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Abstract

In this paper, we show that the space of three-interval scaling functions with the in-

duced metric of L2(R) consists of three path-components each of which is contractible

and hence, the first fundamental group of these spaces is zero. One method to construct

simple scaling sets for L2(R) and H2(R) is described. Further, we obtain a characteri-

zation of a method to provide simple scaling sets for higher dimensions with the help

of lower dimensional simple scaling sets and discuss scaling sets, wavelet sets and

multiwavelet sets for a reducing subspace of L2(Rn). The contractibility of simple

scaling sets for different subspaces are also discussed.
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1 Introduction

Considering the set W of all orthonormal wavelets as a subspace formed by the induced

metric of L2(R), the completeness property and the topological properties like connected-

ness and pathconnectedness forW and certain of its subsets have drawn attention of many

contributors in the field of wavelets during the past one decade [2, 9-11, 13, 15-17]. This

study has been carried over to higher dimensions as well [9-11, 16]. Different sets of other

collections in L2(R), e.g. frame wavelets, Reisz wavelets, tight frame wavelets have also
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been considered. We denote the collection of all MRA wavelets by Wm and that of the

collection of all MSF wavelets byWs in L2(R). In Wutam Consortium [17], it has been ob-

tained thatWm is pathconnected, and Speegle [16] has obtained thatWs is pathconnected.

Later, Leon [9] obtains thatWm∩Ws is pathconnected. The pathconnectivity ofW is still

an open problem.

Recently, K. D. Merill introduces the term simple wavelet set and discuss about the

expansive integer matrix dilations in R2 which have wavelet sets that are finite unions of

convex sets [12]. By a simple wavelet set, we mean that it can be written as a finite union

of convex sets, or equivalently, as a finite union of bounded convex polygons. The simple

wavelet sets and simple scaling sets have been extensively studied in [7, 12-15]. By a

simple scaling set in Rn, we mean that it can be written as a finite union of convex sets, or

equivalently, as a finite union of bounded convex polygons. Aimed at the pathconnectivity

and contractibility of scaling sets in different subspaces, we provide a method to obtain

simple scaling sets in case of one dimension and also, in higher dimensions for different

closed subspaces of L2(Rn).

Let E be a measurable subset of R such that E = 2E. Then the space L2
E

(R) defined by

L2
E

(R) =
{
f ∈ L2(R) : supp f̂ ⊆ E

}

is a closed subspace of L2(R), where supp f̂ denotes the support of Fourier transform of f .

Hence, it is a Hilbert space under the induced inner product of L2(R). In case E = R+ ≡

(0,∞), L2
E
(R) is the classical Hardy space H2(R). The study of subspace wavelets initiated

by Dai and Lu [6] in one-dimension has been carried over to higher dimension by Dai,

Larson and Speegle [5], and Dai, Diao, Gu and Han [3]. The existence of subspace MRA

wavelets in one-dimension have been established in [6] while the existence of subspace

wavelet sets for higher-dimension have been established in [5]. Furthermore, Gu and Han

[8] discussed the existence of singly generated MRA and subspace MRA wavelets. In this

paper, we are studying MSF wavelets on L2
E

(Rn) and also, providing a class of n-interval

scaling sets for H2(R).

The paper is organized as follows. After providing basic definitions and results in Sec-

tion 2, we provide a method to obtain simple scaling sets for one dimension in Section 3.1.

In order to discover more wavelet sets for different subspaces, we describe a method to

obtain simple scaling sets for H2(R), in Section 3.2. In turn, we obtain a characterization

of three-interval scaling sets in H2(R). Furthermore, we notice that the families of sim-

ple wavelet sets determined by these simple scaling sets includes some of the families of

wavelet sets obtained by Dai and Larson [4], Arcozzi, Behera and Madan [1]. The Section

3.3 is devoted to establish the existence of simple scaling sets and development of mul-

tiwavelet sets through these scaling sets. In the last Section 3.4, we show that the space

of three-interval scaling functions with the induced metric of L2(R) consists of three path-

components each of which is contractible and hence, the first fundamental group of these

spaces is zero. In addition, we discuss other contractible spaces. It is obvious that every

contactible space is pathconnected.
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2 Basic definitions and notation

Throughout, A denotes an n× n expansive matrix having integer entries and A∗, the trans-

pose of A. By an expansive matrix, we mean a matrix for which the eigenvalue is greater

than 1 in absolute value.

A family of functions Ψ = {ψ1,ψ2, · · · ,ψL} ⊂ L2(Rn) is called an A-multiwavelet if the

system {|detA|
j

2ψi(A
j · −k) : j ∈ Z,k ∈ Zn, i = 1,2, · · · ,L} is an orthonormal basis for L2 (Rn).

Next, we provide some definitions and results which will be used in the sequel.

Definition 2.1 (2). An MSF (minimally supported frequency) A-multiwavelet is an A-

multiwaveletΨ = {ψ1,ψ2, · · · ,ψL} such that |ψ̂i | = χWi
for some measurable sets Wi ⊂R

n, i =

1,2, · · · ,L. For L = 1, an MSF A-multiwavelet Ψ = {ψ1} is simply referred as an MSF A-

wavelet.

