www.math-res-pub.org/cma

Volume 15, Number 1, pp. 29–43 (2013) ISSN 1938-9787

A Positive Solution of a Schrödinger-Poisson System with Critical Exponent

LIRONG HUANG*

Department of Mathematics, University of Aveiro 3810-193, Aveiro, Portugal

Eugénio M. Rocha[†]
Department of Mathematics,
University of Aveiro
3810-193, Aveiro, Portugal

(Communicated by Irena Lasiecka)

Abstract

We use variational methods to study the existence of at least one positive solution of the following Schrödinger-Poisson system

$$\begin{cases} -\Delta u + u + l(x)\phi u = k(x)|u|^{2^*-2}u + \mu h(x)|u|^{q-2}u & \text{in } \mathbb{R}^3, \\ -\Delta \phi = l(x)u^2 & \text{in } \mathbb{R}^3, \end{cases}$$

under some suitable conditions on the non-negative functions l,k,h and constant $\mu > 0$, where $2 \le q < 2^*$ (critical Sobolev exponent).

AMS Subject Classification: 35J20, 35J70

Keywords: Schrödinger-Poisson system; Variational methods; Critical growth; Positive solution

1 Introduction

In this paper, we study the existence of solutions of the system (1.2) involving a critical growth with the following form

$$\begin{cases}
-\Delta u + u + l(x)\phi u = k(x)|u|^{2^*-2}u + \mu h(x)|u|^{q-2}u & \text{in } \mathbb{R}^3, \\
-\Delta \phi = l(x)u^2 & \text{in } \mathbb{R}^3,
\end{cases}$$
(1.1)

^{*}E-mail address: lirong@ua.pt

[†]E-mail address: eugenio@ua.pt

where $2 \le q < 2^*$. We use the standard Mountain Pass Theorem to show the existence of a solution. However, since the nonlinearity involves a critical exponent, the Sobolev embedding $H^1(\mathbb{R}^3) \hookrightarrow L^s(\mathbb{R}^3)$ ($2 \le s \le 6$) is not compact. This will create great difficulies in the proof of the Palais-Smale condition. We will transform the problem into a nonlocal elliptic equation in \mathbb{R}^3 and we also consider the limiting case q = 2.

It is known that the Schrödinger-Poisson systems have a strong physical meaning because they appear in quantum mechanics models (see e.g. [6, 9, 22]) and in semiconductor theory (see e.g. [4, 5, 23, 24]). In particular, systems like (1.2) have been introduced in Benci-Fortunato [4, 5] as a model describing solitary waves for the nonlinear stationary Schrödinger equations in three-dimensional space interacting with the electrostatic field which is not a priori assigned. Further applications to superconductors are currently under investigation.

Very recently, Cerami-Vaira [10] studied the existence of positive solutions for the Schrödinger-Poisson system

$$\begin{cases}
-\Delta u + u + l(x)\phi u = f(x, u) & \text{in } \mathbb{R}^3, \\
-\Delta \phi = l(x)u^2 & \text{in } \mathbb{R}^3,
\end{cases}$$
(1.2)

where they considered $f(x,u) = k(x)|u|^{p-2}u$ with $4 and assumed that <math>l \in L^2(\mathbb{R}^3)$ and $k : \mathbb{R}^3 \to \mathbb{R}$ are non-negative functions satisfying $\lim_{|x| \to +\infty} l(x) = 0$, $l \not\equiv 0$, $\lim_{|x| \to +\infty} k(x) = k_\infty > 0$ and $k(x) - k_\infty \in L^{6/(6-p)}(\mathbb{R}^3)$.

After Cerami-Vaira [10] many researchers have looked to problem (1.2), such as D'Avenia-Pomponio-Vaira [18], Li-Peng-Wang [21], Sun-Chen-Nieto [27] and Vaira [30], under various assumptions on the non-constant function *l*. Similar problems continue to attract attention as one can see from the latest works of He-Zou [20] and their references.

Before Cerami-Vaira [10] similar problems to (1.2), with constant function *l*, had also been widely investigated. We point out the works of Ambrosetti-Ruiz [2], Coclite [12], D'Avenia [17], D'Aprile et al. [13, 14, 15, 16], Ruiz [26] and others. Among of these, Azzollini-Pomponio [3], D'Aprile-Mugnai [14] and Zhao-Zhao [32] dealt with critical exponent case.

There are no existence results about system (1.1) with non-constant function l. In Zhao-Zhao [32], they studied a similar system to (1.1) with function l = 1. They established the existence of at least one positive solution for $4 \le q < 2^*$ and at least one positive radial solution for 2 < q < 4 with some restrictions on functions k, h and μ . Moreover, note that there was no information about the case where q = 2.

The main result, in this work, generalizes some of above results. We consider the following hypotheses (H):

```
(H_l) l \in L^2(\mathbb{R}^3) \cap L^{\infty}(\mathbb{R}^3), l(x) \ge 0 for any x \in \mathbb{R}^3 and l \ne 0;
```

 (H_{k_1}) $k(x) \ge 0$ for any $x \in \mathbb{R}^3$;

 (H_{k_2}) There exists $x_0 \in \mathbb{R}^3$, $\delta_1 > 0$ and $\rho_1 > 0$ such that $k(x_0) = \max_{\mathbb{R}^3} k(x)$ and $|k(x) - k(x_0)| \le \delta_1 |x - x_0|^{\alpha}$ for $|x - x_0| < \rho_1$ with $1 \le \alpha < 3$;

$$(H_{h_1}) \ h \in L^{6/(6-q)}(\mathbb{R}^3) \ \text{and} \ h(x) \ge 0 \ \text{for any} \ x \in \mathbb{R}^3 \ \text{and} \ h \not\equiv 0;$$

 (H_{h_2}) There are $\delta_2 > 0$ and $\rho_2 > 0$ such that $h(x) \ge \delta_2 |x - x_0|^{-\beta}$ for $|x - x_0| < \rho_2$ and $2 - \frac{q}{2} < \beta < 3$, where x_0 is given by (H_{k_2}) ;

 (H_{h_u}) $0 < \mu < \bar{\mu}$ when $2 \le q < 4$; $\mu > 0$ when $4 \le q < 6$, where $\bar{\mu}$ is defined by

$$\bar{\mu} := \mu_h = \inf_{u \in H^1(\mathbb{R}^3) \setminus \{0\}} \left\{ \int_{\mathbb{R}^3} (|\nabla u|^2 + u^2) dx : \int_{\mathbb{R}^3} h(x) |u|^q dx = 1 \right\}.$$

Remark 1.1. The hypotheses (H_{k_1}) and (H_{k_2}) mean that $k \in L^{\infty}(\mathbb{R}^3)$.

Remark 1.2. The function k, which satisfies a Hölder condition of order α with $1 \le \alpha < 3$ on $H^1(\mathbb{R}^3)$ and achieves its maximum, is a special case of (H_{k_2}) .

Remark 1.3. In Lemma 2.3, we show that $\bar{\mu}$ is achieved.

