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Abstract

We study the existence and the asymptotic behavior of positive solutions of the non-
linear equation

∆u + ϕ(.,u)+ψ(.,u) = 0,

in NTA- cones in Rn( n ≥ 3).
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1 Inroduction

We work in the Euclidean space Rn, where n ≥ 3. By GΩ, we denote the Green function for
the Laplacian in a domain Ω. We write δΩ(x) for the distance from x ∈ Ω to the Euclidean
boundary ∂Ω of Ω. By the symbol A, we denote an absolute positive constant whose value
is unimportant and may change from line to line. If necessary, we use A0,A1, . . . to specify
them. B(x,r) denote the open ball and the sphere of center x and radius r. We write B(r) =
B(0,r) for simplicity. We say that a bounded domain Ω is uniform if there exists a constant
A0 > 1 such that each pair of points x and y in Ω can be connected by a rectifiable curve γ
in Ω for which `(γ) ≤ A0 |x− y| ,

min {`(γ(x,z)), `(γ(z,y))} ≤ A0 δΩ(z), for all z ∈ γ,

where `(γ(x,z)) denotes the length of the subarc γ(x,z) of γ from x to z. A non-tangentially
accessible (abbreviated NTA ) domain, as introduced by Jerison and Kenig in [11], is a
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uniform domain satisfying the exterior corkscrew condition : there exists a constant r0 > 0
such that for any z ∈ ∂Ω and 0 < r < r0, we find a point x ∈ Rn \Ω such that |x− z| = r and
δΩ(x) ≥ r

A0
. By a ray from 0 we mean an ’open’ half-line starting from 0 (thus excluding 0).

A cone of vertex 0 is a domain (non-empty connected open set) C consisting of rays from
0 and such that its exterior Rn \C is not empty. From [16], an NTA-cone of vertex 0 is a
cone C of vertex 0 such that C∩B(0,1) is an NTA-domain. By Γ, we denote an NTA-cone
of vertex 0.

Let z0 be a fixed point in Γ (the reference point), ζ ∈ ∂Γ∪{∞} , and
{
y j

}
a sequence in Γ

converging to ζ. Then some subsequence of
{
GΓ(.,y j)/GΓ(z0,y j)

}
j

converges to a positive
harmonic function in Γ. All limit functions obtained in this way are called Martin kernels
at ζ. Note from [[1], Theorem 3] and the Kelvin transformation, that for all ζ ∈ ∂Γ∪ {∞},
there exists a unique (minimal) Martin kernel KΓ(., ζ) at ζ. Moreover, from [[16],p 472],
there exist a nonnegative constant α and a positive bounded continuous function ω on Γ∩
S (0,1) such that

KΓ(x,0) = |x|2−n−αω

(
x
|x|

)
and KΓ(x,∞) = |x|α ω

(
x
|x|

)
, (1.1)

where S (0,1) is the unit sphere. Our motivation in this paper comes from [19], where Shi
and Yao investigated the existence of nonnegative solutions for the elliptic problem

∆u+K(x)u−γ +λuα = 0, inΩ,
u(x) > 0 inΩ,
u = 0 on ∂Ω,

where Ω is a bounded domain with smooth compact boundary, γ and α in (0,1) are two
constants, λ real parameter and K is in C0,β(Ω). Using this result. Sun and Li [20] gave a
similar result in Rn (n ≥ 2). In fact they proved an existence result for the problem

∆u+ p(x)u−γ +q(x)uα = 0 in Rn

u(x) > 0 in Rn

u(x) −→ 0, as |x| −→∞,

where γ and α in (0,1) are two constant and p,q are two nonnegative functions in Cβ
loc(Rn)

such that p+q , 0. The pure singular elliptic problem

∆u(x)+ p(x) (u(x))−γ = 0, γ > 0, x ∈ D ⊂ Rn

has been extensively studied for both bounded and unbounded domains with smooth com-
pact boundary (see for example [3] [4], [5], [8], [6], [7], [9] and [10]). In [2] Breizis and
Kamin study the sublinear elliptic equation

∆u+ρ(x) (u(x))γ = 0 in Rn,

liminf
|x|−→∞

u(x) = 0,

with 0 < γ < 1 and ρ is a nonnegative measurable function satisfying some appropriate
conditions. They proved the existence and the uniqueness of positive solution. In this paper
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we combine a singular term and a sublinear term in the nonlinearity. Indeed, we consider
the boundary value problem

∆u+ϕ(.,u)+ψ(.,u) = 0 in Γ,
u > 0 in Γ,
u = 0 on ∂Γ,
lim

x−→∞
u(x) = 0,

(1.2)

where ϕ and ψ are required to satisfy some appropriate hypotheses related to a functional
class K(Γ), introduced and studied by K. Hirata in [17].

