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Abstract
We use variational methods to study the existence of at least one positive solution of
the following Schrödinger-Poisson system

−∆u+u+ l(x)φu = k(x)|u|2
∗−2u+µh(x)|u|q−2u in R3,

−∆φ = l(x)u2 in R3,

under some suitable conditions on the non-negative functions l,k,h and constant µ > 0,
where 2 ≤ q < 2∗ (critical Sobolev exponent).

AMS Subject Classification: 35J20, 35J70

Keywords: Schrödinger-Poisson system; Variational methods; Critical growth; Positive
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1 Introduction

In this paper, we study the existence of solutions of the system (1.2) involving a critical
growth with the following form

−∆u+u+ l(x)φu = k(x)|u|2
∗−2u+µh(x)|u|q−2u in R3,

−∆φ = l(x)u2 in R3,

(1.1)
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where 2 ≤ q < 2∗. We use the standard Mountain Pass Theorem to show the existence
of a solution. However, since the nonlinearity involves a critical exponent, the Sobolev
embedding H1(R3) ↪→ Ls(R3) (2 ≤ s ≤ 6) is not compact. This will create great difficulies
in the proof of the Palais-Smale condition. We will transform the problem into a nonlocal
elliptic equation in R3 and we also consider the limiting case q = 2.

It is known that the Schrödinger-Poisson systems have a strong physical meaning be-
cause they appear in quantum mechanics models (see e.g. [6, 9, 22]) and in semiconductor
theory (see e.g. [4, 5, 23, 24]). In particular, systems like (1.2) have been introduced in
Benci-Fortunato [4, 5] as a model describing solitary waves for the nonlinear stationary
Schrödinger equations in three-dimensional space interacting with the electrostatic field
which is not a priori assigned. Further applications to superconductors are currently under
investigation.

Very recently, Cerami-Vaira [10] studied the existence of positive solutions for the
Schrödinger-Poisson system

−∆u+u+ l(x)φu = f (x,u) in R3,

−∆φ = l(x)u2 in R3,

(1.2)

where they considered f (x,u) = k(x)|u|p−2u with 4 < p < 6 and assumed that l ∈ L2(R3) and
k : R3→ R are non-negative functions satisfying lim|x|→+∞ l(x) = 0, l . 0, lim|x|→+∞ k(x) =
k∞ > 0 and k(x)− k∞ ∈ L6/(6−p)(R3).

After Cerami-Vaira [10] many researchers have looked to problem (1.2), such as D’Avenia-
Pomponio-Vaira [18], Li-Peng-Wang [21], Sun-Chen-Nieto [27] and Vaira [30], under var-
ious assumptions on the non-constant function l. Similar problems continue to attract atten-
tion as one can see from the latest works of He-Zou [20] and their references.

Before Cerami-Vaira [10] similar problems to (1.2), with constant function l, had also
been widely investigated. We point out the works of Ambrosetti-Ruiz [2], Coclite [12],
D’Avenia [17], D’Aprile et al. [13, 14, 15, 16], Ruiz [26] and others. Among of these,
Azzollini-Pomponio [3], D’Aprile-Mugnai [14] and Zhao-Zhao [32] dealt with critical ex-
ponent case.

There are no existence results about system (1.1) with non-constant function l. In Zhao-
Zhao [32], they studied a similar system to (1.1) with function l = 1. They established the
existence of at least one positive solution for 4 ≤ q < 2∗ and at least one positive radial
solution for 2 < q < 4 with some restrictions on functions k, h and µ. Moreover, note that
there was no information about the case where q = 2.

The main result, in this work, generalizes some of above results. We consider the
following hypotheses (H):

(Hl) l ∈ L2(R3)∩L∞(R3), l(x) ≥ 0 for any x ∈ R3 and l . 0;
(Hk1) k(x) ≥ 0 for any x ∈ R3;
(Hk2) There exists x0 ∈ R

3, δ1 > 0 and ρ1 > 0 such that k(x0) = maxR3 k(x) and |k(x)−
k(x0)| ≤ δ1|x− x0|

α for |x− x0| < ρ1 with 1 ≤ α < 3;
(Hh1) h ∈ L6/(6−q)(R3) and h(x) ≥ 0 for any x ∈ R3 and h . 0;
(Hh2) There are δ2 > 0 and ρ2 > 0 such that h(x) ≥ δ2|x− x0|

−β for |x− x0| < ρ2 and
2− q

2 < β < 3, where x0 is given by (Hk2);
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(Hhµ) 0 < µ < µ̄ when 2 ≤ q < 4; µ > 0 when 4 ≤ q < 6, where µ̄ is defined by

µ̄ := µh = inf
u∈H1(R3)\{0}

{∫
R3

(|∇u|2+u2)dx :
∫
R3

h(x)|u|qdx = 1
}
.