By a solution (u, ϕ) in $H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)$ of problem (1.1), we mean that for any $v \in H^1(\mathbb{R}^3)$ it holds

$$\begin{cases} \int_{\mathbb{R}^3} (\nabla u \nabla v + uv + l(x)\phi uv) dx = \int_{\mathbb{R}^3} \left(k(x) |u|^{2^* - 2} uv + \mu h(x) |u|^{q - 2} uv \right) dx, \\ \int_{\mathbb{R}^3} \nabla \phi \nabla v dx = \int_{\mathbb{R}^3} l(x) u^2 v dx. \end{cases}$$

We say the solution is positive if u(x) > 0 and $\phi(x) > 0$ for all $x \in \mathbb{R}^3$.

We shall prove the following theorem.

Theorem 1.4. Assume the hypotheses (H) hold and $2 \le q < 2^*$. Then problem (1.1) has at least one positive solution (u, ϕ_u) in $H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)$.

To prove the result above, we use a combination of techniques, e.g. techniques motivated by Willem [31], to overcome the lack of compactness of the Sobolev embedding, and methods used by Chen-Li-Li [11] and Zhao-Zhao [32], to estimate carefully the energy level.

Notations. Throughout this paper, $L^p \equiv L^p(\mathbb{R}^3)$ $(1 \le p < +\infty)$ is the usual Lebesgue space with the norm $\|u\|_p^p = \int_{\mathbb{R}^3} |u|^p dx$; $L^\infty \equiv L^\infty(\mathbb{R}^3)$ is the space of all essentially bounded functions with the norm $\|u\|_\infty = \operatorname{ess\,sup}|u|$; $H^1 \equiv H^1(\mathbb{R}^3)$ denotes the usual Sobolev space with the norm $\|u\|^2 = \int_{\mathbb{R}^3} \left(|\nabla u|^2 + |u|^2\right) dx$; H^{-1} is the dual space of H^1 and $\langle \cdot, \cdot \rangle \equiv \langle \cdot, \cdot \rangle_{H^{-1} \times H^1}$ is dual bracket; $D^1 \equiv D^{1,2}(\mathbb{R}^3)$ is the completion of $C_0^\infty(\mathbb{R}^3)$ with respect to the norm $\|u\|_D^2 = \int_{\mathbb{R}^3} |\nabla u|^2 dx$; $B_\rho(x)$ and B_ρ denote a ball with radius ρ centred at x and x and x or respectively in a related space. Let x =

2 Preliminaries

In this section, we are going to give some preliminary lemmas. Since our methods are variational, first of all, it is necessary to transform the problem (1.1) into a Schrödinger

equation with a nonlocal term. In fact, for any $u \in H^1$, denote $L_u(v)$ the linear functional in D^1 by

$$L_u(v) = \int_{\mathbb{R}^3} l(x)u^2v dx.$$

It follows from the hypothesis (H_l) , Hölder and Sobolev inequalities that

$$|L_{u}(v)| \le ||l||_{\infty} ||u||_{12/5}^{2} ||v||_{6} \le C||l||_{\infty} ||u||_{12/5}^{2} ||v||_{D}.$$
(2.1)

Hence, the Lax-Milgram theorem implies that there exists, for each u in H^1 , a unique $\phi_u \in D^1$ such that

$$\int_{\mathbb{R}^3} \nabla \phi_u \nabla v = \int_{\mathbb{R}^3} l(x) u^2 v dx \quad \text{for any } v \in D^1,$$

i.e., ϕ_u is the weak solution of $-\Delta \phi = l(x)u^2$. It holds

$$\phi_u(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{l(y)u^2(y)}{|x - y|} dy.$$

In particular, we have

$$\|\phi_u\|_D^2 = \int_{\mathbb{R}^3} |\nabla \phi_u|^2 dx = \int_{\mathbb{R}^3} l(x)\phi_u u^2 dx. \tag{2.2}$$

Using (2.1) and (2.2), we obtain

$$\|\phi_u\|_6 \le C\|\phi_u\|_D \le C\|u\|_{12/5}^2 \le C\|u\|^2 \tag{2.3}$$

and

$$\int_{\mathbb{R}^3} l(x)\phi_u(x)u^2(x)dx \le C||u||^4.$$

Thus $F: H^1 \to \mathbb{R}$ is well defined with

$$F(u) = \int_{\mathbb{R}^3} l(x)\phi_u(x)u^2(x)dx. \tag{2.4}$$

To give the smoothness of the functional F (about the smoothness, we can find the statement in previous works, but we didn't find complete details), first, it is necessary to introduce the following lemma.

Lemma 2.1. [25, p.31] Let $0 < \beta < N$ and $f \in L^q(\mathbb{R}^N)$, $g \in L^r(\mathbb{R}^N)$ with $\frac{1}{q} + \frac{1}{r} + \frac{\beta}{N} = 2$ and $1 < q, r < \infty$. Then

$$\int_{\mathbb{R}^N\times\mathbb{R}^N}\frac{|f(x)||g(y)|}{|x-y|^\beta}dxdy\leq C(q,r,\beta,N)||f||_q||g||_r,\quad x,y\in\mathbb{R}^N,$$

where $C(q,r,\beta,N)$ is a positive constant depending on q,r,β and N.

Lemma 2.2. If the hypothesis (H_l) holds, then $F \in C^1(H^1, \mathbb{R})$.

Proof. From Lemma 2.1 and hypothesis (H_l) we obtain

$$\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{|l(x)u^{2}(x)||l(y)u(y)v(y)|}{|x-y|} dxdy$$

$$\leq C||u||_{12/5}^{2}||uv||_{6/5} \leq C||u||_{12/5}^{2}||u||_{12/5}||v||_{12/5}$$

for any $u, v \in H^1$. Then we may use the Lebesgue Theorem and Fubini Theorem and get

$$\lim_{t \to 0} \frac{F(u+tv) - F(u)}{t}$$

$$= \lim_{t \to 0} \int_{\mathbb{R}^3} \frac{l(x)}{t} \left((u+tv)^2 \left(\phi_u + 2t \int_{\mathbb{R}^3} \frac{l(y)u(y)v(y)}{|x-y|} dy + t^2 \phi_v \right) - \phi_u u^2 \right) dx$$

$$= 2 \int_{\mathbb{R}^3} l(x) \left(u^2(x) \int_{\mathbb{R}^3} \frac{l(y)u(y)v(y)}{|x-y|} dy + u(x)v(x) \int_{\mathbb{R}^3} \frac{l(y)u^2(y)}{|x-y|} dy \right) dx$$

$$= 4 \int_{\mathbb{R}^3} l(x)\phi_u uv dx.$$

Hence the Gateaux derivative of F on H^1 exists and $\langle \frac{1}{4}F'(u), v \rangle = \int_{\mathbb{R}^3} l(x)\phi_u uv dx$. Let $u_n \to u$ in H^1 and $v \in H^1$, then by (H_l) we obtain

$$||F'(u_n) - F'(u)||_{H^{-1}} = \sup_{\|v\|=1} |\langle F'(u_n) - F'(u), v \rangle|$$

$$= 4 \sup_{\|v\|=1} \left| \int_{\mathbb{R}^3} l(x) (\phi_{u_n} u_n - \phi_{u_n} u + \phi_{u_n} u - \phi_{u} u) v dx \right|$$

$$\leq 4 ||I||_{\infty} \sup_{\|v\|=1} \left(||\phi_{u_n}||_6 ||u_n - u||_{12/5} ||v||_{12/5} + \int_{\mathbb{R}^3} |\phi_{u_n} - \phi_{u}||uv| dx \right).$$
(2.5)