Definition 1.1. (Kato class)(see[17]) We say that a measure ν on Γ belongs to the extended
Kato class K(Γ) if ν satisfies the following conditions :

lim
r−→0

(
sup
x∈Γ

∫
Γ∩B(x,r)

KΓ(y,∞)
KΓ(x,∞)

GΓ(x,y) dν(y)
)
= 0, (1.3)

lim
R−→+∞

(
sup
x∈Γ

∫
Γ\B(0,R)

KΓ(y,∞)
KΓ(x,∞)

GΓ(x,y) dν(y)
)
= 0. (1.4)

We also say that a Borel measurable function φ in Γ belongs to the extended Kato class
K(Γ) if the measure dν = |φ| dy belongs to K(Γ).

Example 1.1. (see[17]) Suppose that 0 ≤ α < 1 and ω(z) ' δΓ(z), and let

W(y) = (1+ |y|)αp−q |y|p(1−α) δΓ(y)−p.

Then W ∈ K(Γ) if and only if p < 2 < q.

In [3] M. Zribi studied (1.2) and prove an existence result in a bounded domain Ω with
smooth compact boundary, when ϕ and ψ satisfies some appropriate hypothesis related to
the Kato class K(Ω). His discussion was based on the explicit estimates for the Green
function. For the reader’s convenience, we recall the definition of K(Ω).

Definition 1.2. (see [13] and [14]) A Borel measurable function φ in Ω belongs to the Kato
class K(Ω) if φ satisfies

lim
r−→0

(
sup
x∈Ω

∫
Ω∩B(x,r)

δΩ(y)
δΩ(x)

HΩ(x,y) |φ(y)| dy
)
= 0,

where

HΩ(x,y) =


δΩ(x)δΩ(y)

|x−y|n−2
(
|x−y|2+δΩ(x)δΩ(y)

) if n ≥ 3

ln
(
1+ δΩ(x)δΩ(y)

|x−y|2

)
if n = 2.

Our aim in this paper is to prove an existence result and asymptotic behavior for posi-
tive solutions of the problem (1.2) by applying the sharp estimates for the Green function
established by K. Hirata in [17]. The following notations will be adopted :
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i) C(Γ) will denote the set of continuous functions in Γ.

ii) C0(Γ∪{∞})=
{
v ∈ C(Γ∪{∞}) : lim

x−→∂Γ
v(x) = lim

x−→∞
v(x) = 0

}
. We recall that this space

endowed with the uniform norm is Banach ‖v‖∞ = sup
x∈Γ
|v(x)|.

iii) For two positive functions f1 and f2, we write f1 ' f2 if there exists a constant A ≥ 1
such that A−1 f1 ≤ f2 ≤ A f1. The constant A will be called the constant of comparison.

Let B(Γ) be the set of Borel measurable functions in Γ and B+(Γ) the set of non negative
one. We define the potential kernel V on B+(Γ) by

Vφ(x) =
∫
Γ

GΓ(x,y) φ(y) dy.

We note that, for any φ ∈ B+(Γ) such that φ ∈ L1
loc(Γ) and Vφ ∈ L1

loc(Γ), we have in the
distributional sense (see [18], p.49)

∆(Vφ) = −φ in Γ. (1.5)

We point out that for any φ ∈ B+(Γ) such that Vφ . ∞, we have Vφ ∈ L1
loc(Γ), (see [18],

p.51). The following hypothesis on ϕ and ψ are adopted :

(H1) ϕ is a nonnegative Borel measurable function on Γ×]0,+∞[, continuous and non-
increasing with respect to the second variable.

(H2) For all c > 0, x 7−→ ϕ

(
x,c

KΓ(x,∞)
(1+ |x|)n−2+2α

)
, belongs to K(Γ).

(H3) ψ is a nonnegative Borel measurable function on Γ×]0,+∞[, continuous with respect
to the second variable such that there exist a nontrivial nonnegative function p and a
non negative function q ∈ K(Γ) satisfying for x ∈ Γ and t > 0,

p(x) h(t) ≤ ψ(x, t) ≤ q(x) f (t),

where h is a measurable nondecreasing function on [0,+∞[ satisfying

lim
t−→0+

h(t)
t
= +∞,

and f is a nonnegative measurable function locally bounded on [0,+∞[ satisfying

limsup
t−→+∞

f (t)
t

<
1

‖Vq‖∞
.