Remark 1.1. The hypotheses (Hk1) and (Hk2) mean that k ∈ L∞(R3).

Remark 1.2. The function k, which satisfies a Hölder condition of order α with 1 ≤ α < 3
on H1(R3) and achieves its maximum, is a special case of (Hk2).

Remark 1.3. In Lemma 2.3, we show that µ̄ is achieved.

By a solution (u,φ) in H1(R3)×D1,2(R3) of problem (1.1), we mean that for any v ∈
H1(R3) it holds

∫
R3 (∇u∇v+uv+ l(x)φuv)dx =

∫
R3

(
k(x)|u|2

∗−2uv+µh(x)|u|q−2uv
)
dx,∫

R3 ∇φ∇vdx =
∫
R3 l(x)u2vdx.

We say the solution is positive if u(x) > 0 and φ(x) > 0 for all x ∈ R3.
We shall prove the following theorem.

Theorem 1.4. Assume the hypotheses (H) hold and 2 ≤ q < 2∗. Then problem (1.1) has at
least one positive solution (u,φu) in H1(R3)×D1,2(R3).

To prove the result above, we use a combination of techniques, e.g. techniques mo-
tivated by Willem [31], to overcome the lack of compactness of the Sobolev embedding,
and methods used by Chen-Li-Li [11] and Zhao-Zhao [32], to estimate carefully the energy
level.

Notations. Throughout this paper, Lp ≡ Lp(R3) (1 ≤ p < +∞) is the usual Lebesgue space
with the norm ‖u‖pp =

∫
R3 |u|pdx; L∞ ≡ L∞(R3) is the space of all essentially bounded func-

tions with the norm ‖u‖∞ = esssup |u|; H1 ≡ H1(R3) denotes the usual Sobolev space with
the norm ‖u‖2 =

∫
R3

(
|∇u|2+ |u|2

)
dx; H−1 is the dual space of H1 and 〈·, ·〉 ≡ 〈·, ·〉H−1×H1

is dual bracket; D1 ≡ D1,2(R3) is the completion of C∞0 (R3) with respect to the norm
‖u‖2D =

∫
R3 |∇u|2dx; Bρ(x) and Bρ denote a ball with radius ρ centred at x and 0, respec-

tively in a related space. Let u+ =max{u,0} and u− =max{−u,0}. We denote strong (weak)
convergence for a sequence (un)n∈N and u in a Banach space by un → u (un ⇀ u), respec-
tively. N is used to denote the dimension, so N = 3 if there is no special explanation. The
so-called critical Sobolev exponent is denoted by 2∗ = 2N

N−2 . The symbol C denotes different
positive constants and the value of C is allowed to change from line to line and in the same
formula.

2 Preliminaries

In this section, we are going to give some preliminary lemmas. Since our methods are
variational, first of all, it is necessary to transform the problem (1.1) into a Schrödinger
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equation with a nonlocal term. In fact, for any u ∈ H1, denote Lu(v) the linear functional in
D1 by

Lu(v) =
∫
R3

l(x)u2vdx.

It follows from the hypothesis (Hl), Hölder and Sobolev inequalities that

|Lu(v)| ≤ ‖l‖∞‖u‖212/5‖v‖6 ≤C‖l‖∞‖u‖212/5‖v‖D. (2.1)

Hence, the Lax-Milgram theorem implies that there exists, for each u in H1, a unique φu ∈

D1 such that ∫
R3
∇φu∇v =

∫
R3

l(x)u2vdx for any v ∈ D1,

i.e., φu is the weak solution of −∆φ = l(x)u2. It holds

φu(x) =
1

4π

∫
R3

l(y)u2(y)
|x− y|

dy.

In particular, we have

‖φu‖
2
D =

∫
R3
|∇φu|

2dx =
∫
R3

l(x)φuu2dx. (2.2)

Using (2.1) and (2.2), we obtain

‖φu‖6 ≤C‖φu‖D ≤C‖u‖212/5 ≤C‖u‖2 (2.3)

and ∫
R3

l(x)φu(x)u2(x)dx ≤C‖u‖4.