Definition 2.2 (2). A measurable set W ⊂ Rn is an A-multiwavelet set of order L if W =⋃̇L

i=1Wi (
⋃̇

denotes disjoint union) for some W1,W2, · · · ,WL satisfying

(i)
∑L

i=1

∑
j∈Z χWi

(A∗ jξ) = 1, a.e. ξ ∈ Rn,

(ii)
∑

k∈Zn χWi
(ξ+2kπ)χWi′

(ξ+2kπ) = 1, a.e. ξ ∈ Rn, i, i′ = 1,2, · · · ,L.

The following theorem characterizes all A-multiwavelet sets.

Theorem 2.3 (2). A measurable set W =
⋃̇L

i=1Wi is an A-multiwavelet set of order L if and

only if

(i) {A∗ jWi : j ∈ Z, i = 1,2, · · · ,L} is a measurable partition of Rn, and

(ii) for each i = 1,2, · · · ,L, {Wi+2kπ : k ∈ Zn} is a measurable partition of Rn.

Perhaps, the most elegant method to construct orthonormal A-multiwavelets is based on

multiresolution analysis which is a family of closed subspaces of L2(Rn) satisfying certain

properties.

Definition 2.4. A pair

({
V j

}
j∈Z
,ϕ

)
consisting of a family

{
V j

}
j∈Z

of closed subspaces of

L2(Rn) together with a function ϕ ∈ V0 is called a multiresolution analysis (MRA) if it

satisfies the following conditions:

(i) V j ⊂ V j+1, (ii) ∩ j∈ZV j = {0}, (iii) ∪ j∈ZV j = L2(Rn), (iv) f ∈ V j if and only if f (A(·)) ∈

V j+1, for all j ∈ Z, and (v) {ϕ(·− k) : k ∈ Zn} is an orthonormal basis for V0.

An A-multiwavelet defined by an MRA, is called an MRA A-multiwavelet and a func-

tion ϕ is called scaling function of the MRA. If Ψ is an MSF A-multiwavelet which arises

from an MRA, then its scaling function ϕ satisfies |ϕ̂| = χS , for some measurable set S ⊂Rn.

Such a set S is called an A-scaling set which provides A-multiwavelet sets of order L by

A∗S \S =
⋃L

i=1 Wi, where L = |detA| −1. With the help of a characterization of scaling func-

tions ϕ1,ϕ2, · · · ,ϕd of multiplicity d in L2(Rn) given by Calogero [A characterization of

scaling functions of multiresolution analyses on general lattices, preprint, 1998], we illus-

trate a characterization of a scaling function ϕ such that |̂ϕ| = χS , for some measurable set

S of Rn which will be used in the sequel.
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Theorem 2.5. A function ϕ such that |̂ϕ| = χS , for some measurable set S of Rn is a scaling

function of an MRA if and only if

(i) {S +2kπ : k ∈ Zn} is a measurable partition of Rn,

(ii)
⋃

j∈Z A∗− jS = Rn, and (iii) S ⊂ A∗S .

The notion of orthonormal wavelets, minimally supported frequency wavelets, wavelet sets,

multiresolution analysis, etc. introduced for L2(Rn) are analogously carried over to L2
E
(Rn),

where L2
E

(Rn) =
{
f ∈ L2(Rn) : supp f̂ ⊆ E

}
together with A∗E = E and E ⊂ Rn [3, 5-7].

3 Contractibility of families of simple scaling sets

To discuss the topological behavior viz. path connectivity, contractibility, path-homotopy,

etc., of scaling sets and wavelet sets, we concentrate on some classes of scaling sets. Re-

garding the further investigation, we provide a method to obtain simple wavelet sets asso-

ciated with multiresolution analysis for closed subspaces of L2(Rn).

3.1 A construction of simple scaling sets for L2(R)

In this Section, we provide a method to obtain n-interval wavelet sets associated with mul-

tiresolution analysis by dilation 2. The same method can also apply to obtain simple scaling

sets by dilation d and hence associated multiwavelet sets of order d− 1, where |d| ∈ N\{1}.

The families of wavelet sets obtained from the n-interval scaling sets by dilation 2 include

the various families of wavelet sets obtained by Dai and Larson in [4], and also obtained by

Arcozzi, Behera, and Madan in [1].

For α ∈ (0,2π), the interval [α−2π,α) is a scaling set while there is no scaling set having

two intervals. Following is a characterization of scaling sets having three-intervals:

Theorem 3.1 (14). There are precisely three kinds of three-interval scaling sets described

as follows:

(i) S 1
3 = {[γ−2π, α)∪ [β, γ)∪ [α+2π, β+2π) : 2α ≥ γ, α+2π ≥ 2β, 2γ ≥ β+2π},

(ii) S 2
3
= {[α−2π, β−2π)∪ [γ−2π, α)∪ [β, γ) : 2α ≥ γ, α+2π ≥ 2γ}, and

(iii) S 3
3
= {[β−4π, γ−4π)∪ [α−2π, β−2π)∪ [γ−2π, α) : 2γ ≤ α+2π,γ ≤ 2β,2α ≤ β}

where 0 < α < β < γ < 2π.