Note that in [12] Mâagli and Masmoudi studied the case ϕ = 0, under similar conditions
to those in (H3). Indeed the authors gave an existence result for

∆u+ψ(.,u) = 0, in D,
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with some boundary conditions, where D is an unbounded domain in Rn (n≥ 2) with a com-
pact smooth nonempty boundary. Typical examples of nonlinearities satisfying (H1)− (H3)
are

ϕ(x, t) = p(x)
(

KΓ(x,∞)
(1+ |x|)n−2+2α

)γ
t−γ, for γ ≥ 0,

ψ(x, t) = p(x) tα ln(1+ tβ), for α,β ≥ 0 such that α+β < 1,

where p is a non negative function in K(Γ). Our main result is the following

Theorem 1.1. Assume (H1)− (H3). Then the problem (1.2) has a positive solution u ∈
C0(Γ∪{∞}) satisfying for each x ∈ Γ

θ
KΓ(x,∞)

(1+ |x|)n−2+2α ≤ u(x) ≤ V
(
ϕ
(
., θ

KΓ(.,∞)
(1+ |.|)n−2+2α

))
(x)+bV q(x),

where θ,b are positive constants.

This paper consists of 4 section devoted to the following topics : In section 2, we
recall some helpful results established by Hirata in [17]. In section 3 we establish some
preliminaries results that will be necessary to prove Theorem 1.1 in section 4.

2 recall of some helpful results

Lemma 2.1. There exists a constant A1 > 0 depending only on Γ such that for all x,y ∈ Γ,
we have

GΓ(x,y) ≥ A1
KΓ(x,∞) KΓ(y,∞)(

(1+ |x|) (1+ |y|)
)n−2+2α (2.1)

Theorem 2.1. (3-G Inequalities). There exists a constant A depending only on Γ such that
for x,y,z ∈ Γ,

GΓ(x,y) GΓ(y,z)
GΓ(x,z)

≤ A
(

KΓ(y,∞)
KΓ(x,∞)

GΓ(x,y)+
KΓ(y,∞)
KΓ(z,∞)

GΓ(y,z)
)
. (2.2)

Lemma 2.2. Let r > 0 and R > 0. Then there exists a constant A depending only on r, R
and Γ such that for x,y ∈ Γ∩B(R) with |x− y| ≥ r,

GΓ(x,y) ≤ A KΓ(x,∞) K(y,∞). (2.3)

Proposition 2.1. If φ is a Borel measurable function in Γ such that φ ∈ K(Γ), then

‖φ‖H = sup
x∈Γ

∫
Γ

KΓ(y,∞)
KΓ(x,∞)

GΓ(x,y) |φ(y)| dy < +∞,

moreover for each R > 0,
∫
Γ∩B(R)

K
2

Γ(y,∞) |φ(y)| dy < +∞.
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Corollary 2.1. For x,y ∈ Γ with 2 |y| ≤ |x| ,

GΓ(x,y) ' |x|2−n−2α KΓ(x,∞) KΓ(y,∞) = KΓ(x,0) KΓ(y,∞),

where the constant of comparaison depends only on Γ.

Corollary 2.2. Let φ be a Borel measurable function in Γ such that φ ∈ K(Γ). Then, for
each R > 0, ∫

Γ∩B(R)
KΓ(y,∞) |φ(y)| dy < +∞. (2.4)

Lemma 2.3. Let φ be a Borel measurable function in Γ such that ϕ ∈ K(Γ). Then, for each
x0 ∈ Γ,

lim
r−→0

∫
Γ∩B(x0,r)

KΓ(y,∞)2 |φ(y)| dy = 0.

3 preliminaries results

Proposition 3.1. Let φ be a Borel measurable function in Γ such that φ ∈ K(Γ) and h be a
positive superharmonic function in Γ. Then

a)

lim
r−→0

sup
x∈Γ

1
h(x)

∫
B(x0,r)∩Γ

GΓ(x,y) h(y) |φ(y)| dy = 0, ∀x0 ∈ Γ . (3.1)

lim
M−→+∞

sup
x∈Γ

1
h(x)

∫
Γ\B(M)

GΓ(x,y) h(y) |φ(y)| dy = 0 . (3.2)

b) For all x ∈ Γ and A as in Theorem 2.1,∫
Γ

GΓ(x,y) h(y) |φ(y)| dy ≤ 2 A ‖φ‖H h(x) . (3.3)

Proof. Let h be a positive superharmonic function in Γ. Then by [[7],Theorem 2.1, p.164],
there exists a sequence ( fn)n∈N of positive measurable functions in Γ such that

h(y) = sup
n∈N

∫
Γ

GΓ(y,z) fn(z) dz.

