), \ T_4 = a_1W^0(b_1).$$

The operator T_4 is compact by Lemma 4.1(a), and the cosets $T_1^{\pi}, T_2^{\pi}, T_3^{\pi}$ belong to the ideal $I_{\xi,\eta}^{\pi}$. Thus, the smallest closed two-sided ideal of Z_1^{π} which corresponds to the point $(\xi,\eta) \in \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(PQC) \times \bigcup_{\tau \in \mathbb{R}} M_{\tau}(PQC)$ coincides with the whole C^* -algebra Z_1^{π} , and therefore the ideal $I_{\xi,\eta}^{\pi}$ is not maximal. So, the maximal ideals of the commutative C^* -algebra Z_1^{π} can only correspond to points $(\xi,\eta) \in \Omega_1$, where Ω_1 is given by (5.6).

It remains to show that for all $(\xi, \eta) \in \Omega_1$, the closed two-sided ideals $I^{\pi}_{\xi,\eta}$ generated by the maximal ideals (5.10) are maximal ideals of the commutative C^* -algebra Z^{π}_1 .

First, let us prove that these ideals are proper. To this end we need to show that for all $(\xi, \eta) \in \Omega_1$ the ideals $I^{\pi}_{\xi,\eta}$ do not contain the coset $I^{\pi} = I + \mathcal{K}$. By [22, Proposition 2.2.5], the ideals $I^{\pi}_{\xi,\eta}$ consist of the cosets

$$[aI]^{\pi}A^{\pi} + [W^{0}(b)]^{\pi}B^{\pi}, \qquad (5.12)$$

where

$$a, b \in PQC, \ a \stackrel{\infty}{\sim} \widetilde{c}, \ b \stackrel{\infty}{\sim} \widetilde{d}, \ \widetilde{c}, \widetilde{d} \in SO_{\infty}, \ \xi(a) = 0, \ \eta(b) = 0, \ A, B \in Z_1.$$
 (5.13)

Given $\lambda \in \mathbb{R}$, let $(\xi, \eta) \in M_{\lambda}(PQC) \times M_{\infty}(SO^{\diamond})$. Assume that $I^{\pi} \in I^{\pi}_{\xi,\eta}$. Hence, by (5.12),

$$I = aA + W^0(b)B + K, (5.14)$$

where (5.13) holds and $K \in \mathcal{K}$. Since for every $\eta \in M_{\infty}(SO^{\diamond}) = M_{\infty}(SO_{\infty})$ and every $\tilde{d} \in SO_{\infty}$ there is a sequence $h_n \to +\infty$ in \mathbb{R} such that $\lim_{n \to \infty} \tilde{d}(h_n) = \eta(\tilde{d})$ (see, e.g., [3, Proposition 6]), and therefore

$$\lim_{n \to \infty} b(x+h_n) = \lim_{n \to \infty} \widetilde{d}(x+h_n) = \eta(\widetilde{d}) = \eta(b) = 0$$

for almost all $x \in \mathbb{R}$, we conclude from (5.3) that

$$s-\lim_{n \to \infty} (e_{h_n} W^0(b) e_{-h_n} I) = 0.$$
(5.15)

Moreover, from (5.14), the algebraic properties of limit operators (see [6, Proposition 6.1]) and [7, Lemma 10.1] it follows that we can choose the sequence $\{h_n\}$ in such a way that there exist the strong limits

$$\operatorname{s-lim}_{n \to \infty} (e_{h_n} A e_{-h_n} I) = \widetilde{a} I \quad (\widetilde{a} \in PQC), \quad \operatorname{s-lim}_{n \to \infty} (e_{h_n} K e_{-h_n} I) = 0.$$
(5.16)

Consequently, by (5.15) and (5.16), we obtain

$$I = \operatorname{s-lim}_{n \to \infty} \left(e_{h_n} (aA + W^0(b)B + K) e_{-h_n} I \right) = a \widetilde{a} I,$$

which is impossible because $\xi(a) = 0$ and therefore $a\tilde{a} \neq 1$.

Given $\lambda \in \mathbb{R}$, let now $(\xi, \eta) \in M_{\infty}(SO^{\diamond}) \times M_{\lambda}(PQC)$, and we again assume that $I^{\pi} \in I^{\pi}_{\xi,\eta}$. Then we have (5.14), where (5.13) holds and $K \in \mathcal{K}$.