Thus F : H1→ R is well defined with

F(u) =
∫
R3

l(x)φu(x)u2(x)dx. (2.4)

To give the smoothness of the functional F (about the smoothness, we can find the
statement in previous works, but we didn’t find complete details), first, it is necessary to
introduce the following lemma.

Lemma 2.1. [25, p.31] Let 0 < β < N and f ∈ Lq(RN), g ∈ Lr(RN) with 1
q +

1
r +

β
N = 2 and

1 < q, r <∞. Then∫
RN×RN

| f (x)||g(y)|
|x− y|β

dxdy ≤C(q,r,β,N)‖ f ‖q‖g‖r, x,y ∈ RN ,

where C(q,r,β,N) is a positive constant depending on q,r,β and N.

Lemma 2.2. If the hypothesis (Hl) holds, then F ∈C1(H1,R).
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Proof. From Lemma 2.1 and hypothesis (Hl) we obtain∫
R3×R3

|l(x)u2(x)||l(y)u(y)v(y)|
|x− y|

dxdy

≤C‖u‖212/5‖uv‖6/5 ≤C‖u‖212/5‖u‖12/5‖v‖12/5

for any u,v ∈ H1. Then we may use the Lebesgue Theorem and Fubini Theorem and get

lim
t→0

F(u+ tv)−F(u)
t

= lim
t→0

∫
R3

l(x)
t

(
(u+ tv)2

(
φu+2t

∫
R3

l(y)u(y)v(y)
|x− y|

dy+ t2φv

)
−φuu2

)
dx

= 2
∫
R3

l(x)
(
u2(x)

∫
R3

l(y)u(y)v(y)
|x− y|

dy+u(x)v(x)
∫
R3

l(y)u2(y)
|x− y|

dy
)
dx

= 4
∫
R3

l(x)φuuvdx.

Hence the Gateaux derivative of F on H1 exists and 〈14 F′(u),v〉=
∫
R3 l(x)φuuvdx. Let un→ u

in H1 and v ∈ H1, then by (Hl) we obtain

‖F′(un)−F′(u)‖H−1 = sup
‖v‖=1
|〈F′(un)−F′(u),v〉|

= 4 sup
‖v‖=1

∣∣∣∣∣∫
R3

l(x)(φunun−φunu+φunu−φuu)vdx
∣∣∣∣∣

≤ 4‖l‖∞ sup
‖v‖=1

(
‖φun‖6‖un−u‖12/5‖v‖12/5+

∫
R3
|φun −φu||uv|dx

)
.

(2.5)

It follows from Lemma 2.1 that∫
R3
|φun −φu||uv|dx

=

∫
R3×R3

|u(x)v(x)||u2
n(y)−u2(y)|
|x− y|

dxdy

≤C‖u2
n−u2‖6/5‖uv‖6/5 ≤C‖u2

n−u2‖6/5‖u‖12/5‖v‖12/5.

From (2.3), (2.5), (2.6) and the fact that un→ u in H1, we obtain

‖F′(un)−F′(u)‖H−1 → 0.

Thus F has a continuous Gateaux derivative on H1. Therefore F ∈C1(H1,R). �

Let’s introduce the Euler functional of the problem (1.1) as I : H1→ R defined by

I(u) =
1
2
‖u‖2+

1
4

F(u)−
∫
R3

(
1
2∗

k(x)|u+|2
∗

+
µ

q
h(x)|u+|q

)
dx. (2.6)

By Lemma 2.2 we know that the functional I is of class C1 and its critical points are weak
solutions of (1.1).

To prove Theorem 1.4, we still need some other preliminary lemmas.
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Lemma 2.3. Assume that the hypothesis (Hl) holds. Then F is a weakly continuous func-
tional.

Proof. Suppose un ⇀ u in H1. Since un → u in L2
loc, going if necessary to a subsequence,

we can assume that

un→ u a.e. in R3 and φun → φu a.e. in R3.

