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Abstract

We introduce poly-Bergman type spaces on the Siegel doibaia C", and prove

that they are isomorphic to tensor products of one-dimensional spaces generated by
orthogonal polynomials of two kinds: Laguerre and Hermite polynomials. The linear
span of all poly-Bergman type spaces is dense in the Hilbert 454B%, du;), where

duy = (IMzy— (212 = - = [Zp-2/2) dxedys - - A% dyn @anda > —1.
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1 Introduction

In this paper we generalize the concept of the polyanalytic function for the Siegel domain
D,, c C", which is the unbounded realisation of the unit [&lic C".

The spaces of polyanalytic functions on the unit disor on the upper half-plane as
its unbounded realisation, were introduced and studied in [1, 2, 5, 6]). Recall some known
facts. LetlI c C be the upper half-plane and let N. We denote byA?(IT) [AZ(IT)] the sub-
space ot_%(IT) consisting of all-analytic functionslfanti-analytic functions], i.e., the func-
tions satisfying the equatiod(92)'¢ = 0 [(8/02)'¢ = 0]. The function spacéi?(I) is called
poly-Bergman space 1. Let Az (IT) = AX(I) © AZ , (IT) andAZ (IT) = AX(IT) o AZ (IT)
be the spaces of trueanalytic functions and trukanti-analytic functions, respectively.
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Let y. stand for the characteristic functionRf. = {xe R: x> 0}. The main result of
[10] says that the spade?(I1) admits the decomposition

L2(11) = 5 A3, (my e 5 A3, (1),
1=1 =1

and that there exists an unitary operatér L%(IT) — L2(II) such that the restriction map-
pings
Wi AG (1) > L*(Ry) ® L1,

W AG (1) > LA(R) © L1,

are isometric isomorphisms, whetg is the one-dimensional space generated by the La-
guerre function of degrdeand orderl > —1. Note that the above restriction mappings from
poly-Bergman spaces and anti-poly-Bergman spaces are the analogue of the Bargmann type
transform.

For the Bergman spacﬁﬁ(Dn) of the Siegel domai,, the analogues of the classical
Bargmann transform and its inverse for fiveéfeient types of commutative subgroups of
biholomorphisms oD, were constructed in [8]. In particular, for the nilpotent case, an
isometric isomorphisms

U : A3(Dy) - L2R" 1 xR,)

was explicitly described.

In this work the polyanalytic function spaces are defined via the complex structGPe of
induced by the tangential Cauchy-Riemann equations, which were given for the Heisenberg
group in [3]. LetL = (I3,...,ln) € N". The poly-Bergman type spac&, (Dn), or simply
denoted by(ﬂﬁL, is the subspace af?(D,,,du;) consisting of allL-analytic functions, i.e.,
functions that satisfy the equations

9 .
—-2izxk—| f = 0, 1l<k<n-1,
(az kaz)
o\
i) -0
where, as usual(:f)?Zk = %(& - Tll,iyk) an_d(?iZk = %(& + %6%«) In particular, a functiorf is
analytic in the Siegel domain if it satisfies
of of
—-2izxk— = 0, 1l<k<n-1,
oz ¥om
of
— = 0.
0zy

Functions in?(%l_ will be also called polyanalytic functions.

Anti-polyanalytic functions are just the complex conjugation of polyanalytic functions,
but the spaces of polyanalytic and anti-polyanalytic functions are mutually orthogonal. For
L =(l4,....1n) € N", we define the anti-poly-Bergman type spa&%_(Dn) (or simplyﬁﬁl_)
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as the subspace &f(Dy,du,) consisting of allL-anti-analytic functions, i.e., functions
satisfying the equations

07 0z,

)

We define the spaces of trieanalytic and trud--anti-analytic functions as

Ik
(i+2iii) f 0, k=1,...n-1,

n
2 2 2
Ay = AL Z; AL
J:

n
~> ~> =2
Ay =Awe Zﬂ/l,L—ej ,

=1

where A2 = A2; = {0} if S ¢ N", and{e}]_, stand for the canonical basis Bf.
The main results obtained in this work are as follows:

