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Abstract

Quaternions, invented in 1843 by the famous mathematical physicist Hamilton,

largely fell out of favor long ago, being replaced by vectors, which are direct de-

scendants of quaternions. Quaternions have become popular recently because rotation

operations are simpler with quaternions than with matrices. Therefore, quaternions

are widely used in computer applications involving rotations. The relation between

rotations and quaternions was established shortly after the invention of the latter, but

recently it has been claimed that Hamilton misunderstood the relation, and that credit

should be given to Rodrigues, who had published a paper on rotations in 1840. This

claim has been repeated widely, but a review of original sources shows that it is based

on an incomplete reading of Hamilton’s work. The same review shows, however, that

Gauss had derived results similar to those of Hamilton and Rodrigues in 1819, but they

remained unpublished until 1900, and thus unknown to either of them. These matters

are described in a self-contained way in this article.

AMS Subject Classification: 01A55.

Keywords: quaternions, rotations, Hamilton, Rodrigues, Gauss.

1 Introduction

William Hamilton was a nineteen-century mathematical physicist who became famous be-

cause of his fundamental contributions to optics and dynamics, and for his invention (in

1843) of quaternions. The latter are an extension to 4-D space of the ordinary complex

numbers, and Hamilton expected that they would have great significance in physics and

geometry, but these expectations never materialized. As a consequence, they largely fell out
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of favor a few decades after they were introduced, being replaced by vectors, which are di-

rect descendants of quaternions (e.g., [11]). Interestingly, quaternions have had a revival in

recent years because they can be used in place of, and have numerical advantages over, ro-

tations matrices, which are essential in modern applications such as computer graphics and

in the aerospace industry [30], [26]. The relation between rotations and quaternions was

established shortly after the invention of the latter, but there has been recent criticism of

Hamilton’s understanding of the relation. According to Altmann [1], Hamilton essentially

misunderstood the relation, which should be credited to a little-known mathematician, O.

Rodrigues, who made very important contributions to the study of rotations. Altmann’s

claim has been widely accepted (e.g., [15], [31]). This is not the only controversy regarding

quaternions; a much earlier one revolved around work done by Gauss that seemed to presage

Hamilton’s quaternions. Another famous mathematician, Euler, also makes an appearance

because of the so-called Euler-Rodrigues parameters, which constitute an essential link be-

tween quaternions and rotations. These parameters were introduced by Rodrigues in 1840,

and there is no evidence that they were known to Euler. These matters have been discussed

in the literature, but to the best of the author’s knowledge, the discussions have been frag-

mentary and in some aspects also incomplete. In fact, examination of the digitized versions

of original sources, available via the internet, shows a more complex history. In summary,

Hamilton had discovered the Euler-Rodrigues parameters in 1844 independently of Ro-

drigues, and had a correct understanding of the relation between quaternions and rotations.

Moreover, Hamilton’s derivation of the relation was much simpler than that of Rodrigues.

Another interesting fact is that the Euler-Rodrigues parameters had been introduced by

Gauss in 1819 in a series of unpublished notes that also anticipated the basic properties of

quaternions and rotations. Gauss did not prove, or even motivate his results, which were

published posthumously, and thus were unknown to both Rodrigues and Hamilton. Finally,

a paper of Euler that discussed a purely algebraic problem unrelated to rotations included a

result, given without proof, that has a connection with rotations and quaternions.

The examination of original sources has provided another example of the process of

discovery and rediscovery that is not uncommon in mathematics, and to disentangle the

contributions made by the different authors, the starting point is a consideration of rotations

parameterized in terms of two set of parameters: (a) an axis and an angle, and (b) the Euler-

Rodrigues parameters. This will be followed by an introduction to quaternions and its rela-

tion to rotations. The final section gives a historical account that makes the connections be-

tween some of the basic results presented in the earlier sections and the mathematicians that

contributed to them. For the benefit of the reader, digitized versions of the relevant historical

papers and book excerpts can be found at https://umdrive.memphis.edu/jpujol/public/Quaternion

2 Overview of rotations

Let us consider a finite rotation of angle α of a vector r about an axis defined by a unit

vector a = (a1,a2,a3). The geometry of the problem is shown in Fig. 1. The result of this

rotation is a vector r′ given by
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r′ = cosα r+ (1− cosα)(r ·a)a+ sinα a× r, (2.1)

where the dot and cross denote the scalar (or dot) and vector products [23], [29].