In fact, the last statement is true since, by (Hl) and Hölder inequality, we have∣∣∣φun(x)−φu(x)
∣∣∣ ≤ 1

4π

∫
R3

∣∣∣l(y)||u2
n(y)−u2(y)

∣∣∣ 1
|x− y|

dy

≤C‖u2
n−u2‖L2(BR(x))

(∫
|x−y|≤R

1
|x− y|2

dy
)1/2

+C‖u2
n−u2‖L4/3(Bc

R(x))

(∫
|x−y|>R

1
|x− y|4

dy
)1/4

≤C‖u2
n−u2‖L2(BR(x))+CR−

1
4 ‖u2

n−u2‖L4/3(Bc
R(x))

→ 0,

(2.7)

as n→∞ and R→∞. Then φunu2
n→ φuu2 a.e. on R3. Moreover, the sequence (φunu2

n)n∈N

is bounded in L2, since∫
R3

(
φunu2

n

)2
dx ≤

(∫
R3
φ6

un
dx

)1/3 (∫
R3

u6
ndx

)2/3

= ‖φun‖
2
6‖un‖

4
6 ≤C‖un‖

6.

Hence φunu2
n ⇀φuu2 in L2. By (Hl) we have

F(un) =
∫
R3

l(x)φunu2
ndx→

∫
R3

l(x)φuu2dx = F(u).

We have proved that F is weakly continuous. �

Lemma 2.4. Assume the hypothesis (Hl) holds. Let un ⇀ u in H1, then

F(un−u) = F(un)−F(u)+o(1).

Proof. Since (Hl) holds, from the proof of [32, Lemma 2.1], the result follows. �

From a similar proof as in [31, Lemma 2.13], we obtain the next result.

Lemma 2.5. If the hypothesis (Hh1) holds and 2 ≤ q < 6, then the functional

ψh : H1→ R : u 7→
∫
R3

h(x)|u|qdx

is weakly continuous.

Lemma 2.6. Suppose the hypothesis (Hh1) holds and 2 ≤ q < 4. Then the following infimum

µ̄ := µh = inf
u∈H1\{0}

{∫
R3

(|∇u|2+u2)dx :
∫
R3

h(x)|u|qdx = 1
}

(2.8)

is achieved.
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Proof. Let (un)n∈N ⊂ H1 be a minimizing sequence such that∫
R3

h(x)|un|
qdx = 1 and

∫
R3

(|∇un|
2+u2

n)dx→ µh, as n→∞.

So (un)n∈N is bounded in H1. Then there exists a subsequence satisfying un ⇀ u in H1.

Since h ∈ L6/(6−q), by Lemma 2.5, we have∫
R3

h(x)|un|
qdx→

∫
R3

h(x)|u|qdx. Hence
∫
R3

h(x)|u|qdx = 1.

Then, by the weakly lower semi-continuous property of the norm, we get

µh = lim
n→∞

inf
∫
R3

(|∇un|
2+u2

n)dx ≥
∫
R3

(|∇u|2+u2)dx ≥ µh.

Thus the infimum µh is achieved. �

Lemma 2.7. Suppose the hypotheses (Hl), (Hk1), (Hh1) and (Hhµ) hold. Then I(0) = 0 and
(I1) there are constants ρ,α > 0 such that I|∂Bρ ≥ α; and
(I2) there is ū ∈ H1 \ B̄ρ such that I(ū) < 0.

Proof. It is clear from the definition of I that I(0) = 0. To prove (I1) and (I2), we consider
2 ≤ q < 4 and 4 ≤ q < 6 respectively. First, for 2 ≤ q < 4, we have 0 < µ < µ̄ by (Hhµ). It
follows from (Hk1), Lemma 2.6 and Sobolev inequality that

I(u) =
1
2
‖u‖2+

1
4

F(u)−
1
2∗

∫
R3

k(x)|u+|2
∗

dx−
µ

q

∫
R3

h(x)|u+|qdx

≥
1
2
‖u‖2−C‖u‖2

∗

−
µ

qµ̄
‖u‖2 = ‖u‖2

(
1
2
−
µ

qµ̄
−C‖u‖2

∗−2
)
.

Set ρ = ‖u‖, small enough such that Cρ2∗−2 ≤ 1
2 ( 1

2 −
µ
qµ̄ ). Hence we have

I(u) ≥
1
2

(
1
2
−
µ

qµ̄

)
ρ2. (2.9)

Take α = 1
2 ( 1

2 −
µ
qµ̄ )ρ2. Then we get the result (I1). By (2.3) and the fact that µh(x) ≥ 0, for

fixed u0 with ‖u0‖ = 1 and supp(u0) ⊂ supp(k), we have

I(tu0) ≤ t2∗
(

1
2t4 ‖u0‖

2+
C
4t2 ‖u0‖

4−
C
2∗

∫
R3

k(x)|u+0 |
2∗dx

)
.