1. The spac&?(Dy, du,) admits the decomposition

L*(Dn. dhua) = (@ﬂi(u] D (@j‘i(u]-

LeNn LeNn
2. There exists an unitary operator
W : L2(Dp, diy) — L2R"™ D@ LR Y@ LA(R)® L2(R,,, y'dy)
such that for each € N" the restricted mappings
WAL ) — PR @HL e® L2 (R,)® L, 1,

W:AG ) > He® LR O LA(R)® L, 1,

are isometric isomorphisms, whek ¢ is the one-dimensional space generated
by the producthy,_1(y1)---hi,_,-1(Yn-1) and{hj(y)}j?‘;o is the orthonormal basis for

L2(R, dy) consisting of the Hermite functions.

Let o € {+1}" andL € N". The subspace df?(Dy,, du,) consisting of all [, o)-analytic
functions is defined in Section 7. Such subspace is denotefpy, and is called mixed
poly-Bergman type space orpoly-Bergman type space. In particulargit=L = (1,...,1),
thenﬂﬁm is just the usual weighted Bergman spacédgf We define the space of true-
(L, 0)-analytic functions as

n
2 2 2
ﬂ/l(L)O’ = ﬂ/lL(r S [kz; ﬂ/l,L—e,(,(r) >
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whereAAZ; = {0} if S ¢ N". We prove that-2(Dp, du,) admits the decomposition

L*(Dn. dhua) = (@ ﬂﬁ(L)o] D (EB ﬂﬁ(u,—o] :

LeNn LeNn

We also establish the relationship between the poly-Bergman type spaces angdhe
Bergman type spaces.

2 CR Manifolds

For a smooth submanifol in C", recall thatT,(M) is the real tangent space bf at the
point p. In general,Tp(M) is not invariant under the complex structure mBfor T(C").
For a pointp € M, the complex tangent space Mfat p is the vector space

Hp(M) = Tp(M) N HTp(M)}.

This space is called the holomorphic tangent space. Using the Euclidian inner product
on T,(R?"), denote byXp(M) the totally real part of the tangent spaceMfwhich is the
orthogonal complement dfi,(M) in Tp(M). We have thail (M) = Hp(M) ® Xp(M) and
J(Xp(M)) is trasversal tolo(M). A submanifoldM of C" is called a CR submanifold
of C" if dimg Hp(M) is independient op € M. The complexifications oT (M), Hp(M)
andXp(M) are denoted by ,(M)®C, Hp(M)®C and Xp(M)®C, respectively. Since the
spaceH (M) is J-invariant, the complex structure mamn Tp(RZ”)@)C induce a complex
structure map ol (M) ® C by restriction. MoreoveH,(M)®C is the direct sum of thei
and-i eigenspace o which are denoted bii ;°(M) andHp*(M), respectively.

The following result establishes the form of the basidHg{M). It also provides an
expression for the generatorstef(M). We refer to [3] for its proof.

Theorem 2.1. Suppose M- {(x+iy,w) e CIxC"9: y=h(x,w)}, where h RxC"9 — Rd
is of class C' (m > 2) with h(0) and DHO0) = 0. A basis for I—t’O(M) near the origin is given

by
+2'Z z,,.mahm 1<k<n-d
6Wk s oW 0z |’ - ’

wherey, is the(l, m)-th element of the g d matrix

-5

A basis for ™ near the origin is given byig, ..., An_g.
If the functionh is independient of the variabbe then the local basis dﬂ%’O(M) has

the following more simple form

d
d oh
A= g+ Za__ <k<n-d. (2.1)
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We refer to Example 7.3-1 of [3] for the details on the following construction of the
Heisenberg group, which use the equation (2.1). For the real hypersurfatel@iined by

M={(Z,2)eC"xC: Imz =2},

the generators fad (M) are given by

Ak:A;_:%+2iE%, 1<k<n-1, (2.2)

and the generators f¢t%1(M) are given by

E:AL:%—Zizk%, l1<k<n-1 (2.3)