Figure 1. Rotation of angle α of a vector r about an axis identified by a unit vector a. The

result is the vector r′.After [29].

Equation (2.1) can be written in matrix form as

r′ = Rr, (2.2)

where

R =





















cα+ (1− cα)a2
1

(1− cα)a1a2− sα a3 (1− cα)a1a3 + sα a2

(1− cα)a2a1+ sα a3 cα+ (1− cα)a2
2

(1− cα)a2a3 − sα a1

(1− cα)a3a1− sα a2 (1− cα)a3a2+ sα a1 cα+ (1− cα)a2
3





















(2.3)

and cα and sα stand for cosα and sinα respectively. To derive equation (2.3) write equation

(2.1) in component form and expand the scalar and vector products.

Two important properties of rotations are as follows.

a) RT R = RRT = I, where the superscript T indicate matrix transposition and I represents

the identity matrix [29].

b) From equation (2.1) it follows immediately that Ra = a. Therefore, a is an eigenvector

of R with eigenvalue equal to one (regardless of the value of α). Moreover, a is the only

real-valued eigenvector [24], [29].

In applications it may be needed to find α and a when R is given. The angleα is obtained

from the trace of R, given by

tr(R) = 2cosα+1, (2.4)
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The components of a are obtained by direct inspection of the off-diagonal elements in

equation (2.3), which gives

a1 = (R32−R23)/2sinα

a2 = (R13−R31)/2sinα, α , 0,π

a3 = (R21−R12)/2sinα.

(2.5)

When α = 0, R is the identity matrix, and a is undefined. For the special case α = π see [3].

Rotations can also be expressed in terms of the Euler-Rodrigues parameters, which are

the components of the vector v and the scalar s given by

v = asin 1
2
α, s = cos 1

2
α, (2.6)

where a and α are as before. Writing equation (2.1) in terms of α/2 and then using these

parameters gives

r′ = (cos2 1
2
α− sin2 1

2
α) r+2sin2 1

2
α (r ·a)a+2cos 1

2
α sin 1

2
α a× r =

(s2− |v|2)r+2(r ·v)v+2s v× r.

(2.7)

(after [32]). This is an important result that will be used in the next section.

To write equation (2.7) in matrix form, namely,

r′ =Mr. (2.8)

let v = (l,m,n) and use

l2+m2+n2+ s2 = 1, (2.9)

which follows form equation (2.6). Then,

M =





















s2+ l2−m2−n2 2(lm−ns) 2(nl+ms)

2(lm+ns) s2− l2+m2−n2 2(mn− ls)

2(nl−ms) 2(mn+ ls) s2− l2−m2+n2





















. (2.10)

Clearly, R and M represent the same matrix; the two symbols are introduced to identify the

differences in formulation. If α is replaced by −α, M becomes MT .

Given M, α is obtained from tr(M) and the components of v are obtained using expres-

sions similar to equations (2.5) [3], but because they will not be used here, they are not

given. On the other hand, the squares of the components of v will be of interest in the last

section. To obtain them, eliminate s2 from the diagonal elements of M using equation (2.9)

and then equate these elements to M11, M22, and M33 (preserving the appropriate ordering).

This results in a system of three equations in l2, m2 and n2, with solution given by

l2 = 1
4
(1+M11−M22−M33)

m2 = 1
4
(1+M22−M11−M33)

n2 = 1
4
(1+M33−M11−M22).

(2.11)

Combining these equations with equation (2.9) gives

s2 = 1
4
(1+M11+M22+M33). (2.12)
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3 Quaternions and their relation to rotations

Quaternions were invented by Hamilton in 1843 [20]. They are entities of the form

q = r+ai+bj+ ck, (3.1)

where r, a, b, and c are real numbers and i, j, k satisfy

i2 = j2 = k2 = −1

ij = −ji = k, jk = −kj = i, ki = −ik = j.
(3.2)

An excellent introduction to the genesis of quaternions is provided in [36], while [4] pro-

vides a good overview. Here only those aspects of quaternions related to rotations will be

considered. The i, j, k can be interpreted as either extensions to 4-D space of the usual

imaginary unit of 2-D space or unit vectors in 3-D space. In the latter case q can be written

as

q = (r+u), u = (a,b,c), (3.3)

where r and u are known as the scalar and vector of the quaternion. This notation is due

to Hamilton [21], who also introduced the scalar and vector products, although not the

symbols used today. Also, today’s scalar product is the negative of Hamilton’s. When r = 0,

q is known as a pure quaternion. On the other hand, we will consider a vector to be a pure

quaternion.