Let t be large enough such that t > ρ and

1
2t4 ‖u0‖

2+
C
4t2 ‖u0‖

4−
C
2∗

∫
R3

k(x)|u+0 |
2∗dx < 0.

Take ū = tu0. Then (I2) follows.
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Next, we consider 4 ≤ q < 6, so µ > 0 by (Hhµ). Since (Hk1) and (Hh1) hold, the Hölder
inequality and Sobolev inequality implies that

I(u) =
1
2
‖u‖2+

1
4

F(u)−
1
2∗

∫
R3

k(x)|u+|2
∗

dx−
µ

q

∫
R3

h(x)|u+|qdx

≥
1
2
‖u‖2−C‖u‖2

∗

−
µ

q
‖h‖ 6

6−q
‖u‖q6

≥ ‖u‖2
(
1
2
−C‖u‖2

∗−2−C‖u‖q−2
)

for each µ > 0 fixed. Hence (I1) follows from the similar estimate with (2.9). The proof of
(I2) is the same to the case 2 ≤ q < 4. �

3 The proof of Theorem 1.4

To prove Theorem 1.4, we will apply the Mountain Pass Theorem to find a solution of
problem (1.1) and then prove that it is a positive solution. Let us first recall (one of the
versions of) the Mountain Pass Theorem.

Mountain Pass Theorem [1]. Let E be a real Banach space and I ∈ C1(E,R). Suppose
I(0) = 0 and

(I1) there are constants ρ,α > 0 such that I|∂Bρ ≥ α; and
(I2) there is ū ∈ E \ B̄ρ such that I(ū) < 0. If I satisfies the (PS )c-condition, where c is

defined as

c = inf
g∈Γ

max
u∈g[0,1]

I(u) with Γ = {g ∈C([0,1],E) : g(0) = 0,g(1) = ū}. (3.1)

Then I possesses a critical value c ≥ α.
Since Lemma 2.7 shows that the functional I has the Mountain Pass geometry, to apply

this theorem to the functional I with E ≡H1, it is enough to prove that the Palais-Smale con-
dition holds at the level c (the (PS )c-condition for short), which means that every sequence
(un)n∈N ⊂ H1 such that I(un)→ c and I′(un)→ 0 in H−1 implies that (un)n∈N possesses a
convergent subsequence in H1.

Lemma 3.1. Assume (Hl), (Hk1), (Hh1) and (Hhµ) hold. Then the functional I satisfies

the (PS )c -condition for c ∈
(
0, 1

NS
N
2 ‖k‖

− N−2
2

∞

)
, where S denotes the best Sobolev constant

defined by

S = inf
u∈D1\{0}

∫
R3 |∇u|2dx(∫
R3 |u|2

∗dx
)2/2∗ . (3.2)

Proof. Let (un)n∈N be a (PS )c -sequence of I at the level c ∈
(
0, 1

NS
N
2 ‖k‖

− N−2
2

∞

)
, i.e.,

I(un)→ c and I′(un)→ 0 in H−1. (3.3)
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Step 1. We consider 2≤ q< 4, so we get 0< µ< µ̄ by (Hhµ). Then by the Sobolev inequality,
Lemma 2.6 and k(x) ≥ 0 for any x ∈ R3, for large n we have

c+1+ ‖un‖ ≥ I(un)−
1
4
〈I′(un),un〉

=
1
4
‖un‖

2+

(
1
4
−

1
2∗

)∫
R3

k(x)|u+n |
2∗dx+

(
µ

4
−
µ

q

)∫
R3

h(x)|u+n |
qdx

≥
1
4
‖un‖

2+

(
1
4
−

1
2∗

)∫
R3

k(x)|u+n |
2∗dx+

(
1
4
−

1
q

)
µ

µ̄
‖un‖

2

≥

(
1
4
+

(
1
4
−

1
q

)
µ

µ̄

)
‖un‖

2,

(3.4)

which implies (un)n∈N is bounded in H1, since 0 < µ < µ̄ and 2 ≤ q < 4. Passing if necessary
to a subsequence, we can assume that

un ⇀ u in H1, un→ u a.e. in R3,

∇un ⇀ ∇u in L2, and un ⇀ u in L2.