It follows from Lemma 2.1 that

$$\int_{\mathbb{R}^{3}} |\phi_{u_{n}} - \phi_{u}| |uv| dx$$

$$= \int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{|u(x)v(x)||u_{n}^{2}(y) - u^{2}(y)|}{|x - y|} dxdy$$

$$\leq C||u_{n}^{2} - u^{2}||_{6/5}||uv||_{6/5} \leq C||u_{n}^{2} - u^{2}||_{6/5}||u||_{12/5}||v||_{12/5}.$$

From (2.3), (2.5), (2.6) and the fact that $u_n \to u$ in H^1 , we obtain

$$||F'(u_n) - F'(u)||_{H^{-1}} \to 0.$$

Thus *F* has a continuous Gateaux derivative on H^1 . Therefore $F \in C^1(H^1, \mathbb{R})$.

Let's introduce the Euler functional of the problem (1.1) as $I: H^1 \to \mathbb{R}$ defined by

$$I(u) = \frac{1}{2}||u||^2 + \frac{1}{4}F(u) - \int_{\mathbb{R}^3} \left(\frac{1}{2^*}k(x)|u^+|^{2^*} + \frac{\mu}{q}h(x)|u^+|^q\right)dx. \tag{2.6}$$

By Lemma 2.2 we know that the functional I is of class C^1 and its critical points are weak solutions of (1.1).

To prove Theorem 1.4, we still need some other preliminary lemmas.

Lemma 2.3. Assume that the hypothesis (H_l) holds. Then F is a weakly continuous functional.

Proof. Suppose $u_n \to u$ in H^1 . Since $u_n \to u$ in L^2_{loc} , going if necessary to a subsequence, we can assume that

$$u_n \to u$$
 a.e. in \mathbb{R}^3 and $\phi_{u_n} \to \phi_u$ a.e. in \mathbb{R}^3 .

In fact, the last statement is true since, by (H_l) and Hölder inequality, we have

$$\begin{aligned} \left| \phi_{u_{n}}(x) - \phi_{u}(x) \right| &\leq \frac{1}{4\pi} \int_{\mathbb{R}^{3}} \left| l(y) \| u_{n}^{2}(y) - u^{2}(y) \right| \frac{1}{|x - y|} dy \\ &\leq C \| u_{n}^{2} - u^{2} \|_{L^{2}(B_{R}(x))} \left(\int_{|x - y| \leq R} \frac{1}{|x - y|^{2}} dy \right)^{1/2} \\ &+ C \| u_{n}^{2} - u^{2} \|_{L^{4/3}(B_{R}^{c}(x))} \left(\int_{|x - y| > R} \frac{1}{|x - y|^{4}} dy \right)^{1/4} \\ &\leq C \| u_{n}^{2} - u^{2} \|_{L^{2}(B_{R}(x))} + CR^{-\frac{1}{4}} \| u_{n}^{2} - u^{2} \|_{L^{4/3}(B_{R}^{c}(x))} \\ &\to 0, \end{aligned} \tag{2.7}$$

as $n \to \infty$ and $R \to \infty$. Then $\phi_{u_n} u_n^2 \to \phi_u u^2$ a.e. on \mathbb{R}^3 . Moreover, the sequence $(\phi_{u_n} u_n^2)_{n \in \mathbb{N}}$ is bounded in L^2 , since

$$\int_{\mathbb{R}^3} \left(\phi_{u_n} u_n^2\right)^2 dx \le \left(\int_{\mathbb{R}^3} \phi_{u_n}^6 dx\right)^{1/3} \left(\int_{\mathbb{R}^3} u_n^6 dx\right)^{2/3} = \|\phi_{u_n}\|_6^2 \|u_n\|_6^4 \le C\|u_n\|^6.$$

Hence $\phi_{u_n}u_n^2 \rightharpoonup \phi_u u^2$ in L^2 . By (H_l) we have

$$F(u_n) = \int_{\mathbb{R}^3} l(x)\phi_{u_n}u_n^2 dx \to \int_{\mathbb{R}^3} l(x)\phi_u u^2 dx = F(u).$$

We have proved that *F* is weakly continuous.

Lemma 2.4. Assume the hypothesis (H_l) holds. Let $u_n \rightarrow u$ in H^1 , then

$$F(u_n - u) = F(u_n) - F(u) + o(1).$$

Proof. Since (H_l) holds, from the proof of [32, Lemma 2.1], the result follows.

From a similar proof as in [31, Lemma 2.13], we obtain the next result.

Lemma 2.5. If the hypothesis (H_{h_1}) holds and $2 \le q < 6$, then the functional

$$\psi_h: H^1 \to \mathbb{R}: u \mapsto \int_{\mathbb{R}^3} h(x)|u|^q dx$$

is weakly continuous.

Lemma 2.6. Suppose the hypothesis (H_{h_1}) holds and $2 \le q < 4$. Then the following infimum

$$\bar{\mu} := \mu_h = \inf_{u \in H^1 \setminus \{0\}} \left\{ \int_{\mathbb{R}^3} (|\nabla u|^2 + u^2) dx : \int_{\mathbb{R}^3} h(x) |u|^q dx = 1 \right\}$$
 (2.8)

is achieved.

Proof. Let $(u_n)_{n\in\mathbb{N}}\subset H^1$ be a minimizing sequence such that

$$\int_{\mathbb{R}^3} h(x) |u_n|^q dx = 1 \quad \text{and} \quad \int_{\mathbb{R}^3} (|\nabla u_n|^2 + u_n^2) dx \to \mu_h, \quad \text{as } n \to \infty.$$

So $(u_n)_{n\in\mathbb{N}}$ is bounded in H^1 . Then there exists a subsequence satisfying $u_n \to u$ in H^1 . Since $h \in L^{6/(6-q)}$, by Lemma 2.5, we have

$$\int_{\mathbb{R}^3} h(x)|u_n|^q dx \to \int_{\mathbb{R}^3} h(x)|u|^q dx. \quad \text{Hence } \int_{\mathbb{R}^3} h(x)|u|^q dx = 1.$$

Then, by the weakly lower semi-continuous property of the norm, we get

$$\mu_h = \lim_{n \to \infty} \inf \int_{\mathbb{R}^3} (|\nabla u_n|^2 + u_n^2) dx \ge \int_{\mathbb{R}^3} (|\nabla u|^2 + u^2) dx \ge \mu_h.$$

Thus the infimum μ_h is achieved.