3 Cauchy-Riemann Equations for the Siegel Domain

Let du(2) = dxdy; ...dx,dy, stand for the standard Lebesgue measur€'in wherez =
(z1,...,zn) € C"andz = X +iyx. We often rewritez as ¢, z,), wherez = (z,...,Z,-1). The
standard norm iit" is denoted by-|. In the Siegel domain

Dn={z=(Z,2z) € C"xC: Imz,—|Z]>> 0}
we consider the weighted Lebesgue measure
dua(2 = (Imz, - IZP)'du(@. 1> -1

Let ﬂﬁ(Dn) be the weighted Bergman space, defined as the space of all holomorphic func-
tions inL2(Dp, dw,). Thus, forf € A3(Dy),

of
— =0, k=1,..
82k > > ’n,

equivalently,

Af = 0, k=1,..n-1,
9

—f =

07y

We use all the powers of th&’s operators to define the first class of poly-Bergman type
spaces in the Siegel domain, i.e., we define a certain class of polyanalytic function spaces.
Fortunately, such spaces densely fill the spe®@®,,du,), and are isomorphic to tensor
products of certaim.?-spaces.

Let D = C"1xII, wherell = R xR, c C. We realize the poly-Bergman type spaces
as subspaces &f(D,dn,;) in order to apply Fourier transform techniques for their study.
Consider the following mapping fro to Dy,:

KW= (W, Up+iVp) — Z= (W, Up+iva+iW?), (i.e. Z =w).
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Consider also the unitary operatdg : L?(Dy, du;) — L2(D,dy,) given by

(Uof)(w) = f(x(w)),

where
dra (W) = vadu(w).

In [8] the authors showed that the spaég(D) = Uo(ﬂﬁ(Dn)) consists of all functions
oW, wy,) = (Up f)(w) satisfying the equations

J1)- _ il 3 —
UO@UOJ'QD = (Wk—ka)(,D = 0, OS kS I’l—l,
(3.2)
UozzUgly = o2 = 0,

wherezZ- = %(aiun +iaivn). For functions satisfying this last equation, the first type equation
in (3.1) can be rewritten as

d 0 9
— W — k=1,..n—1. 2
anZkaso (aw IWka )90 0, (3.2)

This equation justify why we are using thg’s operators because

= o= Wk_ )
OWi OUn

On the other hand, the fiérential operatord/oz (k= 1,...,n—1) are used to define
the anti-analytic function space, but they can be replaced by the operators given in (2.2). In
particular,

In addition we have

p o 1[4 o
Uosuzt=2 (2 &
%z 0 " awn 2(aun 'avn)

As expected, we use th’s operators to define anti-polyanalytic function spaces.
To define mixed poly-Bergman type spaces we additionally use fiezelitial operators

0 0
r = 2 oz~ 1<k<n-1, 3.3
AT~ &)
— 0 0
A =A[ = gz +2z5 - 1sksn-1 (3-4)
We have p
UoAg UO P — 1w o k=1,.,n-1,
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4 Orthogonal Polynomials

In this section we introduce Laguerre and Hermite polynomials, which will be used to
describe poly-Bergman type spaces. As usual, the Laguerre polynomials ofioader
defined by

1 gl .
) = Y_d_ ~Yylt+d P —
Laguerre polynomials constitute an orthogonal basis for the dp4Be, y'e Ydy), thus the
set of Laguerre functions

6o = (DleiLjye™? j=012,..

is an orthonormal basis (R, y'dy), wherec; = /]J!/I'(j + 1+ 1) andI is the standard
gamma function. The second type of polynomials we are interested in is the set of Hermite
polynomials:

o5 di
(W) = (—1)] Y=
HJ(y)_( 1)ey2dyle ’ 1_07172’-"
Hermite polynomials constitute an orthonormal basis for the spag® e‘yzdy), thus the

set of Hermite functions

(-1

e =
(Zn\/;n!)l/ZHJ(y)e s J—O,l,2,...

hj(y) =
is an orthonormal basis &(R). Therefore, the set of functions
n-1
hy o)) = | [hi®ids 3 = (v ina) €25 (4.1)
k=1

is an orthonormal basis a?(R"1). HereZ, = {0}jUN andZ_ = Z\N. ForJ,L’ e Z""* we
say that) <L’ if jy<lgwithk=1,..,n-1.