Hence we need to verify (3.1), (3.2) and (3.3) only for h(y) =GΓ(y,z), uniformly for z ∈ Γ.

a) Let r > 0. By using Theorem 2.1, we get

1
GΓ(x,z)

∫
B(x0,r)∩Γ

GΓ(x,y) GΓ(y,z) |φ(y)| dy≤ 2 A sup
z∈Γ

∫
B(x0,r)∩Γ

KΓ(y,∞)
KΓ(z,∞)

GΓ(z,y) |φ(y)| dy.

Let ε > 0. Since φ ∈ K(Γ), there exist positive numbers r1 and R1 such that

sup
z∈Γ

∫
Γ∩B(z,r1)

KΓ(y,∞)
KΓ(z,∞)

GΓ(z,y) |φ(y)| dy ≤ ε
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and

sup
z∈Γ

∫
Γ\B(R1)

KΓ(y,∞)
KΓ(z,∞)

GΓ(z,y) |φ(y)| dy ≤ ε .

Let r > 0 and z ∈ Γ. Then, we have by Lemma 2.2∫
Γ∩B(x0,r)

KΓ(y,∞)
KΓ(z,∞)

GΓ(z,y) |φ(y)| dy ≤ 2ε+
∫
Γ∩B(x0,r)∩B(R1)\B(z,r1)

KΓ(y,∞)
KΓ(z,∞)

GΓ(z,y) |φ(y)| dy

≤ 2ε+ A
∫
Γ∩B(x0,r)

KΓ(y,∞)2 |φ(y)| dy.

Hence, (3.1) follows from Lemma 2.3. On the other hand, we have

1
GΓ(x,z)

∫
(|y|≥M)∩Γ

GΓ(x,y) GΓ(y,z) |φ(y)| dy≤ 2 Asup
z∈Γ

∫
(|y|≥M)∩Γ

KΓ(y,∞)
KΓ(z,∞)

GΓ(z,y) |φ(y)| dy,

which converges to zero as M −→ +∞. This gives (3.2).

b) By using Theorem 2.1, we obtain

1
GΓ(x,z)

∫
Γ

GΓ(x,y) GΓ(y,z) |φ(y)| dy ≤ 2 A ‖φ‖H .

Corollary 3.1. Let φ be a Borel measurable function in Γ such that φ ∈ K(Γ). Then, we
have

sup
x∈Γ

∫
Γ

GΓ(x,y) |ϕ(y)| dy <∞, (3.4)∫
Γ

KΓ(y,∞)
(1+ |y|)n+2α−2 |φ(y)| dy < +∞. (3.5)

Proof. Inequality (3.4) is a consequence of (3.3) with h = 1 in Γ and Proposition 2.1. Let
x0 ∈ Γ. Then by Lemma 2.1 and (3.4) we get∫

Γ

KΓ(y,∞)
(|y|+1)n+2α−2 |φ(y)| dy ≤ A1

(|x0|+1)n+2α−2

KΓ(x0,∞)
sup
x∈Γ

∫
Γ

GΓ(x,y) |φ(y)| dy <∞.

By using (2.1) and (3.5), we get

Proposition 3.2. Let φ be a Borel measurable function in Γ such that φ ∈ K(Γ). Then, there
exists a constant A2 > 0 such that for all x ∈ Γ

Vφ(x) ≥ A2
KΓ(x,∞)

(1+ |x|)n+2α−2 . (3.6)

Proposition 3.3. Let φ be a Borel measurable function in Γ such that φ ∈ K(Γ). Then, the
function Vφ is in C0(Γ∪{∞}).
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Proof. Let x0 ∈ Γ and δ > 0. Let x, x′ ∈ Γ∩B(x0,
δ
2 ).∣∣∣Vφ(x)−Vφ(x′)

∣∣∣ ≤ 2 sup
x∈Γ

∫
Γ\B(δ−1)

GΓ(x,y) |φ(y)| dy+2 sup
x∈Γ

∫
Γ∩B(x0,δ)

GΓ(x,y) |φ(y)| dy +

+

∫
Γ∩B(δ−1)\B(x0,δ)

∣∣∣GΓ(x,y)−GΓ(x′,y)
∣∣∣ |φ(y)| dy .