For an n ∈ N, choose α1, α2,α3, ...,αn such that 0 < α1 < α2 < α3 < ... < αn < 2π. Then

[α1,α2)∪ [α2,α3)∪ ...∪ [αn−1 ,αn)∪ [αn,α1+2π) (η)

divided into n-parts is an interval of measure 2π. Notice that integral translates of any part

by 2π keeps the measure of the resulting sets intact which remains 2π-translation congruent

to (η).
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First, assume that n is an odd natural number greater than 2. Translate the interval

[αn, α1+2π) by −2π and intervals [α1, α2), [α3, α4), [α5, α6), ..., [αn−2, αn−1), each by −2π,

to have

S =

n−1
2⋃

m=1

[
α2m−1−2π, α2m−2π

)
∪
[
αn−2π, α1

)
∪

n−1
2⋃

m=1

[
α2m, α2m+1

)
.

By the construction, S is 2π-translation congruent to [α, α+ 2π). Hence, in order that S be

a scaling set, we should have the requirement S ⊂ 2S , which holds when (i) αn ≤ 2α1, and

(ii) 2αn ≤ α1+2π, or equivalently, αn ≤min
(
2α1,

α1

2
+π
)

.

Next, assume that n is an even natural number greater than 2. Translate [αn, α1+2π) by

−2π, [αn−3, αn−2) by 6π and [α1, α2), [α3, α4), [α5, α6), . . . , [αn−5, αn−4), [αn−2, αn−1), each

by 2π, to have

S =
[
αn−2π, α1

)
∪

n−4
2⋃

m=1

[
α2m, α2m+1

)
∪
[
αn−1, αn

)
∪

n−4
2⋃

m=1

[
α2m−1+2π, α2m+2π

)

∪
[
αn−2+2π, αn−1+2π

)
∪
[
αn−3+6π, αn−2+6π

)
.

By the construction, S is 2π-translation congruent to [α, α+ 2π). Hence, in order that S be

a scaling set, we should have the requirement S ⊂ 2S , which holds when

(i) αn ≤ 2α1, (ii) 2αn−1 = αn−2+2π, (iii) αn−1+2π ≤ 2αn,

(iv) 2α2m ≤ α2m−1+2π, where m ∈
{
1, 2, 3, ..., n−2

2

}
, and

(v) α2m+2π ≤ 2α2m+1, where m ∈
{
1, 2, 3, ..., n−4

2

}
.

In case n = 4, we require (i), (ii), (iii) and (iv), as (v) does not arise. We sum up the above

in the following:

Theorem 3.2. Let α1, α2, α3, ...,αn in S 1, or equivalently, in [0, 2π) be such that 0 < α1 <

α2 < α3 < ... < αn < 2π, where n is a natural number. Then

(a) for odd n ≥ 3,

S =

n−1
2⋃

m=1

[
α2m−1−2π, α2m−2π

)
∪
[
αn−2π, α1

)
∪

n−1
2⋃

m=1

[
α2m, α2m+1

)
,

is a scaling set under the condition αn ≤ min
(
2α1,

α1

2 +π
)
.

(b) for even n ≥ 4,

S =
[
αn−2π, α1

)
∪

n−4
2⋃

m=1

[
α2m, α2m+1

)
∪
[
αn−1, αn

)
∪

n−4
2⋃

m=1

[
α2m−1+2π, α2m+2π

)

∪
[
αn−2+2π, αn−1+2π

)
∪
[
αn−3+6π, αn−2+6π

)
,

is a scaling set under the conditions:
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(i) αn ≤ 2α1, (ii) 2αn−1 = αn−2+2π, (iii) αn−1+2π ≤ 2αn,

(iv) 2α2m ≤ α2m−1+2π, where m ∈
{
1, 2, 3, ..., n−2

2

}
, and

(v) α2m+2π ≤ 2α2m+1, where m ∈
{
1, 2, 3, ..., n−4

2

}
.

In case n = 4, we require (i), (ii), (iii) and (iv), as (v) does not arise.

The set of all n-interval scaling sets for n≥ 3 obtained through the method being termed

M as described in Theorem 3.2 is denoted by SM
n whose corresponding the class of wavelet

sets by W(M, n). Consequently, the following result follows immediately by noting that

W = 2S \S , for S ∈ SM
n .

Corollary 3.3. A member W ofW(M, n), where n ≥ 3 is of the form:

(i) W =

n−1
2⋃

m=1

[
2(α2m−1−2π), 2(α2m−2π)

)
∪
[
2(αn−2π),α1−2π

)
∪

n−1
2⋃

m=1

[
α2m−2π, α2m+1−2π

)

∪

n−1
2⋃

m=1

[
α2m−1, α2m

)
∪
[
αn,2α1

)
∪

n−1
2⋃

m=1

[
2α2m, 2α2m+1

)
,

where n is odd, and 0 < α1 < α2 < α3 < ... < αn < 2π, together with αn ≤ min
(
2α1,

α1

2
+π
)
.

(ii) W =
[
2(αn−2π), αn−2π

)
∪

n−4
2⋃

m=1

[
α2m−1, α2m

)
∪
[
αn−3,αn−1

)
∪
[
αn,2α1

)
∪

n−4
2⋃

m=1

[
2α2m, α2m−1+2π

)

∪

n−4
2⋃

m=1

[
α2m+2π, 2α2m+1

)
∪
[
αn−1+2π,2αn

)
∪

n−4
2⋃

m=1

[
2(α2m−1+2π), 2(α2m+2π)

)

∪
[
2(αn−2+2π), αn−3+6π

)
∪
[
2(αn−3+6π), 2(αn−2+6π)

)
,

where n is even, and 0 < α1 < α2 < α3 < ... < αn < 2π, αn ≤ 2α1, 2αn−1 = αn−2 + 2π,

αn−1+2π ≤ 2αn, 2α2m ≤ α2m−1+2π, m ∈
{
1, 2, 3, ..., n−2

2

}
, together with α2m+2π ≤ 2α2m+1,

m ∈
{
1, 2, 3, ..., n−4

2

}
.