5 Poly-Bergman Type Spaces

For L = (I,...,I5) € N", we define the poly-Bergman type spa’@l_ as the subspace of
L?(Dy, duy) consisting of all functiond satisfying the equations

—_
B
|
S
N
x~
B
~———
~
—
|
o
-~
I
\!—\
>
|
\!d

—_
Nl N
~——
=1
j—y
I

Let {ej}?:1 be the canonical basis &f'. We define the space of trueanalytic functions as

n
2 2 2
Ay =AwS [Z AL ] ;
j=1
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whereA3g = {0} if S ¢ N™.

It is much more convenient to deal witfp (D) = Uo(ﬂﬁL) c L2(D,dn,) in order
to apply Fourier techniques for the study of the poly-Bergman type space. For a function
e(w) = (Uof)(w) € Ap (D) we have

0, k=1,...n-1,

Uo(B)“Ugte = (st ~wiy)“¢
"o = 0.

o\ny-1, _— (o ;o)
Uo()"Us's = 2 (s +idk)

Consider now the tensor decomposition
L(D,dny) = LAC™ ) @ L2(R) ® L2(R,, vidwy).

Takew = (W,W,) € C" 1 xTI, wherew’ = (Wy,...,Wn_1) andwi = Ux + ivk. We writew’ =
U +iv’, whereu’ = (U, ..., Un-1) @andv’ = (v, ...,Vh-1), and we identifyw = (W', u, +iv,) with
(UV,V,Un,Vn). Then

L2(D,dny) = PR He L2R™ e LA(R)® LA(R,, vidw), (5.1)

where the first (second) tensor factor space consists of functions in the real (imaginary) part
of the complex vectow’. Let F denote the Fourier transform @3(R):

__ 1 -igu
(F)(©) = @fRf(u)e du

Let F(h-1) be the tensor product ¢F with itself takenn- 1 times. Now, according to
the decomposition (5.1) we introduce the unitary operators

Ui=I®I®Fal,

U2=F(n_1)®|®|®|.

Of courseU,U1 is just the Fourier transform with respect to the variabeRew.
Consider the change of varialife= ({4, ...,n) = 2= (21, ..., Zn), Wherely = & +ivk and
Z« = Xk +iyk are related by

(&):(Wﬁ V%q(&), k=1...n-1, (5.2)
Vi 2kl 2l J\ Yk
and Y,
n
= N V = .
A

Letl=(,¢n), where?” =& +iv andé’ = (&1, ...,&n-1). According to the tensor product
(5.1), consider the following unitary operators lof{(D, dy,):

. . 1 A
va&&+mwewwmﬁwm=@Yﬁmﬁ“ﬁ““ﬁQ

),

1
2 V[Xn|

Vo W(L, Xn +iYn) = O(Z, X0 +iyn) = P(VXal(X +Y) +i (=X +Y), X +iyn).
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Theorem 5.1. The unitary operator W= V,V;U,>U1Ug maps 12(Dy, diy) onto
H = L*(D,dn,) = LPR™ ) @ LPR™ ) @ L(R) ® L(R+., yadyn).
The poly-Bergman type spag, is mapped by W to the subspace

Ih-1
HszZ(R”—l)@;( P Hylel’®)e|P L.
0<J <L’ -e jn=0

where e=(1,...,1) € Z-%, and
Lj, = geﬂffn(Yn)} C L2(R4, Yadyn),
Hy = genthy (y)) c LAR™,dY).
Corollary 5.2. The restriction of W to the spac& W) given by
W ﬂ/l(L) — 7—((L) LZ(Rn 1)® H|_' ®L (R+)®£ln
is an isomorphisms.