By (3.1) and (3.2), the first two quantities of the right hand side are bounded by ε whenever
δ is sufficiently small. For δ sufficiently small, GΓ(.,y) can be extended continuously to
B(x0,

δ
2 )∩Γ whenever y ∈ Γ \B(x0, δ). Moreover, by (2.3) and (1.1), there exists A > 0 such

that

GΓ(x,y) ≤ A KΓ(y,∞), ∀(x,y) ∈
(
B(x0,

δ

2
)∩ (Γ∪∂rΓ)

)
×

(
Γ∩B(δ−1) \B(x0, δ)

)
.

Then by (2.4) and Lebesgue’s theorem, we have∫
(Γ∩B(δ−1))\B(x0,δ)

∣∣∣GΓ(x,y)−GΓ(x′,y)
∣∣∣ |φ(y)| dy −→

|x−x′ |−→0
0 .

Hence, Vφ is continuous in Γ.
Now we will show that lim

x−→∂Γ
Vφ(x) = lim

|x|−→+∞
Vφ(x) = 0.

Let x0 ∈ ∂Γ, δ ∈]0,1[ and x ∈ B(x0,
δ
2 )∩Γ. Then

|Vφ(x)| ≤
∫
Γ

GΓ(x,y) |φ(y)| dy

≤ sup
z∈Γ

∫
B(x0,δ)∩Γ

GΓ(z,y) |φ(y)| dy+ sup
z∈Γ

∫
Γ\B(δ−1)

GΓ(z,y) |φ(y)| dy

+

∫
Γ∩B(δ−1)\B(x0,δ)

GΓ(x,y) |φ(y)| dy .

By Lemma 2.2, we get∫
Γ∩B(δ−1)\B(x0,δ)

GΓ(x,y) |φ(y)| dy ≤ A KΓ(x,∞)
∫
Γ∩B(δ−1)

KΓ(y,∞) |φ(y)| dy.

Then, we obtain, by (2.4), (3.1) and (3.2) with h = 1, that lim
x−→∂Γ

Vφ(x) = 0.

We next consider x0 =∞. Let M > 0. Then

|Vφ(x)| ≤
∫
Γ∩B(M)

GΓ(x,y) |φ(y)| dy+
∫
Γ\B(M)

GΓ(x,y) |φ(y)| dy

By (3.2), the second term of the right hand side is bounded by ε uniformly for x, whenever
M is sufficiently large. Using (1.1) and Corollary 2.1 , we get

GΓ(x,y) ≤ A
KΓ(y,∞)

|x|n−2+α , for x ∈ Γ \B(2M) and y ∈ Γ∩B(M).

It follows from Corollary 2.2 that lim
|x|−→+∞

|Vφ(x)| = 0.
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For a fixed nonnegative function q in K(Γ), we put

Mq = {Ψ ∈ B(Γ), |Ψ| ≤ q} .

by the same way in the proof of Proposition 3.3, we prove

Proposition 3.4. Let q be a nonnegative function in K(Γ), then the family of functions

V(Mq) =
{
VΨ : Ψ ∈Mq

}
is relatively compact in C0(Γ∪{∞}).

4 Proof of Theorem 1.1

The proof is based on Schauder fixed point argument. In the sequel, we suppose that Γ is a
NTA-cone in Rn (n ≥ 3). Let K be a compact of Γ such that using (H3), we have

0 < a :=
∫
K

KΓ(y,∞)
(1+ |y|)n+2α−2 p(y) dy < +∞.

Let β =min
x∈K

KΓ(x,∞)
(1+ |x|)n+2α−2 , 0.

Since lim
t−→0+

h(t)
t
= +∞, then there exists θ > 0, such that

a A1 h(θ β) ≥ θ. (4.1)

Let µ > 0 such that limsup
t−→+∞

f (t)
t

< µ <
1

‖Vq‖∞
. Then there exist r > 0, such that for all t ≥ r

f (t) ≤ µt.

Hence for all t ≥ 0, we obtain

0 ≤ f (t) ≤ µt+
 sup

t∈[0,r]
f (t)

 = σ. (4.2)

From (H2) and Proposition 3.4, we observe that∥∥∥∥∥∥Vϕ
(
., θ

KΓ(x,∞)
(|x|+1)n−2+2α

)∥∥∥∥∥∥
∞

<∞, Vϕ
(
., θ

KΓ(x,∞)
(|x|+1)n−2+2α

)
and Vq ∈C0(Γ∪{∞}).