Since for every $\xi \in M_{\infty}(SO^{\diamond}) = M_{\infty}(SO_{\infty})$ and every $\widetilde{c} \in SO_{\infty}$ there is a sequence $\{h_n\} \subset \mathbb{R}$ such that $\lim_{n \to \infty} h_n = +\infty$, $\lim_{n \to \infty} \widetilde{c}(h_n) = \xi(\widetilde{c})$, and hence

$$\lim_{n \to \infty} a(x+h_n) = \lim_{n \to \infty} \widetilde{c}(x+h_n) = \xi(\widetilde{c}) = \xi(a) = 0$$

for almost all $x \in \mathbb{R}$, we conclude from (5.4) that

$$s-\lim_{n \to \infty} (U_{-h_n}(aI)U_{h_n}) = 0, \tag{5.17}$$

where $U_{h_n} = W^0(e_{h_n})$ is a translation operator. On the other hand, we infer from (5.5) that

$$\operatorname{s-lim}_{v\to\infty}(U_{-h_n}W^0(b)U_{h_n})=W^0(b).$$

Using then (5.14), the algebraic properties of limit operators (see [6, Proposition 6.1]) and [7, Lemma 18.9], we can choose the sequence $\{h_n\}$ in such a way that there exists the strong limits

$$\operatorname{s-lim}_{n\to\infty}(U_{-h_n}BU_{h_n}) = W^0(\widetilde{b}) \quad (\widetilde{b} \in PQC), \quad \operatorname{s-lim}_{n\to\infty}(U_{-h_n}KU_{h_n}) = 0.$$
(5.18)

Then from (5.17) and (5.18), we obtain

$$I = \operatorname{s-lim}_{n \to \infty} \left(U_{-h_n}(aA + W^0(b)B + K)U_{h_n}I \right) = W^0(b)W^0(\widetilde{b}) = W^0(b\widetilde{b}),$$

which is impossible because $\eta(b) = 0$ and therefore $b\tilde{b} \neq 1$.

Thus, for all $(\xi,\eta) \in \Omega_1$ the ideals $I^{\pi}_{\xi,\eta}$ do not contain the unit coset I^{π} , and hence these ideals are proper. Suppose, contrary to our claim on the maximality of the ideal $I^{\pi}_{\xi,\eta}$, that for a point $(\xi,\eta) \in \Omega_1$ there is a proper closed two-sided ideal $\widetilde{I}^{\pi}_{\xi,\eta}$ of the algebra Z^{π}_1 that properly contains the ideal $I^{\pi}_{\xi,\eta}$. Then there is a coset $A^{\pi} \in Z^{\pi}_1$ which belongs to $\widetilde{I}^{\pi}_{\xi,\eta} \setminus I^{\pi}_{\xi,\eta}$. Since in view of (5.11),

$$(aW^{0}(b))^{\pi} - (a(\xi)W^{0}(b(\eta)))^{\pi} = (aW^{0}(b))^{\pi} - (a(\xi)b(\eta)I)^{\pi} \in I^{\pi}_{\xi,\eta}$$
(5.19)

for all $a, b \in PQC$ such that $a \stackrel{\infty}{\sim} c$, $b \stackrel{\infty}{\sim} d$ and $c, d \in SO^{\diamond}$, and since $A^{\pi} \notin I^{\pi}_{\xi,\eta}$, there exists a complex number $v \neq 0$ such that $A^{\pi} - (vI)^{\pi} \in I^{\pi}_{\xi,\eta}$. Hence $(vI)^{\pi} \in \widetilde{I}^{\pi}_{\xi,\eta}$ because $A^{\pi} \in \widetilde{I}^{\pi}_{\xi,\eta}$ and

 $I_{\xi,\eta}^{\pi} \subset \widetilde{I}_{\xi,\eta}^{\pi}$. But the coset $(vI)^{\pi}$ is invertible in the algebra Z_1^{π} , which implies that the ideal $\widetilde{I}_{\xi,\eta}^{\pi}$ coincides with the whole algebra Z_1^{π} . Thus the ideal $\widetilde{I}_{\xi,\eta}^{\pi}$ is not proper, a contradiction. Consequently, all the ideals $I_{\xi,\eta}^{\pi}$ for $(\xi,\eta) \in \Omega_1$ are maximal, and therefore $M(Z_1^{\pi})$ can be identified with Ω_1 given by (5.6).