The following shows that for each n ≥ 3, SM
n is nonempty.

Theorem 3.4. For each integer n ≥ 3, SM
n is nonempty and henceW(M, n) is nonempty.

Proof. For odd integer n ≥ 3, SM
n is nonempty. This follows by choosing suitable α1 and

αn, we may have α2, ...,αn−1 as required.

For even integer n ≥ 3, SM
n is nonempty. This follows by writing

αn =2α1, 2αn−1 = αn−2+2π, αn−1+2π = 2αn,

2α2m =α2m−1+2π, where m ∈

{
1, 2, 3, ...,

n−2

2

}
, and

α2m+2π =2α2m+1, where m ∈

{
1, 2, 3, ...,

n−4

2

}
,
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we get a linear equation AX = B, where X∗ =
(
α1,α2, ...,αn

)
1×n, B∗ =

(
2π,2π, ...,2π,0

)
1×n,

and

A =



−1 2 0 . . . 0 0 0

0 −1 2 0 . . . 0 0

0 0 −1 2 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 −1 2

2 0 . . . 0 0 0 −1


n×n .

Since det A=(−1)n−1 · (2n−1) , 0, the linear equation has a unique solution and we have the

result. �

3.2 Construction of simple scaling sets and wavelet sets in H2(R)

In this section, we provide a method to obtain H2-wavelet sets associated with multireso-

lution analysis by dilation 2 while Arcozzi, Behera, and Madan [1] have been provided a

characterization of all H2-wavelet sets having finite intervals. The same can be seen for

dilation d. By H2-wavelet set, we mean that it is a wavelet set by dilation 2 in H2(R).

For an n ∈ N, we choose α1, α2,α3, · · · ,αn such that 0 = α0 < α1 < α2 < α3 < · · · < αn <

αn+1 = 2π. Then

[0,α1)∪ [α1,α2)∪ [α2,α3)∪ ·· · ∪ [αn−1,αn)∪ [αn,2π),

divided into (n+1)-parts is an interval of measure 2π.

The interval [0,2π) is an H2-scaling set having one interval follows from the Theorem

2.5 whose associated H2-wavelet set is [2π,4π). By H2-scaling set, we mean that it is a

scaling set by dilation 2 in H2(R). In fact, S is a scaling set by dilation 2 for the classical

Hardy space H2(R) if and only if

(i) S ⊂ [0,∞) contains a neighborhood of zero,

(ii) S ⊂ 2S , and (iii) S is 2π-translation congruent to [α,α+2π), where α ∈ R,

and associated H2-wavelet set is 2S \S .

Next, we see that there is no 2-interval H2-scaling set. For this, suppose S = [0,a)∪

[b,c), where 0 < a < b < c, is a 2-interval scaling set. Since S is 2π-translation congruent to

an interval of measure 2π of R, we have a < 2π,c− b < 2π,a = b− 2mπ, and 2π = c− 2mπ,

for an m ∈N. Also, c ≤ 2a because S ⊂ 2S . Since c ≤ 2a, a < 2π and 2π= c−2mπ, therefore

c= 2(m+1)π≤ 2a, i.e. 2(m+1)π < 4π, and hence m< 1,which is a contradiction. Therefore,

there is no H2-scaling set having two intervals.

Next, we obtain a characterization of 3-interval H2-scaling sets. The families of 3-

interval wavelet sets have been characterized by Arcozzi, Behera, and Madan [1].

Theorem 3.5. Three-interval H2-scaling sets are precisely

S ≡ [0,α1)∪ [α2,2π)∪ [α1+2π,α2+2π),

under the conditions π ≤ α1, 2α2 ≤ α1 + 2π, and 0 < α1 < α2 < 2π. The associated H2-

wavelet set to S is given by

W ≡ 2S \S = [α1,α2)∪ [2π,2α1)∪ [2α2,α1+2π)∪ [α2+2π,4π)∪ [2(α1 +2π),2(α2+2π)).
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Proof. Suppose S = [0,a)∪ [b,c)∪ [d,e), where 0 < a < b < c < d < e, is a 3-interval H2-

scaling set. As a scaling set satisfies S ⊂ 2S , we shall have either of the following cases:

Case (i) e ≤ 2a.

Case (ii) (1) c ≤ 2a, (2) 2b ≤ d, and (3) e ≤ 2c.

