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São Paulo, Brazil

D Ṕ†
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Abstract

Let {Q
(α)

n,λ
}n≥0 be the sequence of monic orthogonal polynomials with respect the Gegenbauer-

Sobolev inner product

〈 f ,g〉S :=

∫ 1

−1

f (x)g(x)(1− x2)α−
1
2 dx+λ

∫ 1

−1

f ′(x)g′(x)(1− x2)α−
1
2 dx,

where α > −1
2

and λ ≥ 0. In this paper we use a recent result due to B.D. Bojanov and

N. Naidenov [3], in order to study the maximization of a local extremum of the kth

derivative dk

dxk Q
(α)

n,λ
in [−Mn,λ,Mn,λ], where Mn,λ is a suitable value such that all zeros

of the polynomial Q
(α)

n,λ
are contained in [−Mn,λ,Mn,λ] and the function

∣

∣

∣

∣

Q
(α)

n,λ

∣

∣

∣

∣

attains

its maximal value at the end-points of such interval. Also, some illustrative numerical

examples are presented.
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1 Introduction

Extremal properties for general orthogonal polynomials is an interesting subject in ap-

proximation theory and their applications permeate many fields in science and engineer-

ing [5, 18, 21, 28, 29]. Although it may seem an old subject from the view point of the

standard orthogonality [5, 18, 29], this is not the case neither in the general setting (cf.

[11, 12, 13, 14, 20]) nor from the view point of Sobolev orthogonality, where it remains

like a partially explored subject [1]. In fact, new results continue to appear in some recent

publications [10, 11, 12, 24, 26, 27].

Let dµ(x) = (1− x2)α−
1
2 dx with α > − 1

2
, be the Gegenbauer measure supported on the

interval [−1,1]. We consider the following Sobolev inner product on the linear space P of

polynomials with real coefficients.

〈 f ,g〉S :=

∫ 1

−1

f (x)g(x)dµ(x)+λ

∫ 1

−1

f ′(x)g′(x)dµ(x), (1.1)

where λ ≥ 0. Let {Q
(α)
n,λ
}n≥0 denote the sequence of monic orthogonal polynomials with

respect to (1.1). These polynomials are usually called monic Gegenbauer-Sobolev polyno-

mials [7, 8, 15, 16, 17, 25] and it is known that the zeros of these polynomials are in the real

line [15, 16], and therefore they belong to other important class of algebraic polynomials,

namely the oscillating polynomials [3, 19].

The main result of [3] allows to guarantee the maximal absolute value of higher deriva-

tives of a symmetric oscillating polynomial on a finite interval are attained in the end-points

of such interval, whenever the maximal absolute value of the polynomial is attained in the

end-points of that interval. Then, [3, Section 4] contains a brief explanation about applica-

tions of previous result to orthogonal polynomials on the real line associated to symmetric

weights. We focus our attention on that last part of [3, Section 4] in order to enlarge the

range of application of [3, Theorem 1] to the class of Gegenbauer-Sobolev polynomials

corresponding to the inner product (1.1).

The paper is structured as follows. Section 2 provides some background about structural

properties of the Gegenbauer and Gegenbauer-Sobolev polynomials corresponding to the

inner product (1.1), respectively. Section 3 contains some well-known characteristics of the

class of oscillating polynomials on a finite interval. We also state there our main result (see

Theorem 3.3) and provide some illustrative numerical examples. Throughout this paper, the

notation un � vn means that the sequence
{

un

vn

}

n
converges to 1 as n→∞. We will denote

by Pn and ‖ f ‖∞, the space of polynomials of degree at most n and the uniform norm of f

on the interval in consideration, respectively. Any other standard notation will be properly

introduced whenever needed.



On a Theorem by Bojanov and Naidenov applied to families of G-S polynomials 11

2 Basic facts: Gegenbauer and Gegenbauer-Sobolev orthogonal

polynomials

For α > − 1
2

we denote by {Ĉ
(α)
n }n≥0 the sequence of Gegenbauer polynomials, orthogonal

on [−1,1] with respect to the measure dµ(x) (cf. [29, Chapter IV]), normalized by

Ĉ
(α)
n (1) =

Γ(n+2α)

n!Γ(2α)
.