Lemma 2.7. Suppose the hypotheses (H_l) , (H_{h_1}) , (H_{h_1}) and $(H_{h_{\mu}})$ hold. Then I(0)=0 and

- (I₁) there are constants $\rho, \alpha > 0$ such that $I|_{\partial B_{\rho}} \ge \alpha$; and
- (I_2) there is $\bar{u} \in H^1 \setminus \bar{B_\rho}$ such that $I(\bar{u}) < 0$.

Proof. It is clear from the definition of I that I(0) = 0. To prove (I_1) and (I_2) , we consider $2 \le q < 4$ and $4 \le q < 6$ respectively. First, for $2 \le q < 4$, we have $0 < \mu < \bar{\mu}$ by $(H_{h_{\mu}})$. It follows from (H_{k_1}) , Lemma 2.6 and Sobolev inequality that

$$\begin{split} I(u) &= \frac{1}{2}||u||^2 + \frac{1}{4}F(u) - \frac{1}{2^*} \int_{\mathbb{R}^3} k(x)|u^+|^{2^*} dx - \frac{\mu}{q} \int_{\mathbb{R}^3} h(x)|u^+|^q dx \\ &\geq \frac{1}{2}||u||^2 - C||u||^{2^*} - \frac{\mu}{q\bar{\mu}}||u||^2 = ||u||^2 \left(\frac{1}{2} - \frac{\mu}{q\bar{\mu}} - C||u||^{2^*-2}\right). \end{split}$$

Set $\rho = ||u||$, small enough such that $C\rho^{2^*-2} \le \frac{1}{2}(\frac{1}{2} - \frac{\mu}{a\overline{u}})$. Hence we have

$$I(u) \ge \frac{1}{2} \left(\frac{1}{2} - \frac{\mu}{q\bar{\mu}} \right) \rho^2.$$
 (2.9)

Take $\alpha = \frac{1}{2}(\frac{1}{2} - \frac{\mu}{q\bar{\mu}})\rho^2$. Then we get the result (I_1) . By (2.3) and the fact that $\mu h(x) \ge 0$, for fixed u_0 with $||u_0|| = 1$ and $\text{supp}(u_0) \subset \text{supp}(k)$, we have

$$I(tu_0) \le t^{2^*} \left(\frac{1}{2t^4} ||u_0||^2 + \frac{C}{4t^2} ||u_0||^4 - \frac{C}{2^*} \int_{\mathbb{R}^3} k(x) |u_0^+|^{2^*} dx \right).$$

Let t be large enough such that $t > \rho$ and

$$\frac{1}{2t^4}||u_0||^2 + \frac{C}{4t^2}||u_0||^4 - \frac{C}{2^*} \int_{\mathbb{R}^3} k(x)|u_0^+|^{2^*} dx < 0.$$

Take $\bar{u} = tu_0$. Then (I_2) follows.

Next, we consider $4 \le q < 6$, so $\mu > 0$ by $(H_{h_{\mu}})$. Since (H_{k_1}) and (H_{h_1}) hold, the Hölder inequality and Sobolev inequality implies that

$$\begin{split} I(u) &= \frac{1}{2}||u||^2 + \frac{1}{4}F(u) - \frac{1}{2^*} \int_{\mathbb{R}^3} k(x)|u^+|^{2^*} dx - \frac{\mu}{q} \int_{\mathbb{R}^3} h(x)|u^+|^q dx \\ &\geq \frac{1}{2}||u||^2 - C||u||^{2^*} - \frac{\mu}{q}||h||_{\frac{6}{6-q}}||u||_{6}^q \\ &\geq ||u||^2 \left(\frac{1}{2} - C||u||^{2^*-2} - C||u||^{q-2}\right) \end{split}$$

for each $\mu > 0$ fixed. Hence (I_1) follows from the similar estimate with (2.9). The proof of (I_2) is the same to the case $2 \le q < 4$.

3 The proof of Theorem 1.4

To prove Theorem 1.4, we will apply the Mountain Pass Theorem to find a solution of problem (1.1) and then prove that it is a positive solution. Let us first recall (one of the versions of) the Mountain Pass Theorem.

Mountain Pass Theorem [1]. Let E be a real Banach space and $I \in C^1(E,R)$. Suppose I(0) = 0 and

- (I_1) there are constants $\rho, \alpha > 0$ such that $I|_{\partial B_{\rho}} \ge \alpha$; and
- (I_2) there is $\bar{u} \in E \setminus \bar{B}_{\rho}$ such that $I(\bar{u}) < 0$. If I satisfies the $(PS)_c$ -condition, where c is defined as

$$c = \inf_{g \in \Gamma} \max_{u \in g[0,1]} I(u) \text{ with } \Gamma = \{g \in C([0,1], E) : g(0) = 0, g(1) = \bar{u}\}.$$
 (3.1)

Then *I* possesses a critical value $c \ge \alpha$.

Since Lemma 2.7 shows that the functional I has the Mountain Pass geometry, to apply this theorem to the functional I with $E \equiv H^1$, it is enough to prove that the Palais-Smale condition holds at the level c (the $(PS)_c$ -condition for short), which means that every sequence $(u_n)_{n\in\mathbb{N}}\subset H^1$ such that $I(u_n)\to c$ and $I'(u_n)\to 0$ in H^{-1} implies that $(u_n)_{n\in\mathbb{N}}$ possesses a convergent subsequence in H^1 .

Lemma 3.1. Assume (H_l) , (H_{k_1}) , (H_{h_1}) and $(H_{h_{\mu}})$ hold. Then the functional I satisfies the $(PS)_c$ -condition for $c \in \left(0, \frac{1}{N}S^{\frac{N}{2}}||k||_{\infty}^{-\frac{N-2}{2}}\right)$, where S denotes the best Sobolev constant defined by

$$S = \inf_{u \in D^1 \setminus \{0\}} \frac{\int_{\mathbb{R}^3} |\nabla u|^2 dx}{\left(\int_{\mathbb{R}^3} |u|^{2^*} dx\right)^{2/2^*}}.$$
 (3.2)

Proof. Let $(u_n)_{n\in\mathbb{N}}$ be a $(PS)_c$ -sequence of I at the level $c\in\left(0,\frac{1}{N}S^{\frac{N}{2}}||k||_{\infty}^{-\frac{N-2}{2}}\right)$, i.e.,

$$I(u_n) \to c \text{ and } I'(u_n) \to 0 \text{ in } H^{-1}.$$
 (3.3)