Since an H2-scaling set is associated with an H2-MRA, S is 2π-translation congruent

to an interval of R of measure 2π, and hence a < 2π,c− b < 2π, and e− d < 2π. Suppose S

is 2π-translation congruent to [0, 2π). Then, we have either of the following situations, for

m,n ∈ N∪{0}:

(A) a = b−2mπ (B) a = d−2nπ

c−2mπ = d−2nπ e−2nπ = b−2mπ

e−2nπ = 2π , c−2mπ = 2π

Consider Case (ii) with (B). Since c ≤ 2a and a< 2π, from 2π= c−2mπ, we deduce that

m = 0, and hence c = 2π and e = b+ 2nπ. Also, e ≤ 2c gives n = 0,1. If n = 0, then e = b,

which contradicts the fact that b < e. Finally, m = 0 and n = 1 give

S = [0, a)∪ [b, 2π)∪ [a+2π, b+2π),

which is an H2-scaling set under conditions π ≤ a, 2b ≤ a+ 2π, and 0 < a < b < 2π. Now,

we arrive at a similar contradiction by considering other cases. �

Next, we provide a method to obtain simple scaling sets and wavelet sets for the Hardy

space which is analogous to given in Section 3.1.

Theorem 3.6. Let α1, α2,α3, · · · ,αn be in [0, 2π) such that 0 = α0 < α1 < α2 < α3 < · · · <

αn < αn+1 = 2π, where n is a natural number. Then

(a) [0, 2π) is an H2-scaling set,

(b) for odd n > 1,

S ≡

n−1
2⋃

m=0

[
α2m, α2m+1

)
∪

n−1
2⋃

m=1

[
α2m−1+2π, α2m+2π

)
∪ [αn+4π, 6π),

is an H2-scaling set under the conditions:

(i) π ≤ α2, (ii) 2α1 = αn, (iii) 2α2m ≤ α2m−1+2π, and

(iv) α2m+2π ≤ 2α2m+1, where m ∈
{
1,2, · · · , n−1

2

}
,

(c) for even n ≥ 2,

S ≡

n
2⋃

m=0

[
α2m, α2m+1

)
∪

n
2⋃

m=1

[
α2m−1+2π, α2m+2π

)
,

is an H2-scaling set under the conditions:

(i) π ≤ α1, (ii) 2α2m ≤ α2m−1+2π, where m ∈
{
1,2, · · · , n

2

}
, and

(iii) α2m+2π ≤ 2α2m+1, where m ∈
{
1,2, · · · , n−2

2

}
.

Hence, the associated wavelet sets can be obtained by 2S \S .
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3.3 Construction of simple scaling sets and wavelet sets in higher dimension

In this section, we provide a method to construct scaling sets, wavelet sets, multiwavelet

sets in higher dimensions. Let C denote an n-cube or a union of n-cubes in Rn. By an n-

cube in Rn, we mean In, where I is a nondegenerate interval in R. In this Section, a method

to construct (L2
C

, A)-scaling sets for certain C has been described and thus (L2
C

, A)-wavelet

sets for C are obtained. By an (L2
C

, A)-scaling set, we mean that it is a scaling set by dilation

A in L2
C

(Rn). The set of all functions in L2(Rn), the support of whose Fourier transforms is

contained in a set E of Rn with positive Lebesgue measure is denoted by L2
E

(Rn). In case

E = [0,∞), L2
E

(R) is the celebrated Hardy space H2(R) [3, 5-7].

For this, we begin with an (L2
E
, d)-scaling set S in E, where |d| ∈ N\{1} and E is a

measurable subset of R. Let En denote the cartesian product E×E× ·· · ×E︸           ︷︷           ︸
n−times

, and likewise

S n denote S ×S × ·· ·×S︸           ︷︷           ︸
n−times

whose elements are row-wise. We choose an n × n expansive

matrix A with entries as integers satisfying A∗En = En and S n ⊂ A∗S n. Since S contains

a neighborhood of zero in E, S n will contain a neighborhood of zero in En, and hence⋃
j∈ZA∗ jS n = En. To prove that S n is an (L2

En
, A)-scaling set, it suffices to show that {S n+

2kπ : k ∈ Zn} is a measurable partition of Rn. Since S is 2π-translation congruent to [0,2π),

the map τ : S −→ [0,2π) defined by τ(x) = x+ 2mπ, for m ∈ Z is bijective, and hence the

map τn : S n −→ [0,2π)n, defined by

τn(x1, x2, · · · , xn) =(τ(x1),τ(x2), · · · ,τ(xn)), for xi ∈ S , 1 ≤ i ≤ n

=(x1+2m1π, x2 +2m2π, · · · , xn+2mnπ), for mi ∈ Z, 1 ≤ i ≤ n

=(x1, x2, · · · , xn)+2(m1,m2, · · · ,mn)π,

is also bijective. Thus, we obtain

Theorem 3.7. Let S be an (L2
E
,d)-scaling set in E, where |d| ∈N\{1} and E is a measurable

subset of R. Choose an n× n expansive matrix A with integer entries such that En = A∗En,

and S n ⊂ A∗S n. Then S n is an (L2
En
,A)-scaling set whose associated (L2

En
,A)-multiwavelet

set of order |det(A)| −1 is A∗S n\S n.

Note that for scaling set S , the condition S n ⊂ A∗S n does not necessarily hold. For

example, consider the 2-scaling set S , where

S =

[
−

2π

7
,
6π

7

)
∪

[
10π

7
,
12π

7

)
∪

[
20π

7
,
24π

7

)
.

Then the condition S 2 1 A∗S 2, for A =
(

1 1
−1 1

)
which can be seen in Figures 1 and 2.
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Figure 1. S ×S

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

 

Figure 2. S ×S 1
(
1 −1
1 1

)
(S ×S )

Next, we provide a characterization.