It is clear that this normalization does not allow α to be zero or a negative integer.

Nevertheless, the following limits exist for every x ∈ [−1,1] (see [29, formula (4.7.8)].)

lim
α→0

Ĉ
(α)

0
(x) = T0(x), lim

α→0

Ĉ
(α)
n (x)

α
=

2

n
Tn(x),

where Tn is the nth Chebyshev polynomial of the first kind. In order to avoid confusing

notation, we define the sequence {Ĉ
(0)
n }n≥0 as follows.

Ĉ
(0)

0
(1) = 1, Ĉ

(0)
n (1) =

2

n
, Ĉ

(0)
n (x) =

2

n
Tn(x), n ≥ 1.

We denote the nth monic Gegenbauer orthogonal polynomial by

C
(α)
n (x) = (hαn)−1Ĉ

(α)
n (x), (2.1)

where the constant hαn (cf. [29, formula (4.7.31)]) is given by

hαn =
2nΓ(n+α)

n!Γ(α)
, α , 0, (2.2)

h0
n = lim

α→0

hαn

α
=

2n

n
, n ≥ 1. (2.3)

Then for n ≥ 1, we have C
(0)
n (x) = limα→0(hαn )−1Ĉ

(α)
n (x) = 1

2n−1 Tn(x).

Proposition 2.1. Let {C
(α)
n }n≥0 be the sequence of monic Gegenbauer orthogonal polyno-

mials. Then the following statements hold.

1. Three-term recurrence relation. For every n ∈N,

xC
(α)
n (x) =C

(α)

n+1
(x)+γ

(α)
n C

(α)

n−1
(x), α > −

1

2
, α , 0, (2.4)

with initial conditions C
(α)

0
(x) = 1, C

(α)

1
(x) = x, and recurrence coefficient γ

(α)
n =

n(n+2α−1)
4(n+α)(n+α−1)

.

2. For every n ∈ N (see [29, formula (4.7.15)]),

‖C
(α)
n ‖

2
µ =

∫ 1

−1

[C
(α)
n (x)]2dµ(x) = π21−2α−2n n!Γ(n+2α)

Γ(n+α+1)Γ(n+α)
. (2.5)
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3. Structure relation (see [29, formula (4.7.29)]). For every n ≥ 2,

C
(α−1)
n (x) =C

(α)
n (x)+ ξ

(α)

n−2
C

(α)

n−2
(x), (2.6)

where

ξ
(α)
n =

(n+2)(n+1)

4(n+α+1)(n+α)
, n ≥ 0. (2.7)

4. For every n ∈ N (see [29, formula (4.7.14)]),

d

dx
C

(α)
n (x) = nC

(α+1)

n−1
(x). (2.8)

Some well-known properties of the monic Gegenbauer-Sobolev orthogonal polynomi-

als corresponding to the inner product (1.1) are the following.

Proposition 2.2. Let {Q
(α)

n,λ
}n≥0 be the sequence of monic orthogonal polynomials with re-

spect to (1.1). Then the following statements hold.

1. The polynomials Q
(α)

n,λ
are symmetric, i.e.,

Q
(α)

n,λ
(−x) = (−1)nQ

(α)

n,λ
(x). (2.9)

2. The zeros of Q
(α)

n,λ
are real and simple, and they interlace with the zeros of the monic

Gegenbauer orthogonal polynomials C
(α)
n . Furthermore, for α ≥ 1

2
they are all con-

tained in the interval [−1,1] and for − 1
2 < α <

1
2 there is at most a pair of zeros

symmetric with respect to the origin outside the interval [−1,1], (cf. [15, 16]).

3. [15, Lemma 5.1]. For α ≥ 1
2
, we have Q

(α)

n,λ
(1) > 0.

It is worthwhile to point out that in the case − 1
2
< α < 1

2
, no global properties about the

sign Q
(α)

n,λ
(1) can be deduced (cf. [15].)

However, the location of zeros of Sobolev orthogonal polynomials is not a trivial prob-

lem. For instance, if we consider (µ0,µ1) a vector of compactly supported positive measures

on the real line with finite total mass and the following Sobolev inner product on the linear

space P of polynomials with real coefficients.