Proof of Theorem 5.1.Let Aj . = U1(AoaL(D)). The operatolJ; is the Fourier
transform with respect to the variahlg = Rew,. Theng(w,&, +ivp) = (U19) (W, & +iVp)
belongs taA; 4. if and only if

I
o

8 .
(aT +§an) 0] k= 1,...,n-1,

In o In
(fn ) ¢

We now take the Fourier transform with respect to the varialdesRewy. Define Az ;. =
Ua(AraL). Theny (& +iv/,én+ivp) = (U20) (& +1V',én+iVy) belongs taA . if and only if

[ 6+ &) +iea( +w)] v

0.

0, k=1,...,n-1,

(5.3)
2In (fn 6Vn) = 0

Let A} , denote the image spat&(Aza). Then¥({”, Xn +1yn) = (ViY)(", Xn +iyn) be-
longs toA] ,, if and only if

Il
o
=~

Il
=
5

|
=

[ (6 ) +ixa( + )]
(5.4)

in

In . In
=5 (sign(xn) + 25 ) "W = 0
Take A, , = Va(AL ). Then®(Z, X, +iyn) = (V2¥)(Z, X +iyn) belongs taA, ,, if and
only if

[ VIR (S0 (- ) + 55 1 )]0 = o
(5.5)

Il
©

pal” (sign(xe) + 2,5)" @
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The general solution of the last equation in (5.5) is given by

Ih—1

OZ Yo iyn) = ) o7, Xe)yhre (9 W2,
jn=0

Since®(Z, x, +iyn) has to be irL2(D, dn,), we must take only positive values xf. Mor-
ever, by rearranging polynomial terms we can exp®gs X, +iyn) as

Ih—1

DZ, Xa+iYn) = ¥+ (%) ) @jo(Z, %) (). (5.6)
jn=0

Whereﬁfn(y) is the Laguerre function in?(R.) of degreej,. Further, the function
X+ (X0)@j,(Z, xn)ffn (yn) belongs taAs 4. if and only if

[l )

foreachk=1,...,n—1. Then, the general solution of this system of equations has the form

Ik

D (Z.,%)=0, x>0

O (Zx)= > By (X)) eV x>0

0<J<L'-e

We rewrite the general solution as

O (Z. %)= Y DX Xy (), X >0, (5.7)

0<J<L'-e
whered = (J', jn), andhy (') is the Hermite function given in (4.1). Therefore
In=1
O(Z, % +iyn) = Z { Z X+(Xn)(DJ(X”Xn)hJ'(y')}ffn(yn)-
jn=1\0<J<L’-e

This completes the proof.

6 Anti-Poly-Bergman Type Spaces

Anti-polyanalytic functions are just the complex conjugation of polyanalytic functions, but
the spaces of polyanalytic and anti-polyanalytic functions are mutually orthogonal. For
L = (I3,....In) € N", we define the anti-poly-Bergman type spaﬁ%_ as the subspace of
L2(Dn, du,) consisting of all functiond satisfying the equations

I
o
=~

I
i
=]

|
i

Ik
0 0
—4+2izc—| f
(8zk+ 'Zkazn)

)
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We define the space of trueanti-analytic functions as
n
52 52 ~2
Ay =Awe _ AlL-e |

=1
where A2 = {0} if S ¢ N".
Theorem 6.1. The Hilbert space &(Dy, du;) admits the decomposition

L%(Dn,dua) = (@5“3@)] S, (@5’;‘3@)]-

LeNn LeNn

Proof. We have

DA

LeNn

LZ(R”‘1)®[ @ HL,_e]@» L2(R+)®(@Lln_1]

L’eNn-1 IneN

L2 R Y e 2R Yo L2(R,)® LA(R,).
Similarly, we have

Py = LPER™eLE™HeLX(R)eL®,).
LeNn

Itis obvious that the direct sum of all the spadéé) andﬂ(‘l_) is equal ta_?(D, dr,). Using
the fact thaWW is unitary and corollaries 5.2 and 6.3 we obtain

L2(Dn, dus)

W (LD, dn,))

()l

LeNn LeNn

[@ w (W&))) D (@ w (7{(0)]

LeNn LeNn

[@ﬂi(u) @[@ﬁi(u]-

LeNn LeNn

O

Theorem 6.2. Under the unitary operator W, the anti-poly-Bergman type spﬁég is
isomorphic to the subspace

In-1
WL‘:[ P HyleLlP®@ e LlX® )| L.
0<J<L'-e jn=0

where
Hy = gerthy (X)) ¢ LAR",dX).