Let us define wn = k(x)|u+n |
N+2/N−2 and w = k(x)|u+|N+2/N−2. Since (un)n∈N is bounded in L2∗

and k ∈ L∞, then wn is bounded in L2N/N+2 and so wn ⇀ w in L2N/N+2. Note that for any
v ∈ H1, we have v ∈ L2N/N−2, ∇v ∈ L2 and v ∈ L2. Hence∫

R3
wnvdx→

∫
R3

wvdx, i.e.,
∫
R3

k(x)|u+n |
2∗−1vdx→

∫
R3

k(x)|u+|2
∗−1vdx, (3.5)

and ∫
R3

(∇un∇v+unv)dx→
∫
R3

(∇u∇v+uv)dx. (3.6)

From the proof of Lemma 2.3 and Lemma 2.5 we also have∫
R3

h(x)|u+n |
q−1vdx→

∫
R3

h(x)|u+|q−1vdx, (3.7)

and ∫
R3

l(x)φununvdx→
∫
R3

l(x)φuuvdx. (3.8)

Combining (3.5)–(3.8), for un ⇀ u in H1, we obtain

〈I′(un),v〉 =
∫
R3

(∇un∇v+unv)dx+
∫
R3

l(x)φununvdx

−
∫
R3 k(x)|u+n |

2∗−1vdx−µ
∫
R3 h(x)|u+n |

q−1vdx
→

∫
R3(∇u∇v+uv)dx+

∫
R3 l(x)φuuvdx−

∫
R3 k(x)|u+|2

∗−1vdx
−µ

∫
R3 h(x)|u+|q−1vdx = 〈I′(u),v〉.

(3.9)

On the other hand, by the fact I′(un)→ 0 in H−1, we get that 〈I′(un),v〉 → 0 for any v ∈ H1.
So 〈I′(u),v〉 = 0 for any v ∈ H1, i.e.

−∆u+u+ l(x)φuu = k(x)|u+|2
∗−1+µh(x)|u+|q−1. (3.10)
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In particular, 〈I′(u),u〉 = 0 and then from Lemma 2.6 and k(x) ≥ 0 we obtain

I(u) =
1
4
〈I′(u),u〉+

1
4
‖u‖2+

(
1
4
−

1
2∗

)∫
R3

k(x)|u+|2
∗

dx+
(
µ

4
−
µ

q

)∫
R3

h(x)|u+|qdx

≥
(

1
4 +

(
1
4 −

1
q

)
µ
µ̄

)
‖u‖2 ≥ 0.

(3.11)
Let vn = un − u and so vn ⇀ 0 in H1. Hence, using the given hypotheses, the Brézis-Lieb
Lemma [7] implies that

‖un‖
2 = ‖vn‖

2+ ‖u‖2+o(1),∫
R3

k(x)|u+n |
2∗dx =

∫
R3

k(x)|v+n |
2∗dx+

∫
R3

k(x)|u+|2
∗

dx+o(1),∫
R3

h(x)|u+n |
qdx =

∫
R3

h(x)|v+n |
qdx+

∫
R3

h(x)|u+|qdx+o(1),

and hence by Lemma 2.4 we have

I(un) = I(u)+
1
2
‖vn‖

2+
1
4

F(vn)−
1
2∗

∫
R3

k(x)|v+n |
2∗dx−

1
2

∫
R3

h(x)|v+n |
qdx+o(1),

and

〈I′(un),un〉 = 〈I′(u),u〉+ ‖vn‖
2+F(vn)−

∫
R3

k(x)|v+n |
2∗dx−µ

∫
R3

h(x)|v+n |
qdx+o(1).

Therefore it follows from Lemma 2.3, Lemma 2.5 and the hypotheses I(un)→ c and I′(un)→
0 in H−1 that

c = lim
n→∞

I(un) = I(u)+ lim
n→∞

1
2
‖vn‖

2− lim
n→∞

1
2∗

∫
R3

k(x)|v+n |
2∗dx, (3.12)

and
〈I′(u),u〉+ lim

n→∞
‖vn‖

2− lim
n→∞

∫
R3

k(x)|v+n |
2∗dx = 0. (3.13)

Using (3.10) and (3.13) we obtain

‖vn‖
2−

∫
R3

k(x)|v+n |
2∗dx→−〈I′(u),u〉 = 0.

Now we may assume that

‖vn‖
2→ b and

∫
R3

k(x)|v+n |
2∗dx→ b.