Theorem 3.8. Let E be a measurable subset of R and A =
(

01×(n−1) d

I(n−1)×(n−1) 0(n−1)×1

)
n×n

, where

d ∈ N\{1}. The set S is an (L2
E
,d)-scaling set if and only if S n is an (L2

En
,A)-scaling set.

Moreover, S (n−1) × (dS \S ) is an (L2
En
,A)-multiwavelet set of order (d− 1) associated with

an MRA.

Proof. Suppose S is an (L2
E
,d)-scaling set. As [S (n−1)×S ] ⊂ [S (n−1)×dS ], S n is an (L2

En
,A)-

scaling set by noting the above theorem. Conversely, assume that S n is an (L2
En
,A)-scaling

set. Then [S (n−1) × S ] ⊂ [S (n−1) × dS ] and hence S should be contained in dS . Also, S

should have a neighborhood of zero and 2π-translation congruent to [0,2π), otherwise S n

will not have both.

As S n is an (L2
En
,A)-scaling set, we have [S (n−1)×S ] ⊂ [S (n−1)×dS ] and hence S (n−1)×

(dS \S ) is an (L2
En
,A)-multiwavelet set of order (d−1) associated with an MRA. �

Theorem 3.9. Suppose S is a scaling set by dilation (−2) or symmetric scaling set by

dilation 2 and A =
(
0(n−1)×1 I(n−1)×(n−1)

−2 01×(n−1)

)
. Then S n is an A-scaling set whose associated A-

wavelet set is ((−2S )\S )×S (n−1).

Next, we provide an example of scaling function which is not arising by tensor products.

Example 3.10. Suppose A =
(
0 −2
2 0

)
and ϕ is a function in L2(R2) such that ϕ̂ = χS , where

S =

[
−

3π

2
,−π

)
× [−2π,−π)∪ [−π,π)× [−π,0)∪

[
−π,

π

2

)
× [0,π) .

Then it is easy to check that ϕ is a scaling function of an MRA in L2(R2) which is not

arising by cross products of two scaling sets. An associated multiwavelet is Ψ = {ψi : ψ̂i =
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χWi
, i = 1,2,3} (Figure 3), where

W1 =[0,2π)× ([π,2π)∪ [−2π,−π)) ,

W2 =

[
−2π,−

3π

2

)
× [−2π,−π)∪

[
π

2
,2π

)
× [0,π)∪ [2π,4π)× [−3π,−2π),

W3 =[−π,0)× [−2π,−π)∪ [−2π,−π)× [−π,π)∪ [π,2π)× [−π,0).

With the help of Theorems 3.6 and 3.7, we provide scaling sets in higher dimensions

having finite components.

Theorem 3.11. Let α1, α2,α3, · · · ,αn be in [0, 2π) such that 0 = α0 < α1 < α2 < α3 < · · · <

αn < αn+1 = 2π, where n is a natural number and A =
(

0 2
1 0

)
. Then

(a) for odd n > 1,

S ×S ≡

n−1
2⋃

k=1

[αn+4π, 6π)×
[
α2k−1+2π, α2k +2π

)
∪

n−1
2⋃

k,m=0

[
α2m, α2m+1

)
×
[
α2k, α2k+1

)
∪

n−1
2⋃

k=1,m=0

[
α2m, α2m+1

)
×
[
α2k−1+2π, α2k +2π

)
∪

n−1
2⋃

m=0

[
α2m, α2m+1

)
× [αn +4π, 6π)∪

n−1
2⋃

k=0,m=1

[
α2m−1+2π, α2m+2π

)
×
[
α2k, α2k+1

)
∪

n−1
2⋃

k,m=1

[
α2m−1+2π, α2m+2π

)
×
[
α2k−1+2π, α2k+2π

)
∪ [αn+4π, 6π)× [αn+4π, 6π)∪

n−1
2⋃

m=1

[
α2m−1+2π, α2m+2π

)
× [αn+4π, 6π)∪

n−1
2⋃

k=0

[αn+4π, 6π)×
[
α2k, α2k+1

)

is an (L2
[0,∞)2 , A)-scaling set under the conditions:

(i) π ≤ α2, (ii) 2α1 = αn, (iii) 2α2i ≤ α2i−1+2π, and

(iv) α2i+2π ≤ 2α2i+1, where i = m, k; i ∈
{
1,2, · · · , n−1

2

}
,
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(b) for even n ≥ 2,

S ×S ≡

n
2⋃

k,m=1

[
α2m−1+2π, α2m+2π

)
×
[
α2k−1+2π, α2k+2π

)
∪

n
2⋃

k,m=0

[
α2m, α2m+1

)
×
[
α2k, α2k+1

)
∪

n
2⋃

k=1,m=0

[
α2m, α2m+1

)
×
[
α2k−1+2π, α2k+2π

)
∪

n
2⋃

k=0,m=1

[
α2m−1+2π, α2m+2π

)
×
[
α2k, α2k+1

)

is an (L2
[0,∞)2 , A)-scaling set under the conditions:

(i) π ≤ α1, (ii) 2α2i ≤ α2i−1+2π, where i = m, k; i ∈
{
1,2, · · · , n

2

}
, and

(iii) α2i+2π ≤ 2α2i+1, where i = m, k; i ∈
{
1,2, · · · , n−2

2

}
.