123
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Corollary 6.3. The restriction of W to the spacéﬂ(l_)

WA ) — Hyy = Hu-e® PR @ LA (R ) ® L), 1
is an isomorphisms.
Proof of Theorem 6.2This proof is similar to that of Theorem 5.1. L&fto. (D) =
Uo(AZ ) € LA(D, dny). Fore(w) = (Uof)(W) € Aga(D) we have

|
Uo(Ak)'k (63,k+|wk0ﬁ)k<p = 0, k=1,..n-1

. In
Uo()"Ugte = (i)'
We take now the Fourier transform with respect to all the variallesRewy. Define

Ao =UoU1(AoL). Theny(& +iv/,én+ivn) = (UaU10)(€ +iV’, én+ivn) belongs taAz .
if and only if

I
o
=~
I
=
=]
|
=

|5 (6 %)~ ién (3% - Vk)]lk‘”

2|n(§n avn) U= 0.

Take Az = VaVi(AzaL). Thend(Z, x, +iyn) = (VaVay)(Z, Xn + iyn) belongs tafAs y if
and only if

I
[I (1 5|gr(xn)(x +6Xk)+ 1+S|gr(xn)(y 3yk )] k(D = 0,
(6.1)

ilnjx.[In . In
2l (sign(xn) - 2;%-)"® = O,
The general solution of the last equation in (6.1) is given by

Ih-1

OZ. X +iyn) = Y 61,2 Xa)yirelsam W2,
jin=0

Sinced(Z, x,+iyn) has to be in_2(D, dn,), we must take only negative valuesxf More-
over, by rearranging polynomial terms we can expre&s, x, +iyn) as

Ih—1

DO(Z, X +1Yn) = x-(%n) Z (Djn(z’, Xn)ffn(Yn)-
jn=0

whereffn(y) is the Laguerre function ih?(R.) of degreej,. Further, the function
X-(%)@j,(Z, xn)ffn (yn) belongs toflg, AL if and only if
0 .
[i [Xnl (6_)(k + Xk)
foreachk =1,...,n—1. Then, the general solution of this system of equations has the form

O x) = Y D ) (x) e <o,

Oo<J<lL’-e

(Djn(Z’,Xn):o, Xn<o,
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We rewrite the general solution as

O (Zx)= DL Oy x)hy(X), X <0,

0<JY<L'-e
whered = (J', jn), andhy (X') is the Hermite function given in (4.1). Therefore
ln—1
D(Z, X +1iyn) = Z { Z X-(X)@3(Y, Xn)hJ/(X/)}ffn(Yn)-
jn=1\0<J<l’-e

This completes the proof.

7 Mixed Poly-Bergman Type Spaces
Let us introduce the following notation:
AL =AY, Dti=0/0z, DIYi=0/0z%, Miti=zd, M=z

Certain choices of the operatorg, will be taken to define mixed poly-Bergman type
spaces. For eadftupleo = (01, ...,0m) € {+1}", introduce the operators

on _ MOk H kMo n
AR = Dy =2icn M D",

ForL =(ly,...,In) € N" we define thel(, o)-poly-Bergman type spacﬁﬁw as the subspace
of L?(Dy, du,) consisting of all functiond satisfying the equations

(A )kf = 0, k=1,.,n-1
(7.1)
(DFMf = 0.