Given two quaternions q1 and q2, written as in equation (3.1), their product q1q2 is

obtained by multiplying them as if their were polynomials, keeping the order of the units

i, j,k, and then using the relations given in equations (3.2). If the two quaternions are written

as in equation (3.3), i.e., q1 = (r+u), q2 = (t+w), their product can be written as

q1q2 = (rt−u ·w+ rw+ tu+u×w), (3.4)

where the dot and cross represent the usual scalar and vector products, respectively (after

[4]). This definition shows that, in general, q1q2 , q2q1.

We will need some additional definitions. Given a quaternion q = (r+u), its conjugate

(q∗), norm (‖q‖), and reciprocal (q−1) are defined by

q∗ = (r−u), ‖q‖ = qq∗, q−1 =
q∗

‖q‖
. (3.5)

The symbols used here for the conjugate and norm differ from those introduced by

Hamilton (see, e.g., [4]). Also note that some authors define the norm as the square root of

‖q‖. Using equation (3.4) we see that

‖q‖ = (r+u)(r−u) = r2+ |u|2 = r2+a2+b2+ c2. (3.6)

Quaternions with norm equal to one are known as unit (or normalized) quaternions. If q is

a unit quaternion, it can be written as

q = cosγ+ sinγ e, |e| = 1, (3.7)
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where cosγ = r, sinγ = |u|, and e = u/|u|. Using equation (3.6) we see that ‖q‖ = 1.

Given two quaternions q1 and q2, the conjugate, reciprocal, and norm of their product

satisfy

(q1q2)∗ = q∗2q∗1, (q1q2)−1 = q−1
2 q−1

1 , ||q1q2|| = ||q1|| ||q2||. (3.8)

Now we are ready to consider the relation between quaternions and rotation. First note

that, in general, the product of a vector (i.e., a pure quaternion) by a quaternion is not a

pure quaternion (i.e., it is not a vector). Therefore, quaternions, in general, cannot be used

to represent vector rotations. The only exception is for quaternions of the form

q = (cosθ+ sinθ e) = ba−1, (3.9)

where |e| = 1, a and b are any two vectors having the same length, the angle between a and

b is θ, e is perpendicular to both a and b, and a, b, and e form a right-handed set [4]. This

result can be verified by direct quaternionic multiplication:

ba−1 = (0+b)(0−a/||a||) =
1

||a||
(a ·b+a×b) = q. (3.10)

The equality q = ba−1 was another way Hamilton used to define quaternions [22], (arts.

106, 107), but its derivation was not simple. To understand the geometric meaning of equa-

tion (3.9) multiply by a on the right and expand the resulting quaternionic product, which

gives

b = qa = q(0+a) = (0+ cosθ a+ sinθ e×a). (3.11)

Comparison of this result with equation (2.1) after a change in symbols (r → a;a → e)

shows that qa corresponds to a rotation of angle θ of a about e in a plane perpendicular to

e, which is a particular case of rotation.

In order to use quaternions to represent general rotations two things are needed. First,

for a rotation of angle α about a unit vector a, q must be of the form

q = (cos 1
2
α+asin 1

2
α). (3.12)

Note that q is a unit quaternion. Second, the operation to be performed on a vector r to

produce a rotated vector r′ is

r′ = qrq−1 = (cos 1
2
α+asin 1

2
α) r (cos 1

2
α−asin 1

2
α). (3.13)

It is easy to verify that this operation produces a rotation by writing q in terms of the s and

v introduced in equations (2.6), expressing r as a pure quaternion, and then performing the

products indicated using the definition given by equation (3.4):

r′ = (s+v)(0+ r)(s−v) = (s+v)(r ·v+ sr− r×v) =

=

(

0+ (s2 − |v|2)r+2(r ·v)v+2s v× r

)

.
(3.14)
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This result shows that r′ is indeed a vector (the scalar part is equal to zero), equal to the vec-

tor r′ given by equation (2.7), which we know is the result of rotating r using the parameters

in equation (3.12) [32].