To further study of topological behaviour of scaling sets, we obtain that S 1
3
, S 2

3
and S 3

3

[cf. Theorem 3.1] are contractible spaces and hence pathconnected but unions of these sets

are not. We call the inverse Fourier transform of a characteristic function whose support

is a three-interval scaling set to be a three-interval scaling function, and its collection is

denoted by Φ3. For each i = 1,2,3, we denote {χ∨s : s ∈ S i
3
} by Φi

3
, and S 3 = ∪

3
i=1

S i
3
. The set

of all (n+1)-interval H2-scaling sets obtained in Theorem 3.6 is denoted by Sn and the set

of all (L2
E

, A)-scaling sets S ×S [cf. Theorem 3.11], where S ∈ Sn, by P(Sn).

3.4 Contractibility of families of simple scaling sets

In this Section, we show that Φ1
3
, Φ2

3
and Φ3

3
are three path-components of Φ3 by obtaining

each one of these to be pathconnected and closed in Φ3. This follows by obtaining that

S 3 has three path-components namely S 1
3
, S 2

3
and S 3

3
, which are closed in S 3. Further, the

contractibility of families of n-interval scaling sets described in Sections 3.1 and 3.2, and

that of (L2
[0,∞)2 ,A)-scaling sets obtained in the Theorem 3.11 are discussed, when considered

as topological spaces. LetM denote the collection of all measurable sets of R having finite

measure equipped with the symmetric difference metric. We obtain that SM
n and Sn are

contractible spaces under induced metric ofM, and also that P(Sn) is a contractible space

under induced product metric.

Theorem 3.12. For each i ∈ {1,2,3}, S i
3

is pathconnected and closed in S 3.

Proof. It suffices to show for i = 1 while for i = 2 and i = 3, the proof is similar. For this,

we choose a standard three-interval scaling set in S 1
3

by assuming 2α = γ,α+ 2π = 2β, and

2γ = β+2π which provide α = 6π
7
, β = 10π

7
and γ = 12π

7
. We denote it by s1. Thus

s1 =

[
−

2π

7
,
6π

7

)
∪

[
10π

7
,
12π

7

)
∪

[
20π

7
,
24π

7

)
.
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To show that S 1
3 is pathconnected, we join s1 to an arbitrary member s in S 1

3, given by

s = [γ−2π,α)∪ [β,γ)∪ [α+2π,β+2π),

where α,β,γ ∈ (0,2π) satisfy α < β < γ, γ ≤ 2α,2β ≤ α+2π and β+2π ≤ 2γ.

Define θ : [0,1]→ S 1
3

by

θ(t) =

[
−(1− t)

2π

7
+ t(γ−2π), (1− t)

6π

7
+ tα

)
∪

[
(1− t)

10π

7
+ tβ, (1− t)

12π

7
+ tγ

)
∪

[
(1− t)

20π

7
+ t(α+2π), (1− t)

24π

7
+ t(β+2π)

)

≡I1
t ∪ I2

t ∪ I3
t , (say)

where t ∈ [0,1]. That θ is a path joining θ(0) = s1 to θ(1) = s follows by obtaining (i) for

each t, θ(t) ∈ S 1
3
, and (ii) θ is continuous. Since

(a) 0 < α < β < γ < 2π,γ ≤ 2α,2β ≤ α+2π and β+2π ≤ 2γ, θ(t)⊂ 2θ(t), for each t ∈ [0,1],

and

(b) I1
t ∪ I2

t ∪ (I3
t − 2π) =

[
(−(1− t)2π

7
+ t(γ−2π)), (−(1− t)2π

7
+ t(γ−2π))+2π

)
, θ(t) is 2π

-translation congruent to [δ,δ+2π) , where δ = −(1− t)2π
7
+ t(γ−2π),

(i) follows. For (ii)-the continuity of θ, choose a sequence (tn)n∈N in [0,1] converging to t

in it. Then, we have limn→∞Ii
tn
= Ii

t , for i = 1,2,3 and hence, we obtain that

limn→∞θ(tn) = θ(t).

Here, we observe that if (sn)n∈N is a sequence in S 1
3
, where

sn = [γn−2π,αn)∪ [βn,γn)∪ [αn+2π,βn+2π), and s = [γ−2π,α)∪ [β,γ)∪ [α+2π,β+2π)

is in S 1
3
, then limn→∞sn = s if and only if limn→∞[γn−2π,αn) = [γ−2π,α),

limn→∞[βn,γn) = [β,γ), and limn→∞[αn +2π,βn+2π) = [α+2π,β+2π) inM.

As there are two intervals lying entirely in [0,∞) in case of three-interval scaling sets in

S 1
3

while in case of three-interval scaling sets in S 2
3

there is just one such interval and that in

case of S 3
3

there is none, in view of above observation, a convergent sequence in S 3 having

terms in S 1
3 converges in S 1

3. Thus S 1
3 is a closed set in S 3. �

Corollary 3.13. The space of scaling functionsΦ3 has three path-components.