Furthermore, by (5.19), the value of the Gelfand transform of the coset $A^{\pi} = (aW^0(b))^{\pi}$ at a point $(\xi, \eta) \in \Omega_1$ equals $a(\xi)b(\eta)$ for each choice of functions $a, b \in PQC$ being equivalent to functions $c, d \in SO^{\diamond}$ at ∞ . This defines the Gelfand transform for the whole algebra Z_1^{π} by formula (5.7).

Making use of the equality $M_{\infty}(\operatorname{alg}(SO^{\diamond}, C(\overline{\mathbb{R}}))) = M_{\infty}(PSO^{\diamond})$ and applying Lemma 5.2 instead of Lemma 5.1, we obtain the following result by analogy with Theorem 5.3.

Theorem 5.4. The maximal ideal space $M(Z_2^{\pi})$ of the commutative quotient C^* -algebra Z_2^{π} is homeomorphic to the set

$$\Omega_{2} := \left(\bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(QC) \times M_{\infty}(PS O^{\diamond})\right) \cup \left(M_{\infty}(PS O^{\diamond}) \times \bigcup_{\lambda \in \mathbb{R}} M_{\lambda}(QC)\right)$$
$$\cup \left(M_{\infty}(PS O^{\diamond}) \times M_{\infty}(PS O^{\diamond})\right)$$

equipped with topology induced by the product topology of

$$\Big(\bigcup_{\lambda\in\mathbb{R}}M_{\lambda}(QC)\cup M_{\infty}(PSO^{\diamond})\Big)\times\Big(\bigcup_{\lambda\in\mathbb{R}}M_{\lambda}(QC)\cup M_{\infty}(PSO^{\diamond})\Big),$$

and the Gelfand transform $\Gamma_2 : Z_2^{\pi} \to C(\Omega_2), A^{\pi} \mapsto \mathcal{A}(\cdot, \cdot)$ is defined on the generators $A^{\pi} = (aW^0(b))^{\pi}$ of the algebra Z_2^{π} , where $a, b \in QC$, $a \stackrel{\sim}{\sim} c, b \stackrel{\sim}{\sim} d$ and $c, d \in alg(SO^{\diamond}, C(\overline{\mathbb{R}})))$, by

$$\mathcal{A}(\xi,\eta) = a(\xi)b(\eta) \quad for \ all \quad (\xi,\eta) \in \Omega_2.$$

Theorems 5.3 and 5.4 imply the following Fredholm criteria for the C^* -algebras Z_1 and Z_2 given by (5.1) and (5.2), respectively.

Corollary 5.5. An operator $A \in Z_1$ is Fredholm on the space $L^2(\mathbb{R})$ if and only if the Gelfand transform of the coset A^{π} is invertible, that is, if $\mathcal{A}(\xi,\eta) \neq 0$ for all $(\xi,\eta) \in \Omega_1$.

Corollary 5.6. An operator $A \in \mathbb{Z}_2$ is Fredholm on the space $L^2(\mathbb{R})$ if and only if the Gelfand transform of the coset A^{π} is invertible, that is, if $\mathcal{A}(\xi,\eta) \neq 0$ for all $(\xi,\eta) \in \Omega_2$.

Acknowledgments

The work was partially supported by the SEP-CONACYT Project No. 168104 (México) and by PROMEP (México) via "Proyecto de Redes". The third author was also sponsored by the PROMEP postdoc scholarship No. DSA/103.5/14/2353.