We will refer toﬂﬁw as theo-poly-Bergman type space or the mixed poly-Bergman
type space. We define the space of trugs{)-analytic functions as

n
2 2 2
ﬂ/l(L)o— = "ﬂ/lLa' © [Z "ﬂ/l,Lfej ,0'] ’
=1

where&’(ﬁs(r ={0}if S¢ N". Of course, for- =e=(1,...,1), ?ﬁw is just the poly-Bergman

type space, anﬁlil_,_e is the anti-poly-Bergman type spagg, .
For o € {+1}" consider the following bijective mappings @y and®D, respectively:

Cor:(Z1,.sZn1,20) = (X + 01dY1, oo s Xn-1+ On1iYn-1, TnXn +iyn),

Co i (W1, ..., Wn_1,Un +iVp) > (Ug + 01iV1, ... ,Un—1+0n-1iVn_1, onln+1iVp),

i.e., we make complex conjugation in the varialdes xx + iyx andwg = Uk + ivk whenever
ox=-1fork=1,...n-1.
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Consider now the following unitary self-adjoint operatord 8(Dy, du;) andL?(D, dn,),
respectively:
Ty:f foC,,

T,:f foC,.

It is easy to see thak, = UoT,Ug. Mixed poly-Bergman type spaces can be realised as
spaces of polyanalytic functions undey.

Lemma 7.1. The operator T; maps ther-poly-Bergman type space onto the poly-Bergman
type space:
T(r(ﬂ/lL(r) =Aa. (72)

Proof. Suppose that, = 1. Itis easy to see that; Ak T, = Ak if o =1, andT ;AT = A}
if ok = -1. Thatis,T,A} T; = Ax. Analogously, we hav@, A, T; = Ay for o = -1.
Therefore

T,AI T = Ag

kok " O

no matters ifo, = 1 or o, = -1. We have alsd@,Dj"T: = D, Finally, a functionf €
L2(Dn, du,) satisfy equations (7.1) if and only T, f belongs ta#A3, . O

The set{1,-1}" is a group under the multiplicatiomr := (o171, ...,0nTn), Whereo =
(o1,...,0n) andt = (11, ...,mn). Of coursee= (1, ...,1) is the identity in this group.

Lemma 7.2. The operator J- maps the-o-poly-Bergman type space onto the anti-poly-
Bergman type space: _
TU(ﬂAL,—O') = ﬂ/lL-

Moreover
To- (ﬂ/lL,T) = ﬂ/lL,(TT .

Proof. The set of operator§, is a group and, T, = T,.. Thus
To-(ﬂ/lL,‘r) = TO'TTTT(‘-ﬂ/lL,T) = T(J'T‘r(ﬂ/lL) = Ta"r(ﬂ/lL) = ﬂ/lL,(r‘r-
|

Since/\(k’(jk = A;":”Tk, the mixed poly-Bergman type spaﬁh_o consists of all conju-
gation functions ofA% . We define

=2 g2
ﬂ/lLO' = ﬂ/lLrO"
2

Ao = ) -0

Theorem 7.3. The Hilbert space Dy, du;) admits the decomposition

L*(Dn, duy) = [@ ﬂﬁ(uo] D (EB ﬁi(L)a)-

LeNn LeNn

Proof. Follows from lemmas 7.1, 7.2 and Theorem 6.1. O
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Let us see how mixed poly-Bergman type spaces are mapped by the unitary operator
W. Consider the unitary self-adjoint operator

Sa‘ = WT()'W* .

We haveS,, = oV, T, V; because obi T, = onT U1, ViT, = T, Ve, andU, T, = T, U>.
It is easy to see that
S,O=0,®oh,

where
h:D>s(z, ...,Z-1, X0 +iYn) > (Wi, ... ,\Wn_1,0nXn+1Xp) € D

1+ox  l-ok
u =k X
(Vk):( 1—2(Tk 1+20'k )( k)’ k=1,...,n—1.
k = = Yk
Obviouslywy = z if ok = 1; otherwise this mapping interchange the real and imaginary
parts ofz = X« +iyx: Wk = iZ. On the other hand,

and

WA L)) = SeWTo(Aw)o) = S(’7_((Jlr-)‘

Theorem 7.4. The true{L,o)-poly-Bergman type spacﬁﬁ(l_)g is isomorphic to the sub-
space
0 = (H_ @ L2(R™™))® L2(Ry,) ® L1,

where H__ is the one-dimensional space generated by the Hermite functiqnit the
variablesimh(z)’, and L2(R"1) is the space of -functions in the variabl&®eh(z)’.
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