Proof. It follows by noting that each of the Φi
3
= {χ∨s : s ∈ S i

3
}, i = 1,2,3 is pathconnected

and closed in Φ3. �

Theorem 3.14. All the three path-components S 1
3
,S 2

3
and S 3

3
of S 3 are contractible and

hence each path-component of Φ3 is contractible.
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Proof. Consider the standard three-interval scaling set s1 in S 1
3 as described in Theorem

3.1. Then the map F : S 1
3
× [0,1]→ S 1

3
defined by F(s, t) = θ(t), where s ∈ S 1

3
and t ∈ [0,1],

describes the homotopy between the identity map and the constant map on S 1
3

collapsing

S 1
3

to θ(0) = s1. For the continuity of F, we employ observations used in Theorem 3.12.

This shows that S 1
3

is contractible. Similarly, we obtain that S 2
3

and S 3
3

are contractible. �

Theorem 3.15. SM
n , where n ≥ 3 is an odd integer, is a contractible space. Also,SM

n , where

n ≥ 4 is an even integer, is a contractible space.

Proof. Choose an element t in SM
n , where n ≥ 3 is an odd integer, by considering β1 and βn

in (0,2π) satisfying β1 < βn and βn ≤min
(
2β1,

β1

2
+π
)
, and selecting β2,β3, ...,βn−1 such that

0 < β1 < β2 < ... < βn−1 < βn < 2π. Write

t =

n−1
2⋃

m=1

[
β2m−1−2π, β2m−2π

)
∪
[
βn−2π, β1

)
∪

n−1
2⋃

m=1

[
β2m, β2m+1

)

≡

n−1
2⋃

m=1

(t1)m ∪ t2∪

n−1
2⋃

m=1

(t3)m. (say)

Let s be an arbitrary element of SM
n , where n ≥ 3 is an odd integer.

Define F : SM
n × [0,1] −→ SM

n by

F(s,r) =

n−1
2⋃

m=1

[
r(t1)m + (1− r)(s1)m

]
∪
[
rt2+ (1− r)s2

]
∪

n−1
2⋃

m=1

[
r(t3)m+ (1− r)(s3)m

]
,

where r ∈ [0,1]. Note that F(s,0) = s and F(s,1) = t.

It is easy to see that F(s,r) ∈ SM
n , for every s ∈ SM

n and r ∈ [0,1]. For the continuity of F,

we choose a sequence
(
sk,rk
)
k∈N in SM

n × [0,1] converging to (s,r) in it, where sk and s are

given below:

sk =

n−1
2⋃

m=1

[
αk

2m−1−2π, αk
2m−2π

)
∪
[
αk

n−2π, αk
1

)
∪

n−1
2⋃

m=1

[
αk

2m, α
k
2m+1

)

≡

n−1
2⋃

m=1

(sk
1)m ∪ sk

2∪

n−1
2⋃

m=1

(sk
3)m, and

s =

n−1
2⋃

m=1

[
α2m−1−2π, α2m−2π

)
∪
[
αn−2π, α1

)
∪

n−1
2⋃

m=1

[
α2m, α2m+1

)

≡

n−1
2⋃

m=1

(s1)m ∪ s2∪

n−1
2⋃

m=1

(s3)m.

Observe that limk→∞sk = s if and only if limk→∞sk
2
= s2, and

limk→∞(sk
i )m = (si)m, for i = 1,3; m = 1,2, ...,

n−1

2
in M.
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Then, we find that limk→∞F(sk,rk) = F(s,r). Thus F describes a homotopy between the

identity map and the constant map on SM
n collapsing it to t. �

The following theorems show that Sn is a contractible space under induced metric of

M, while P(Sn) is a contractible space under induced product metric.

Theorem 3.16. Sn, where n ∈N, is a contractible space.

Proof. We prove the theorem when n is even. For odd n, the proof is similar. Choose an

element t in Sn, where n ∈ 2N, and

t =

n
2⋃

m=0

[
β2m, β2m+1

)
∪

n
2⋃

m=1

[
β2m−1+2π, β2m+2π

)

≡

n
2⋃

m=0

(t1)m ∪

n
2⋃

m=1

(t2)m. (say)

Let s be an arbitrary element of Sn, where

s =

n
2⋃

m=0

[
α2m, α2m+1

)
∪

n
2⋃

m=1

[
α2m−1+2π, α2m+2π

)

≡

n
2⋃

m=0

(s1)m ∪

n
2⋃

m=1

(s2)m. (say)

Define F : Sn× [0,1] −→ Sn by

F(s,r) =

n
2⋃

m=0

[
r(t1)m + (1− r)(s1)m

]
∪

n
2⋃

m=1

[
r(t2)m+ (1− r)(s2)m

]
,

where r ∈ [0,1]. Note that F describes a homotopy between the identity map and the con-

stant map on Sn collapsing it to t. �

Theorem 3.17. P(Sn), where n ∈N, is a contractible space.

Proof. Let T ∈ Sn. Then, by Theorem 3.16, there is a homotopy F : Sn× [0,1] −→Sn such

that F(S ,0) = S and F(S ,1) = T, where S ∈ Sn.

Now, it is straightforward to check that G : P(Sn)× [0,1] −→ P(Sn) defined by

G(S ×S , x) = (F,F)(S , x) = F(S , x)×F(S , x), for S ∈ Sn and x ∈ [0,1],

is a homotopy between the identity map and the constant map on P(Sn) collapsing it to

T ×T . �
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