〈 f ,g〉(µ0 ,µ1) :=

∫

f (x)g(x)dµ0(x)+

∫

f ′(x)g′(x)dµ1(x), (2.10)

then, simple examples show that the zeros of these Sobolev orthogonal polynomials do

not necessarily remain in the convex hull of the union of the supports of the measures µk,

k = 0,1, and they can be complex. In this regard some numerical experiments may be found

in [9]. In particular, the boundedness of the zeros of Sobolev orthogonal polynomials is an

open problem [1, 16], but as was stated in [10], it could be obtained as a consequence of the

boundedness of the multiplication operator M f (z) = z f (z): If M is bounded and ‖M‖ is its

operator norm (induced by (2.10)), then all the zeros of the Sobolev orthogonal polynomials

Qn are contained in the disc {z ∈ C : |z| ≤ ‖M‖}.
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Indeed, if x0 is a zero of Qn then xp(x) = x0 p(x) +Qn(x) for a polynomial p ∈ Pn−1.

Since p and Qn are orthogonal, we get

|x0|
2‖p‖2(µ0 ,µ1) = ‖xp‖2(µ0 ,µ1)−‖Qn‖

2
(µ0,µ1) ≤ ‖xp‖2(µ0 ,µ1) = ‖Mp‖2(µ0 ,µ1) ≤ ‖M‖

2‖p‖2(µ0 ,µ1),

which yields the above result.

Thus, in the last decades the question whether or not the multiplication operator M is

bounded has been a topic of interest to investigators in the field, since it turns out to be

a key for the location of zeros and for establishing the asymptotic behavior of orthogonal

polynomials with respect to diagonal (or non-diagonal) Sobolev inner products (cf. [16, 26,

27] and the references therein.)

From the structure relation (2.6) and [17, formula (3)] (see also [7, Proposition 1]) the

following connection formula can be obtained.

Proposition 2.3. For α > − 1
2
,

C
(α−1)
n (x) = Q

(α)

n,λ
(x)−dn−2(α)Q

(α)

n−2,λ
(x), n ≥ 2, (2.11)

where

dn(α) = ξ
(α)
n

‖C
(α)
n ‖

2
µ

‖Q
(α)

n,λ
‖2

S

. (2.12)

Moreover,

dn(α) �
1

16λn2
. (2.13)

3 Maximization of local extremum of the derivatives for families

of Gegenbauer-Sobolev polynomials

A polynomial P ∈ P is said oscillating (see [2, 3, 4, 19, 22, 23]) if it has all its zeros on the

real line R. For example, the classical orthogonal polynomials on subsets of R (Hermite,

Laguerre and Jacobi polynomials [6, 20, 29]), orthogonal polynomials for weights in the

Nevai class M(0,1) [21], including whose orthogonal with respect to weights belonging

to Levin-Lubinsky class Ŵ [13], and a broad class of Sobolev orthogonal polynomials

[7, 9, 15, 16, 17, 25] constitute an important family of oscillating polynomials. Usually,

when all zeros of a polynomial P ∈ Pn with deg(P) = n, are contained in a given finite

interval [a,b], it is called oscillating polynomial on [a,b], (see [3, 19].)

We denote by Osc(R) and Osc[a,b] the classes of oscillating polynomials on R and

[a,b], respectively. For any P ∈ Osc[a,b] with deg(P) = n, we consider the vector h(P) =

(h0(P), . . . ,hn(P)), where h j(P) = |P(t j)|, 0 ≤ j ≤ n, t0 = a, tn = b, and t1 ≤ t2 ≤ ·· · ≤ tn−1 are

the zeros of P′.

Amongst the main characteristics of the class Osc[a,b] we list the following.

i) P′ ∈ Osc[a,b], for all P ∈ Osc[a,b].



14 V. G. Paschoa, D. Pérez and Y. Quintana

ii) Any P ∈Osc[a,b] is completely determined by its local extrema and the values at the

end-points of the interval [a,b] (cf. [2, Theorem 2], [4, Remark 1].)

iii) For P ∈Osc[a,b] with deg(P) = n, there exists a monotone dependence of the param-

eters h j(P
′) on the parameters h0(P), . . . ,hn(P) of P (cf. [4, Lemma 3].)

iv) If P ∈ Osc[a,b] with deg(P) ≥ 3 and ‖P‖ = |P(a)|, then each local extremum of P′

from the first half (i.e., with an index less than or equal to
⌊

n−1
2

⌋

, and btc denoting the

integer part of t) is smaller in absolute value than |P′(a)|.