By Sobolev’s inequality we have

‖vn‖
2 ≥

∫
R3
|∇vn|

2dx ≥ S
(∫
R3
|v+n |

2∗dx
)2/2∗

,

which means that∫
R3

k(x)|v+n |
2∗dx ≤ ‖k‖∞

∫
R3
|v+n |

2∗dx ≤ ‖k‖∞
(
S−1‖vn‖

2
)2∗/2

,
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i.e., b ≤ ‖k‖∞
(
S−1b

)2∗/2
. So we get that b = 0 or b ≥ S

N
2 ‖k‖

− N−2
2

∞ . Assume b ≥ S
N
2 ‖k‖

− N−2
2

∞ .

Then combining (3.11) and (3.12), we obtain

c ≥
1
2

b−
1
2∗

b =
1
N

b ≥
1
N
S

N
2 ‖k‖

− N−2
2

∞ ,

which contradicts the fact that c < 1
NS

N
2 ‖k‖

− N−2
2

∞ . Hence b = 0.
Step 2. For 4 ≤ q < 6 and µ > 0, we obtain that

c+1+ ‖un‖ ≥ I(un)−
1
4
〈I′(un),un〉

=
1
4
‖un‖

2+

(
1
4
−

1
2∗

)∫
R3

k(x)|u+n |
2∗dx+

(
µ

4
−
µ

q

)∫
R3

h(x)|u+n |
qdx ≥

1
4
‖un‖

2,

which implies that (un)n∈N is bounded in H1. To finish this step, we just need to replace
(3.4) in Step 1 by the above inequality. The rest of the proof is similar to Step 1, so we omit
it here. �

Lemma 3.2. Suppose the hypotheses (H) hold. Then c < 1
NS

N
2 ‖k‖

− N−2
2

∞ .

Proof. The idea here is to find a path in Γ such that the maximum of the functional I at
this path is strictly less than 1

NS
N
2 ‖k‖−(N−2)/2

∞ . To construct this path, we need the extremal
function uε,x0 for the embedding D1 ↪→ L6, where

uε,x0 =C
ε1/4

(ε+ |x− x0|2)1/2 .

Here C is a normalizing constant and x0 is given in (Hk2). Let ϕ ∈ C∞0 be such that 0 ≤
ϕ ≤ 1,ϕ|BR2

≡ 1 and supp ϕ ⊂ B2R2 for some R2 > 0. Set vε = ϕuε,x0 and then vε ∈ H1 with
vε(x) ≥ 0 for each x ∈R3. The following asymptotic estimates hold if ε is small enough (see
Brézis-Nirenberg [8]):

‖∇vε‖22 = k1+O(ε
1
2 ), ‖vε‖22∗ = k2+O(ε), (3.14)

‖vε‖ss =


O(ε

s
4 ) s ∈ [2,3),

O(ε
s
4 |ln ε|) s = 3,

O(ε
6−s

4 ) s ∈ (3,6),
(3.15)

with k1/k2 = S, and 2 ≤ s < 2∗. We know the path tvε ∈ Γ. For the rest, we will prove

max
t≥0

I(tvε) <
1
N
S

N
2 ‖k‖−(N−2)/2

∞ (3.16)

for small ε. Since I(tvε)→−∞ as t→∞, there exists tε > 0 such that I(tεvε) =max
t≥0

I(tvε).

Also by Lemma 2.7, max
t≥0

I(tvε) ≥ α > 0. Then we have I(tεvε) ≥ α > 0. Thus from the

continuity of I, we may assume that there exists some positive t0 such that tε ≥ t0 > 0.
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Moreover from I(tvε)→−∞ as t→∞ and I(tεvε) ≥ α > 0, we get that there exists T0 such
that tε ≤ T0. Hence t0 ≤ tε ≤ T0. Let I(tεvε) = A(ε)+B(ε)+C(ε), where

A(ε) =
t2
ε

2

∫
R3
|∇vε|2dx−

t2∗
ε

2∗

∫
R3

k(x0)|vε|2
∗

dx,

B(ε) =
t2∗
ε

2∗

∫
R3

k(x0)|vε|2
∗

dx−
t2∗
ε

2∗

∫
R3

k(x)|vε|2
∗

dx,

and

C(ε) =
t2
ε

2

∫
R3
|vε|2dx+

t4
ε

4
F(vε)−

t2
εµ

2

∫
R3

h(x)|vε|qdx,

since v+ε = vε. First, we claim that

A(ε) ≤
1
N
S

N
2 ‖k‖

− N−2
2

∞ +Cε1/2. (3.17)

Indeed, let g(t) = t2
2

∫
R3 |∇vε|2dx− t2

∗

2∗
∫
R3 k(x0)|vε|2

∗

dx. It is clear that g(t) achieves its maxi-
mum value at some Tε. So

0 = g′(Tε) = Tε

∫
R3
|∇vε|2dx−T 2∗−1

ε

∫
R3

k(x0)|vε|2
∗

dx.