Step 1. We consider $2 \le q < 4$, so we get $0 < \mu < \overline{\mu}$ by $(H_{h_{\mu}})$. Then by the Sobolev inequality, Lemma 2.6 and $k(x) \ge 0$ for any $x \in \mathbb{R}^3$, for large n we have

$$c+1+||u_{n}|| \geq I(u_{n})-\frac{1}{4}\langle I'(u_{n}),u_{n}\rangle$$

$$=\frac{1}{4}||u_{n}||^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right)\int_{\mathbb{R}^{3}}k(x)|u_{n}^{+}|^{2^{*}}dx+\left(\frac{\mu}{4}-\frac{\mu}{q}\right)\int_{\mathbb{R}^{3}}h(x)|u_{n}^{+}|^{q}dx$$

$$\geq \frac{1}{4}||u_{n}||^{2}+\left(\frac{1}{4}-\frac{1}{2^{*}}\right)\int_{\mathbb{R}^{3}}k(x)|u_{n}^{+}|^{2^{*}}dx+\left(\frac{1}{4}-\frac{1}{q}\right)\frac{\mu}{\bar{\mu}}||u_{n}||^{2}$$

$$\geq \left(\frac{1}{4}+\left(\frac{1}{4}-\frac{1}{q}\right)\frac{\mu}{\bar{\mu}}\right)||u_{n}||^{2},$$
(3.4)

which implies $(u_n)_{n \in \mathbb{N}}$ is bounded in H^1 , since $0 < \mu < \bar{\mu}$ and $2 \le q < 4$. Passing if necessary to a subsequence, we can assume that

$$u_n \to u \quad \text{in } H^1, \quad u_n \to u \quad \text{a.e. in } \mathbb{R}^3,$$

$$\nabla u_n \to \nabla u \quad \text{in } L^2, \quad \text{and} \quad u_n \to u \quad \text{in } L^2.$$

Let us define $w_n = k(x)|u_n^+|^{N+2/N-2}$ and $w = k(x)|u^+|^{N+2/N-2}$. Since $(u_n)_{n \in \mathbb{N}}$ is bounded in L^{2^*} and $k \in L^{\infty}$, then w_n is bounded in $L^{2N/N+2}$ and so $w_n \rightharpoonup w$ in $L^{2N/N+2}$. Note that for any $v \in H^1$, we have $v \in L^{2N/N-2}$, $\nabla v \in L^2$ and $v \in L^2$. Hence

$$\int_{\mathbb{R}^3} w_n v dx \to \int_{\mathbb{R}^3} w v dx, \text{ i.e., } \int_{\mathbb{R}^3} k(x) |u_n^+|^{2^* - 1} v dx \to \int_{\mathbb{R}^3} k(x) |u^+|^{2^* - 1} v dx, \tag{3.5}$$

and

$$\int_{\mathbb{R}^3} (\nabla u_n \nabla v + u_n v) \, dx \to \int_{\mathbb{R}^3} (\nabla u \nabla v + u v) \, dx. \tag{3.6}$$

From the proof of Lemma 2.3 and Lemma 2.5 we also have

$$\int_{\mathbb{R}^3} h(x) |u_n^+|^{q-1} v dx \to \int_{\mathbb{R}^3} h(x) |u^+|^{q-1} v dx, \tag{3.7}$$

and

$$\int_{\mathbb{R}^3} l(x)\phi_{u_n}u_nvdx \to \int_{\mathbb{R}^3} l(x)\phi_uuvdx. \tag{3.8}$$

Combining (3.5)–(3.8), for $u_n \rightharpoonup u$ in H^1 , we obtain

$$\langle I'(u_{n}), v \rangle = \int_{\mathbb{R}^{3}} (\nabla u_{n} \nabla v + u_{n} v) dx + \int_{\mathbb{R}^{3}} l(x) \phi_{u_{n}} u_{n} v dx - \int_{\mathbb{R}^{3}} k(x) |u_{n}^{+}|^{2^{*}-1} v dx - \mu \int_{\mathbb{R}^{3}} h(x) |u_{n}^{+}|^{q-1} v dx \rightarrow \int_{\mathbb{R}^{3}} (\nabla u \nabla v + u v) dx + \int_{\mathbb{R}^{3}} l(x) \phi_{u} u v dx - \int_{\mathbb{R}^{3}} k(x) |u^{+}|^{2^{*}-1} v dx - \mu \int_{\mathbb{R}^{3}} h(x) |u^{+}|^{q-1} v dx = \langle I'(u), v \rangle.$$
(3.9)

On the other hand, by the fact $I'(u_n) \to 0$ in H^{-1} , we get that $\langle I'(u_n), v \rangle \to 0$ for any $v \in H^1$. So $\langle I'(u), v \rangle = 0$ for any $v \in H^1$, i.e.

$$-\Delta u + u + l(x)\phi_u u = k(x)|u^+|^{2^*-1} + \mu h(x)|u^+|^{q-1}.$$
(3.10)

In particular, $\langle I'(u), u \rangle = 0$ and then from Lemma 2.6 and $k(x) \ge 0$ we obtain

$$I(u) = \frac{1}{4} \langle I'(u), u \rangle + \frac{1}{4} ||u||^2 + \left(\frac{1}{4} - \frac{1}{2^*}\right) \int_{\mathbb{R}^3} k(x) |u^+|^{2^*} dx + \left(\frac{\mu}{4} - \frac{\mu}{q}\right) \int_{\mathbb{R}^3} h(x) |u^+|^q dx$$

$$\geq \left(\frac{1}{4} + \left(\frac{1}{4} - \frac{1}{q}\right) \frac{\mu}{\bar{\mu}}\right) ||u||^2 \geq 0.$$
(3.11)

Let $v_n = u_n - u$ and so $v_n \rightharpoonup 0$ in H^1 . Hence, using the given hypotheses, the Brézis-Lieb Lemma [7] implies that

$$||u_n||^2 = ||v_n||^2 + ||u||^2 + o(1),$$

$$\int_{\mathbb{R}^3} k(x)|u_n^+|^{2^*} dx = \int_{\mathbb{R}^3} k(x)|v_n^+|^{2^*} dx + \int_{\mathbb{R}^3} k(x)|u^+|^{2^*} dx + o(1),$$

$$\int_{\mathbb{R}^3} h(x)|u_n^+|^q dx = \int_{\mathbb{R}^3} h(x)|v_n^+|^q dx + \int_{\mathbb{R}^3} h(x)|u^+|^q dx + o(1),$$

and hence by Lemma 2.4 we have

$$I(u_n) = I(u) + \frac{1}{2} ||v_n||^2 + \frac{1}{4} F(v_n) - \frac{1}{2^*} \int_{\mathbb{R}^3} k(x) |v_n^+|^{2^*} dx - \frac{1}{2} \int_{\mathbb{R}^3} h(x) |v_n^+|^q dx + o(1),$$

and

$$\langle I'(u_n), u_n \rangle = \langle I'(u), u \rangle + ||v_n||^2 + F(v_n) - \int_{\mathbb{R}^3} k(x) |v_n^+|^{2^*} dx - \mu \int_{\mathbb{R}^3} h(x) |v_n^+|^q dx + o(1).$$