Finally, let us consider the composition of two rotations about axes with the same ori-

gin. Let q be the quaternion defined by equation (3.12) and let p be a similar quaternion

corresponding to some other rotation. Now we will rotate the r′ given by the first equality

in equation (3.13) using p, which results in the vector

r′′ = pr′p−1 = p(qrq−1)p−1 = (pq)r(pq)−1 (3.15)

because the quaternionic product is associative (e.g., [4]). Therefore, the composition of

rotations is equivalent to the product of quaternions.

4 Historical notes

As in many other branches of applied mathematics, Euler made fundamental contributions

to the study of rotations, and three of his papers include results presented here, as follows.

The elements of R, the relation RT R = I, and equations (2.4) and (2.5) were derived by

Euler [13] (§38, §23, §49), although he did not express his results in matrix form (matrices

were introduced about 80 years later). The equation Ra = a appears in Euler [14] ( §21) in

the form of three separate equations. The same paper includes a theorem (§24) that states

that in whatever way a sphere is turned about its center, it is always possible to assign a

diameter whose direction in the translated state agrees with that of the initial state. This di-

ameter corresponds to the axis of rotation. Euler [12] also presented results similar to those

expressed by equation (2.10) in a paper that discussed a purely algebraic problem, unrelated

to rotations. Expressed in modern terminology, Euler wanted to find the components of a

3× 3 matrix whose rows and columns formed two sets of orthonormal vectors, which is

equivalent to RT R = RRT = I, and although Euler did not use matrices, he placed the nine

unknowns in a square array, which makes the association with rotation matrices obvious. A

particular solution, introduced in §XXXIII, had the nine parameters expressed in terms of

four numbers p,q,r, s such that the sum of their squares was equal to some other number u.

When u = 1, p,q,r, s satisfy a relation similar to equation (2.9) and the array corresponds

to MT . Euler did not provide a proof for his result but made reference to the Diophantine

method. It is worth noting that the well-known Euler angles, which afford another parame-

terization of rotations, were introduced in the same paper. Interestingly, a theorem of Euler

on the product of two sums of four squares, which results in another sum of four squares,

follows without effort from the norm of the product of two quaternions, given by the third

of equations (3.8) [4].

As equations (3.13) and (3.14) show, rotations and quaternions are linked through the

Euler-Rodrigues parameters, which were introduced by Rodrigues in 1840 ([18], and ref-

erence therein). Some of the results derived by Rodrigues can be found in [5]. As Altmann

[1] noted, these parameters were not known to Euler, but because his extensive work on

rotations it must have been easy to associate his name to the parameters. However, they
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had been discovered by Gauss in 1819, while Hamilton discovered them independently in

1844, but before addressing the question of the priority of the Euler-Rodrigues parameters,

we will consider the origin of equation (3.13), which was introduced in 1845 by Cayley [6]

in a slightly different form. Cayley started with q−1rq and q = 1+λi+µj+ νk. After per-

forming the product Cayley ended up with a system of three equations corresponding to the

transformation of one set of rectangular coordinates into another (with a common origin),

with the matrix of the transformation similar to MT . Then he noted that the transformation

would correspond to a rotation of angle θ about an axis with angles f , g, and h with respect

to the x,y, and z axes if

λ = tan 1
2
θcos f , µ = tan 1

2
θcosg, ν = tan 1

2
θcosh, (4.1)

which were introduced by Rodrigues, although Cayley was not able to account, à priori, for

the appearance of these coefficients. Note the similarity between them and the parameters

in equation (2.6). Equation (3.15) was introduced by Cayley in 1848 [7].

Next we will consider Hamilton’s work on rotations, which can be divided into two

stages. In the first stage Hamilton derived, independently, an expression identical (except

for the symbols used) to the second equality in equation (3.13). Hamilton presented this

result to the Royal Irish Academy in 1844 but was published in 1847 [21] (p. 13). The

derivation is very simple, and is given next, but to simplify the comparison with preceding

equations, Hamilton’s symbols have been modified as follows:β→ r, β′→ r′, a→α, α→ a.