References

- M. A. Bastos, A. Bravo, and Yu. I. Karlovich, Convolution type operators with symbols generated by slowly oscillating and piecewise continuous matrix functions. In: *Operator Theoretical Methods and Applications to Mathematical Physics. The Erhard Meister Memorial Volume*, Oper. Theory: Adv. Appl. 147 (2004), pp 151-174.
- [2] M. A. Bastos, C. A. Fernandes, and Yu. I. Karlovich, C*-algebras of integral operators with piecewise slowly oscillating coefficients and shifts acting freely. *Integr. Equ. Oper. Theory* 55 (2006), pp 19-67.
- [3] M. A. Bastos, Yu. I. Karlovich, and B. Silbermann, Toeplitz operators with symbols generated by slowly oscillating and semi-almost periodic matrix functions. *Proc. London Math. Soc.* 89 (2004), pp 697-737.
- [4] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin 1976.
- [5] A. Böttcher and Yu. I. Karlovich, *Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators*, Progr. Math. **154**, Birkhäuser, Basel 1997.
- [6] A. Böttcher, Yu. I. Karlovich, and V. S. Rabinovich, The method of limit operators for one-dimensional singular integrals with slowly oscillating data. J. Operator Theory 43 (2000), pp 171-198.
- [7] A. Böttcher, Yu. I. Karlovich, and I. M. Spitkovsky, *Convolution Operators and Factorization of Almost Periodic Matrix Functions*, Oper. Theory: Adv. Appl. 131, Birkhäuser, Basel 2002.
- [8] A. Böttcher and I. M. Spitkovsky, Wiener-Hopf integral operators with PC symbols on spaces with Muckenhoupt weight. *Revista Matemática Iberoamericana* 9 (1993), pp 257-279.
- [9] A. Böttcher and B. Silbermann, *Analysis of Toeplitz Operators*, 2nd edition, Springer, Berlin 2006.
- [10] R. V. Duduchava, Integral Equations with Fixed Singularities, Teubner, Leipzig 1979.
- [11] J. B. Garnett, *Bounded Analytic Functions*, Academic Press, New York 1981.
- [12] L. Grafakos, *Classical and Modern Fourier Analysis*, Pearson/Prentice Hall, Upper Saddle River, NJ, 2004.
- [13] N. B. Haaser and J. A. Sullivan, *Real Analysis*, Dover Publications, New York 1991.
- [14] L. Hörmander, Estimates for translation invariant operators in L^p spaces. Acta Math.
 104 (1960), pp 93-140.
- [15] Yu. I. Karlovich, Boundedness and compactness of pseudodifferential operators with non-regular symbols on weighted Lebesgue spaces. *Integr. Equ. Oper. Theory* 73 (2012), pp 217-254.

- [16] Yu. I. Karlovich and I. Loreto Hernández, Algebras of convolution type operators with piecewise slowly oscillating data. I: Local and structural study. *Integr. Equ. Oper. Theory* 74 (2012), pp 377-415.
- [17] Yu. I. Karlovich and I. Loreto Hernández, On convolution type operators with piecewise slowly oscillating data. In: Operator Theory, Pseudo-Differential Equations, and Mathematical Physics. The Vladimir Rabinovich Anniversary Volume, Oper. Theory: Adv. Appl. 228 (2013), pp 185-207.
- [18] Yu. I. Karlovich and I. Loreto Hernández, Algebras of convolution type operators with piecewise slowly oscillating data. II: Local spectra and Fredholmness. *Integr. Equ. Oper. Theory* **75** (2013), pp 49-86.
- [19] Yu. I. Karlovich and J. Loreto Hernández, Wiener-Hopf operators with slowly oscillating matrix symbols on weighted Lebesgue spaces. *Integr. Equ. Oper. Theory* 64 (2009), pp 203-237.
- [20] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, and P. E. Sobolevskii, *Integral Operators in Spaces of Summable Functions*, Nauka, Moscow 1966 (Russian); English transl.: Noordhoff I.P., Leyden 1976.
- [21] S. C. Power, Hankel Operators on Hilbert Space. Bull. London Math. Soc. 12 (1980), pp 422-442.
- [22] S. Roch, P. A. Santos, and B. Silbermann, Non-commutative Gelfand Theories. A Tool-kit for Operator Theorists and Numerical Analysts, Springer, London 2011.
- [23] D. Sarason, Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207 (1975), pp 391-405.
- [24] D. Sarason, Toeplitz operators with piecewise quasicontinuous symbols. *Indiana Univ. Math. J.* 26 (1977), pp 817-838.
- [25] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993.
- [26] A. Uchiyama, On the compactness of operators of Hankel type. *Tôhoku Math. Journ.* 30 (1978), pp 163-171.