Therefore it follows from Lemma 2.3, Lemma 2.5 and the hypotheses $I(u_n) \to c$ and $I'(u_n) \to 0$ in H^{-1} that

$$c = \lim_{n \to \infty} I(u_n) = I(u) + \lim_{n \to \infty} \frac{1}{2} ||v_n||^2 - \lim_{n \to \infty} \frac{1}{2^*} \int_{\mathbb{R}^3} k(x) |v_n^+|^{2^*} dx, \tag{3.12}$$

and

$$\langle I'(u), u \rangle + \lim_{n \to \infty} ||v_n||^2 - \lim_{n \to \infty} \int_{\mathbb{R}^3} k(x) |v_n^+|^{2^*} dx = 0.$$
 (3.13)

Using (3.10) and (3.13) we obtain

$$||v_n||^2 - \int_{\mathbb{R}^3} k(x) |v_n^+|^{2^*} dx \to -\langle I'(u), u \rangle = 0.$$

Now we may assume that

$$||v_n||^2 \to b$$
 and $\int_{\mathbb{R}^3} k(x)|v_n^+|^{2^*} dx \to b$.

By Sobolev's inequality we have

$$||v_n||^2 \ge \int_{\mathbb{R}^3} |\nabla v_n|^2 dx \ge \mathcal{S} \left(\int_{\mathbb{R}^3} |v_n^+|^{2^*} dx \right)^{2/2^*},$$

which means that

$$\int_{\mathbb{R}^3} k(x) |v_n^+|^{2^*} dx \leq ||k||_{\infty} \int_{\mathbb{R}^3} |v_n^+|^{2^*} dx \leq ||k||_{\infty} \Big(\mathcal{S}^{-1} ||v_n||^2 \Big)^{2^*/2} \,,$$

i.e., $b \le ||k||_{\infty} \left(S^{-1} b \right)^{2^*/2}$. So we get that b = 0 or $b \ge S^{\frac{N}{2}} ||k||_{\infty}^{-\frac{N-2}{2}}$. Assume $b \ge S^{\frac{N}{2}} ||k||_{\infty}^{-\frac{N-2}{2}}$. Then combining (3.11) and (3.12), we obtain

$$c \ge \frac{1}{2}b - \frac{1}{2^*}b = \frac{1}{N}b \ge \frac{1}{N}S^{\frac{N}{2}}||k||_{\infty}^{-\frac{N-2}{2}},$$

which contradicts the fact that $c < \frac{1}{N} S^{\frac{N}{2}} ||k||_{\infty}^{-\frac{N-2}{2}}$. Hence b = 0. **Step 2.** For $4 \le q < 6$ and $\mu > 0$, we obtain that

$$\begin{aligned} c+1+||u_n|| &\geq I(u_n)-\frac{1}{4}\langle I'(u_n),u_n\rangle \\ &=\frac{1}{4}||u_n||^2+\left(\frac{1}{4}-\frac{1}{2^*}\right)\int_{\mathbb{R}^3}k(x)|u_n^+|^{2^*}dx+\left(\frac{\mu}{4}-\frac{\mu}{q}\right)\int_{\mathbb{R}^3}h(x)|u_n^+|^qdx\geq \frac{1}{4}||u_n||^2, \end{aligned}$$

which implies that $(u_n)_{n\in\mathbb{N}}$ is bounded in H^1 . To finish this step, we just need to replace (3.4) in Step 1 by the above inequality. The rest of the proof is similar to Step 1, so we omit it here.

Lemma 3.2. Suppose the hypotheses (H) hold. Then $c < \frac{1}{N} S^{\frac{N}{2}} ||k||_{\infty}^{-\frac{N-2}{2}}$.

Proof. The idea here is to find a path in Γ such that the maximum of the functional I at this path is strictly less than $\frac{1}{N}S^{\frac{N}{2}}||\dot{k}||_{\infty}^{-(N-2)/2}$. To construct this path, we need the extremal function u_{ε,x_0} for the embedding $D^1 \hookrightarrow L^6$, where

$$u_{\varepsilon,x_0} = C \frac{\varepsilon^{1/4}}{(\varepsilon + |x - x_0|^2)^{1/2}}.$$

Here C is a normalizing constant and x_0 is given in (H_{k_2}) . Let $\varphi \in C_0^{\infty}$ be such that $0 \le$ $\varphi \leq 1, \varphi|_{B_{R_2}} \equiv 1$ and supp $\varphi \subset B_{2R_2}$ for some $R_2 > 0$. Set $v_{\varepsilon} = \varphi u_{\varepsilon, x_0}$ and then $v_{\varepsilon} \in H^1$ with $v_{\varepsilon}(x) \ge 0$ for each $x \in \mathbb{R}^3$. The following asymptotic estimates hold if ε is small enough (see Brézis-Nirenberg [8]):

$$\|\nabla v_{\varepsilon}\|_{2}^{2} = k_{1} + O(\varepsilon^{\frac{1}{2}}), \quad \|v_{\varepsilon}\|_{2^{*}}^{2} = k_{2} + O(\varepsilon),$$
 (3.14)

$$\|\nu_{\varepsilon}\|_{s}^{s} = \begin{cases} O(\varepsilon^{\frac{s}{4}}) & s \in [2,3), \\ O(\varepsilon^{\frac{s}{4}}|\ln \varepsilon|) & s = 3, \\ O(\varepsilon^{\frac{6-s}{4}}) & s \in (3,6), \end{cases}$$
(3.15)

with $k_1/k_2 = S$, and $2 \le s < 2^*$. We know the path $tv_{\varepsilon} \in \Gamma$. For the rest, we will prove

$$\max_{t\geq 0} I(tv_{\varepsilon}) < \frac{1}{N} \mathcal{S}^{\frac{N}{2}} ||k||_{\infty}^{-(N-2)/2}$$
(3.16)

for small ε . Since $I(tv_{\varepsilon}) \to -\infty$ as $t \to \infty$, there exists $t_{\varepsilon} > 0$ such that $I(t_{\varepsilon}v_{\varepsilon}) = \max_{t \ge 0} I(tv_{\varepsilon})$. Also by Lemma 2.7, $\max_{\varepsilon} I(tv_{\varepsilon}) \ge \alpha > 0$. Then we have $I(t_{\varepsilon}v_{\varepsilon}) \ge \alpha > 0$. Thus from the continuity of I, we may assume that there exists some positive t_0 such that $t_{\varepsilon} \ge t_0 > 0$. Moreover from $I(tv_{\varepsilon}) \to -\infty$ as $t \to \infty$ and $I(t_{\varepsilon}v_{\varepsilon}) \ge \alpha > 0$, we get that there exists T_0 such that $t_{\varepsilon} \le T_0$. Hence $t_0 \le t_{\varepsilon} \le T_0$. Let $I(t_{\varepsilon}v_{\varepsilon}) = A(\varepsilon) + B(\varepsilon) + C(\varepsilon)$, where