Let

b =

 θA2
∨

µ
∥∥∥∥Vϕ(., θ KΓ(x,∞)

(|x|+1)n−2+2α )
∥∥∥∥
∞
+σ

1−µ‖Vq‖∞


and consider the closed convex set

F =
{

u ∈C0(Γ∪{∞}) : θ
KΓ(x,∞)

(1+ |x|)n−2+2α ≤ u(x) ≤ Vϕ
(
., θ

KΓ(x,∞)
(1+ |x|)n−2+2α

)
+ b Vq(x), ∀x ∈ Γ

}
.

It is clear from (3.6) that F , 0. For u ∈ F, we define

Tu(x) =
∫
Γ

GΓ(x,y) (ϕ(y,u(y)) + ψ(y,u(y))) dy, x ∈ Γ.
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Lemma 4.1. T (F) ⊂ F. Moreover T (F) is relatively compact in C0(Γ∪{∞}).

Proof. Let u ∈ F and x ∈ Γ, then by (4.2) we have

Tu(x) ≤ Vϕ
(
., θ

KΓ(x,∞)
(1+ |x|)n−2+2α

)
(x)+

∫
Γ

GΓ(x,y) q(y) f (u(y)) dy

≤ Vϕ
(
., θ

KΓ(x,∞)
(1+ |x|)n−2+2α

)
(x)+

∫
Γ

GΓ(x,y) q(y) (µ u(y)+σ) dy

≤ Vϕ
(
., θ

KΓ(x,∞)
(1+ |x|)n−2+2α

)
(x)+b Vq(x).

Moreover, since h is nondecreasing, then it follows from (2.1) and (4.1) that

Tu(x) ≥
∫
Γ

GΓ(x,y) ψ(y,u(y)) dy

≥ A1
KΓ(x,∞)

(1+ |x|)n−2+2α h(θβ)
∫
K

KΓ(y,∞)
(1+ |y|)n−2+2α p(y) dy

≥ A1 a h(θβ)
KΓ(x,∞)

(1+ |x|)n−2+2α

≥ θ
KΓ(x,∞)

(1+ |x|)n−2+2α , ∀x ∈ Γ.

On the other hand, for all u ∈ F, we have

ϕ(.,u) ≤ ϕ
(
., θ

KΓ(x,∞)
(1+ |x|)n−2+2α

)
, (4.3)

and

ψ(.,u) ≤ µ

(∥∥∥∥∥Vϕ(., θ
KΓ(x,∞)

(|x|+1)n−2+2α )
∥∥∥∥∥
∞

+b ‖Vq‖∞+σ
)

q. (4.4)

Thus we deduce by Proposition 3.4, that T (F) is relatively compact in C0(Γ∪{∞}). Hence
T (F) ⊂ F.

Lemma 4.2. T is continuous in F.

Proof. Let (uk)k∈N be a sequence in F which converges uniformly to u ∈ F. Since ϕ and
ψ are continuous with respect to the second variable, then it follows by the dominated
convergence theorem that for all x ∈ Γ∪ {∞} lim

k−→+∞
Tuk(x) = Tu(x). Hence, Tuk converges

pointwisely to Tu in Γ as k −→ +∞. Since T (F) is relatively compact in C0(Γ∪ {∞}), the
pointwise convergence implies the uniform convergence. Thus lim

k−→+∞
‖Tuk −Tu‖∞ = 0.

Hence T is continuous on F.

Proof. of Theorem 1.1 Let us recall that F is a nonempty closed convex set in C0(Γ∪{∞}).
Since T is a compact mapping from F to it self, it follows from Schauder’s fixed point
theorem, that there exists u ∈ F such that T (u) = u, that is

u(x) =
∫
Γ

GΓ(x,y) (ϕ(y,u(y)) + ψ(y,u(y))) dy, ∀x ∈ Γ. (4.5)
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Since q and ϕ
(
., θ KΓ(x,∞)

(1+|x|)n−2+2α

)
are in K(Γ), it follows by (4.3), (4.4) that the function

y 7−→ ϕ(y,u(y))+ψ(y,u(y)) belongs to L1
loc(Γ). On the other hand, since u ∈C0(Γ∪{∞}), we

deduce from (4.5) that

V (ϕ(.,u) + ψ(.,u)) ∈C0(Γ∪{∞}) ⊂ L1
loc(Γ).

Hence
∆u+ϕ(.,u)+ψ(.,u) = 0, in Γ in the sense of distribution,

and so u is a solution of (1.2).
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