More precisely, the property iv) was stated in the following theorem.

Theorem 3.1. ([3, Theorem 1]) Let P ∈ Osc[a,b] with deg(P) ≥ 3. Assume that ‖P‖∞ =

|P(a)| = 1. Then

|P′(τ j)| < |P
′(a)|, for j = 0, . . . ,

⌊

n−1

2

⌋

, (3.1)

where τ1 ≤ ·· · ≤ τn−2 are the zeros of P′′.

Corollary 3.2. ([3, Corollary 1]) Let P ∈ Osc[−1,1] be a symmetric polynomial, with

deg(P) = n. Assume that ‖P‖∞ = |P(1)| = 1. Then,

‖P(k)‖∞ = |P
(k)(1)|, for k = 1, . . . ,n. (3.2)

As a consequence of the combination of Theorem 3.1 (or Corollary 3.2) and the struc-

tural properties of the sequence {Q
(α)

n,λ
}n≥0 given in the previous section, we can obtain the

maximization of local extremum of the derivatives for the sequence {Q
(α)

n,λ
}n≥0 as follows.

Let {Q
(α)
n,λ
}n≥0 be the sequence of monic orthogonal polynomials with respect to (1.1).

Let us consider x
α,[1]

n,λ
< x
α,[2]

n,λ
< · · · < x

α,[n]

n,λ
the zeros of the Gegenbauer-Sobolev polynomial

Q
(α)
n,λ

and N the maximum value attained by |Q
(α)
n,λ

(x)| on the interval [x
α,[1]
n,λ
, x
α,[n]
n,λ

]. Then Mn,λ

can be defined to be the minimal real point such that x
α,[n]
n,λ
<Mn,λ and |Q

(α)

n,λ
(Mn,λ)| = N, i.e.,

Mn,λ is the point closest to x
α,[n]
n,λ

where the maximal absolute value of the polynomial Q
(α)

n,λ

is attained. Notice that Mn,λ also depends on the parameter α and Q
(α)

n,λ
∈ Osc[−Mn,λ,Mn,λ].

Thus, we can consider the following normalized polynomials

q
(α)

n,λ
(x) :=

Q
(α)

n,λ
(x)

Q
(α)

n,λ
(Mn,λ)

, x ∈ [−Mn,λ,Mn,λ], n ≥ 0. (3.3)

Theorem 3.3. Let {q
(α)

n,λ
}n≥0 be the sequence of orthogonal polynomials given in (3.3). Then

∣

∣

∣

∣

dk

dxk q
(α)
n,λ

∣

∣

∣

∣

attains its maximal value on the interval [−Mn,λ,Mn,λ] at the end-points, for α >− 1
2

and 1 ≤ k ≤ n.

Proof. It suffices to follow the proof of Theorem 3.1 (or Corollary 3.2) given in [3, Theorem

1 (or Corollary 1)] by making the corresponding modifications. �
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Notice that from a numerical point of view the value Mn,λ can be difficult to obtain for

n large enough. However, for any value K > 0 such that N < |Q
(α)

n,λ
(x)| for x < −K and x > K,

the result of Theorem 3.3 remains true on the interval [−K,K].

We finish this section providing some illustrative numerical examples (with the help of

MAPLE) about the above result for different values of n, α and λ (see Figure 1 and Figure

2 below).

Figure 1. Graphics of
∣

∣

∣

∣

dk

dxk q
(α)

n,λ

∣

∣

∣

∣

for n = 4, α = λ = 1, Mn,λ = 0.9926198253 and k = 0,1,2,

respectively.

Figure 2. Graphics of
∣

∣

∣

∣

dk

dxk q
(α)

n,λ

∣

∣

∣

∣

for n = 7, α = − 1
4
, λ = 1

2
, Mn,λ = 1.091516326 and k = 0,2,3,

respectively.
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