$$A(\varepsilon) = \frac{t_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} |\nabla v_{\varepsilon}|^2 dx - \frac{t_{\varepsilon}^{2^*}}{2^*} \int_{\mathbb{R}^3} k(x_0) |v_{\varepsilon}|^{2^*} dx,$$

$$B(\varepsilon) = \frac{t_{\varepsilon}^{2^*}}{2^*} \int_{\mathbb{R}^3} k(x_0) |v_{\varepsilon}|^{2^*} dx - \frac{t_{\varepsilon}^{2^*}}{2^*} \int_{\mathbb{R}^3} k(x) |v_{\varepsilon}|^{2^*} dx,$$

and

$$C(\varepsilon) = \frac{t_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} |v_{\varepsilon}|^2 dx + \frac{t_{\varepsilon}^4}{4} F(v_{\varepsilon}) - \frac{t_{\varepsilon}^2 \mu}{2} \int_{\mathbb{R}^3} h(x) |v_{\varepsilon}|^q dx,$$

since $v_{\varepsilon}^+ = v_{\varepsilon}$. First, we claim that

$$A(\varepsilon) \le \frac{1}{N} S^{\frac{N}{2}} ||k||_{\infty}^{-\frac{N-2}{2}} + C\varepsilon^{1/2}. \tag{3.17}$$

Indeed, let $g(t) = \frac{t^2}{2} \int_{\mathbb{R}^3} |\nabla v_{\varepsilon}|^2 dx - \frac{t^{2^*}}{2^*} \int_{\mathbb{R}^3} k(x_0) |v_{\varepsilon}|^{2^*} dx$. It is clear that g(t) achieves its maximum value at some T_{ε} . So

$$0 = g'(T_{\varepsilon}) = T_{\varepsilon} \int_{\mathbb{R}^3} |\nabla v_{\varepsilon}|^2 dx - T_{\varepsilon}^{2^* - 1} \int_{\mathbb{R}^3} k(x_0) |v_{\varepsilon}|^{2^*} dx.$$

That is,

$$T_{\varepsilon} = \left(\frac{\int_{\mathbb{R}^3} |\nabla v_{\varepsilon}|^2 dx}{\int_{\mathbb{R}^3} k(x_0) |v_{\varepsilon}|^{2^*} dx}\right)^{\frac{1}{2^*-2}}.$$

Therefore, from (3.14), we have

$$g(T_{\varepsilon}) = \sup_{t \ge 0} g(t) = \frac{1}{N} \frac{\left(\int_{\mathbb{R}^3} |\nabla v_{\varepsilon}|^2 dx\right)^{N/2}}{\left(\int_{\mathbb{R}^N} k(x_0) |v_{\varepsilon}|^{2^*} dx\right)^{N-2/2}} = \frac{1}{N} S^{\frac{N}{2}} ||k||_{\infty}^{-\frac{N-2}{2}} + C\varepsilon^{1/2}.$$

Then (3.17) follows. Secondly, we claim that $B(\varepsilon) \le C\varepsilon^{1/2}$. In fact, since $t_0 \le t_\varepsilon \le T_0$ and $k \in L^{\infty}$, by the definition of v_{ε} , (H_{k_2}) and using a change of variables with $1 \le \alpha < 3$, we have

$$B(\varepsilon) = \frac{t_{\varepsilon}^{2^{*}}}{2^{*}} \int_{\mathbb{R}^{3}} (k(x_{0}) - k(x)) |v_{\varepsilon}|^{2^{*}} dx$$

$$\leq C\delta_{1} \int_{|x-x_{0}| < \rho_{1}} \frac{|x-x_{0}|^{\alpha} \varepsilon^{3/2}}{(\varepsilon + |x-x_{0}|^{2})^{3}} dx + C \int_{|x-x_{0}| \ge \rho_{1}} \frac{\varepsilon^{3/2}}{(\varepsilon + |x-x_{0}|^{2})^{3}} dx$$

$$\leq C\delta_{1} \varepsilon^{\frac{3}{2}} \int_{0}^{\rho_{1}} \frac{r^{2+\alpha}}{(\varepsilon + r^{2})^{3}} dr + C\varepsilon^{\frac{3}{2}} \int_{\rho_{1}}^{\infty} r^{-4} dr$$

$$= C\delta_{1} \varepsilon^{\frac{\alpha}{2}} \int_{0}^{\rho_{1} \varepsilon^{-\frac{1}{2}}} \frac{\rho^{2+\alpha}}{(1 + \rho^{2})^{3}} d\rho + C\rho_{1}^{-3} \varepsilon^{3/2}$$

$$\leq C\delta_{1} \varepsilon^{\frac{\alpha}{2}} + C\varepsilon^{3/2} \leq C\varepsilon^{\frac{1}{2}}.$$

So we have proved our claim. Therefore, to finish the proof, it is enough to show

$$\lim_{\varepsilon \to 0^+} \frac{C(\varepsilon)}{\varepsilon^{1/2}} = -\infty. \tag{3.18}$$

Actually, from the definition of v_{ε} , (H_{h_2}) and for any ε such that $0 < \varepsilon \le \rho_2^2$, it follows that

$$\int_{\mathbb{R}^{3}} h(x)|v_{\varepsilon}|^{q} dx \geq C\delta_{2} \int_{|x-x_{0}| < \rho_{2}} \frac{|x-x_{0}|^{-\beta} \varepsilon^{q/4}}{(\varepsilon + |x-x_{0}|^{2})^{q/2}} dx + \int_{|x-x_{0}| \ge \rho_{2}} h(x)|v_{\varepsilon}|^{q} dx
\geq C\delta_{2} \varepsilon^{q/4} \int_{0}^{\rho_{2}} \frac{r^{2}}{r^{\beta} (\varepsilon + r^{2})^{q/2}} dr
= C\delta_{2} \varepsilon^{\frac{3}{2} - \frac{q}{4} - \frac{\beta}{2}} \int_{0}^{\rho_{2} \varepsilon^{-\frac{1}{2}}} \frac{\rho^{2}}{\rho^{\beta} (1 + \rho^{2})^{q/2}} d\rho
\geq C\delta_{2} \varepsilon^{\frac{3}{2} - \frac{q}{4} - \frac{\beta}{2}} \int_{0}^{1} \frac{\rho^{2}}{2^{q} \rho^{\beta}} d\rho = C\varepsilon^{\frac{3}{2} - \frac{q}{4} - \frac{\beta}{2}}.$$

Therefore, by the fact that $t_0 \le t_{\varepsilon} \le T_0$ and hypothesis (H_l) , we have

$$\begin{split} C(\varepsilon) &= \frac{t_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} |v_{\varepsilon}|^2 dx + \frac{t_{\varepsilon}^4}{4} F(v_{\varepsilon}) - \frac{t_{\varepsilon}^2 \mu}{2} \int_{\mathbb{R}^3} h(x) |v_{\varepsilon}|^q dx \\ &\leq C ||v_{\varepsilon}||_2^2 + C ||v_{\varepsilon}||_{12/5}^4 - \mu C \varepsilon^{\frac{3}{2} - \frac{q}{4} - \frac{\beta}{2}} \\ &\leq C \varepsilon^{\frac{1}{2}} + C \varepsilon - \mu C \varepsilon^{\frac{3}{2} - \frac{q}{4} - \frac{\beta}{2}}. \end{split}$$

It follows from $2 - \frac{q}{2} < \beta < 3$ that for fixed μ we have

$$\frac{C(\varepsilon)}{\varepsilon^{1/2}} \le C + C\varepsilon^{\frac{1}{2}} - \mu C\varepsilon^{1 - \frac{q}{4} - \frac{\beta}{2}} \to -\infty, \text{ as } \varepsilon \to 0.$$

So we prove the claim (3.18). Therefore (3.16) follows.