That is,

Tε =


∫
R3 |∇vε|2dx∫

R3 k(x0)|vε|2
∗dx


1

2∗−2

.

Therefore, from (3.14), we have

g(Tε) = sup
t≥0

g(t) =
1
N

(∫
R3 |∇vε|2dx

)N/2(∫
RN k(x0)|vε|2

∗dx
)N−2/2 =

1
N
S

N
2 ‖k‖

− N−2
2

∞ +Cε1/2.

Then (3.17) follows. Secondly, we claim that B(ε) ≤ Cε1/2. In fact, since t0 ≤ tε ≤ T0 and
k ∈ L∞, by the definition of vε, (Hk2) and using a change of variables with 1 ≤ α < 3, we
have

B(ε) =
t2∗
ε

2∗

∫
R3

(k(x0)− k(x))|vε|2
∗

dx

≤Cδ1

∫
|x−x0 |<ρ1

|x− x0|
αε3/2

(ε+ |x− x0|2)3 dx+C
∫
|x−x0 |≥ρ1

ε3/2

(ε+ |x− x0|2)3 dx

≤Cδ1ε
3
2

∫ ρ1

0

r2+α

(ε+ r2)3 dr+Cε
3
2

∫ ∞

ρ1

r−4dr

=Cδ1ε
α
2

∫ ρ1ε
− 1

2

0

ρ2+α

(1+ρ2)3 dρ+Cρ−3
1 ε3/2

≤Cδ1ε
α
2 +Cε3/2 ≤Cε

1
2 .

So we have proved our claim. Therefore, to finish the proof, it is enough to show

lim
ε→0+

C(ε)
ε1/2 = −∞. (3.18)
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Actually, from the definition of vε, (Hh2) and for any ε such that 0 < ε ≤ ρ2
2, it follows that∫

R3
h(x)|vε|qdx ≥Cδ2

∫
|x−x0 |<ρ2

|x− x0|
−βεq/4(

ε+ |x− x0|2
)q/2 dx+

∫
|x−x0 |≥ρ2

h(x)|vε|qdx

≥Cδ2ε
q/4

∫ ρ2

0

r2

rβ
(
ε+ r2)q/2 dr

=Cδ2ε
3
2−

q
4−

β
2

∫ ρ2ε
− 1

2

0

ρ2

ρβ
(
1+ρ2)q/2 dρ

≥Cδ2ε
3
2−

q
4−

β
2

∫ 1

0

ρ2

2qρβ
dρ =Cε

3
2−

q
4−

β
2 .

Therefore, by the fact that t0 ≤ tε ≤ T0 and hypothesis (Hl), we have

C(ε) =
t2
ε

2

∫
R3
|vε|2dx+

t4
ε

4
F(vε)−

t2
εµ

2

∫
R3

h(x)|vε|qdx

≤C‖vε‖22+C‖vε‖412/5−µCε
3
2−

q
4−

β
2

≤Cε
1
2 +Cε−µCε

3
2−

q
4−

β
2 .

It follows from 2− q
2 < β < 3 that for fixed µ we have

C(ε)
ε1/2 ≤C+Cε

1
2 −µCε1− q

4−
β
2 →−∞, as ε→ 0.

So we prove the claim (3.18). Therefore (3.16) follows. �

Proof of Theorem 1.4. It follows from Lemma 3.1 and Lemma 3.2 that the functional
I satisfies the (PS )c -condition at the level c defined by (3.1). And by Lemma 2.7, the
functional I has the Mountain Pass geometry. Hence the functional I has a critical value
c > 0. That is, there exists a nontrivial u ∈ H1 such that I′(u) = 0, which means that (u,φu)
is the nontrivial solution of system (1.1).

Since 0 = 〈I′(u),u−〉 = ‖u−‖2 +
∫

R3 l(x)φu|u−|2dx ≥ ‖u−‖2, then u ≥ 0 in R3. By standard
arguments as in DiBenedetto [19] and Tolksdorf [28], we have that u ∈ L∞ and u ∈ C1,γ

loc
with 0 < γ < 1. Furthermore, by Harnack’s inequality (see Trudinger [29]), u(x) > 0 for any
x ∈ R3. Thus (u,φu) is a positive solution of system (1.1). �
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