Proof of Theorem 1.4. It follows from Lemma 3.1 and Lemma 3.2 that the functional I satisfies the $(PS)_c$ -condition at the level c defined by (3.1). And by Lemma 2.7, the functional I has the Mountain Pass geometry. Hence the functional I has a critical value c > 0. That is, there exists a nontrivial $u \in H^1$ such that I'(u) = 0, which means that (u, ϕ_u) is the nontrivial solution of system (1.1).

Since $0 = \langle I'(u), u^- \rangle = ||u^-||^2 + \int_{\mathbb{R}^3} l(x)\phi_u |u^-|^2 dx \ge ||u^-||^2$, then $u \ge 0$ in \mathbb{R}^3 . By standard arguments as in DiBenedetto [19] and Tolksdorf [28], we have that $u \in L^{\infty}$ and $u \in C^{1,\gamma}_{loc}$ with $0 < \gamma < 1$. Furthermore, by Harnack's inequality (see Trudinger [29]), u(x) > 0 for any $x \in \mathbb{R}^3$. Thus (u, ϕ_u) is a positive solution of system (1.1). \square

Acknowledgments

The authors thank the referees for their careful reading of the manuscript and insightful comments. This work was supported by *FEDER* funds through *COMPETE* – Operational Programme Factors of Competitiveness ("Programa Operacional Factores de Competitividade") and by Portuguese funds through the *Center for Research and Development in Mathematics and Applications* (University of Aveiro) and the Portuguese Foundation for Science and Technology ("FCT–Fundaco para a Ciencia e a Tecnologia"), within project PEst–C/MAT/UI4106/2011 with COMPETE number FCOMP-01-0124-FEDER-022690. L. Huang also acknowledges the partial support of the PhD fellowship SFRH /BD/ 51162/2010.

References

- [1] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, *J. Funct. Anal.* **14** (1973), pp 349-381.
- [2] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, *Commun. Contemp. Math.* **10** (2008), pp 391-404.
- [3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, *J. Math. Anal. Appl.* **345** (2008), pp 90-108.
- [4] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, *Topol. Methods Nonlinear Anal.* **11** (1998), pp 283-293.
- [5] V. Benci and D. Fortunato, Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations, *Rev. Math. Phys.* **14** (2002), pp 409-420.
- [6] R. Benguria, H. Brézis and E. H. Lieb, The Thomas-Fermi-Von Weizsäcker theory of atoms and molecules, *Comm. Math. Phys.* **79** (1981), pp 167-180.
- [7] H. Brézis and E. H. Lieb, A relation between pointwise convergence of functions and convergence of functionals, *Proc. Amer. Math. Soc.* **8** (1983), pp 486-490.
- [8] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, *Comm. Pure Appl. Math.* **36** (1983), pp 437-477.
- [9] I. Catto and P. L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas-Fermi type theories. Part 1: A necessary and sufficient condition for the stability of general molecular system, *Comm. Partial Differential Equations*, **17** (1992), pp 1051-1110.
- [10] G. Cerami and G. Vaira, Positive solutions for some non-autonomous Schrödinger-Poisson systems, *J. Differential Equations*, **248** (2010), pp 521-543.
- [11] J. Chen, S. Li and Y. Li, Multiple solutions for a semilinear equation involving singular potential and critical exponent, *Z. angew. Math. Phys.* **56** (2005), pp 453-474.
- [12] G. M. Coclite, A Multiplicity result for the nonlinear Schrödinger-Maxwell equations, *Commun. Appl. Anal.* **7** (2003), pp 417-423.
- [13] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, *Proc. Roy. Soc. Edinburgh Sect. A*, **134** (2004), pp 1-14.
- [14] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, *Adv. Nonlinear Stud.* **4** (2004), pp 307-322.
- [15] T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equations, *SIAM J. Math. Anal.* **37** (2005), pp 321-342.

- [16] T. D'Aprile and J. Wei, Standing waves in the Maxwell-Schrödinger equations and an optimal configuration problem, *Calc. Var. Partial Differential Equations*, **25** (2006), pp 105-137.
- [17] P. D'Avenia, Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations, *Adv. Nonlinear Stud.* **2** (2002), pp 177-192.
- [18] P. D'Avenia, A. Pomponio and G. Vaira, Infinitely many positive solutions for a Schrödinger-Poisson system, *Nonlinear Anal.* **74** (2011), pp 5705-5721.
- [19] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, *Nonlinear Anal.* 7 (1983), pp 827-850.
- [20] X. He and W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, *J. Math. Phys.* **53** (2012), 023702.
- [21] G. Li, S. Peng and C. Wang, Multi-bump solutions for the nonlinear Schrödinger-Poisson system, *J. Math. Phys.* **52** (2011), 053505.
- [22] E. H. Lieb, Thomas-Fermi and related theories and molecules, *Rev. Modern Phys.* **53** (1981), pp 603-641.
- [23] P. L. Lions, Solutions of Hartree-Fock equations for Coulomb systems, *Comm. Math. Phys.* **109** (1984), pp 33-97.
- [24] P. Markowich, C. Ringhofer and C. Schmeiser, *Semiconductor Equations*, Springer-Verlag, New York, 1990.
- [25] M. Reed and B. Simon, *Methods of Modern Mathematical Physics*, Vols. II, IV, Elsevier (Singapore) Pte Ltd., 2003.
- [26] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, *J. Funct. Anal.* **237** (2006), pp 655-674.
- [27] J. Sun, H. Chen and J. J. Nieto, On ground state solutions for some non-autonomous Schrödinger-Poisson systems, *J. Differential Equations*, **252** (2012), pp 3365-3380.
- [28] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, *J. Differential Equations*, **51** (1984), pp 126-150.
- [29] N. S. Trudinger, On Harnack type inequality and their applications to quasilinear elliptic equations, *Comm. Pure Appl. Math.* **20** (1967), pp 721-747.
- [30] G. Vaira, Ground states for Schrödinger-Poisson type systems, *Ricerche mat.* **60** (2011), pp 263-297.
- [31] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
- [32] L. Zhao and F. Zhao, Positive solutions for Schrödinger-Poisson equations with a critical exponent, *Nonlinear Anal.* **70** (2009), pp 2150-2164.