Hamilton’s starting result was

r′ = 1
2
(r−ara)+ 1

2
cosα (r+ara)+ 1

2
sinα (ar− ra). (4.2)

Interpreting the vectors as pure quaternions and operating shows that this r′ is equal to that

in equation (2.1). Equation (4.2) was rewritten by Hamilton as

r′ =
(

cos 1
2
α
)2

r−
(

sin 1
2
α
)2

ara+ cos 1
2
α sin 1

2
α (ar− ra) =

(

cos 1
2
α+a sin 1

2
α
)

r
(

cos 1
2
α−asin 1

2
α
)

,

(4.3)

which is equation (3.13). This derivation is the simplest available and half-angles arise

naturally. In contrast, Rodrigues’ derivation (given by Altmann [1]) is more complicated

and requires spherical trigonometry. In a footnote to his paper Hamilton also showed that his

results were equivalent to those published by Cayley in 1845 [6], who accepted Hamilton’s

priority when his collected papers were published [8], although Cayley noted that he had

been led to his results by Rodrigues’ formulas.

In the 1847 paper Hamilton also considered the composition of two or more rotations,

and showed that it was equivalent to a single rotation, which could be represented by the

product of the quaternions corresponding to the rotations involved, in agreement with equa-

tion (3.15), although Hamilton did not use that notation. To relate that work to Rodrigues’

results consider the rotation of r′ about a′ through an angle α′. Following Hamilton [21]

and using equation (4.3), the resulting vector can be written as

r′′ =
(

cos 1
2
β+b sin 1

2
β
)

r
(

cos 1
2
β−bsin 1

2
β
)

, (4.4)
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where β and b are determined as follows. Let q be the quaternion in equation (3.12) and p

the quaternion corresponding to a′ and α′. Then, the quaternion in parentheses in equation

(3.15) is given by

t = pq =
(

cos 1
2
α′ cos 1

2
α− sin 1

2
α′ sin 1

2
α (a′ ·a)+ sin 1

2
α′ cos 1

2
α a′+

cos 1
2
α′ sin 1

2
α a+ sin 1

2
α′ sin 1

2
α (a′×a)

)

≡ (cos 1
2
β+b sin 1

2
β)

(4.5)

As t is a unit quaternion, it can be written as in equation (3.7). This expression for t is

a special case of a general equation derived by Hamilton [21], although he did not give

explicit expressions for β and b.

Rodrigues’s work for the composition of two rotations resulted in four equations. Aside

from symbol changes, the first equation is obtained by equating the scalar parts of the two

rightmost quaternions in equation (4.5). As vectors had not been introduced yet, a′ ·a should

be replaced by its component form. The other three equations are obtained by equating

the vector parts of the two quaternions, also written in component form. The original Ro-

drigues’ equations can be found in [18]. Altmann [1] (p. 302-303), however, expressed them

using vector notation, and combined them in an expression equivalent to the quaternion on

the right-hand side of equation (4.5). This reworking of the Rodrigues’ equations has the

benefit of hindsight, but as Gray [19] noted, Rodrigues did not offer an interpretation in

terms of the product of unit quaternions.

The importance of the 1847 Hamilton’s paper in the context of rotations does not seem

to have been widely recognized. The present author learned about it from [3] (p. 201). A

more recent reference to this paper is [19], but the chronology of the results of Hamilton

and Cayley presented there (p. 93) is incorrect. Also, the results of Cayley described in pp.

96-97 come from [6], not [5].

Hamilton’s subsequent work on quaternions was based mostly on a coordinate-free ap-

proach, and his treatment of rotations in a book published in 1853 [22] was very different

from that in [21]. In [22], Hamilton considered the operation rqr−1, where r and q are

quaternions, and showed that it represents a rotation of double the angle of r of the axis of

q about the axis of r (art. 282). His proof was geometric and relied on reflections (see also

[10]). Hamilton referred to this rotation as conical, which is consistent with Fig. 1.

Another result proved by Hamilton is that the difference between qrq−1 and q−1rq was

in the direction of the rotation, not on the angle (art. 283). This is in agreement with our

earlier observation that Cayley’s results in [6] correspond to MT (i.e., to a rotation of angle

−α). Another result of Hamilton is that given a vector r, qrq−1 is another vector obtained

by rotation of r about the axis of q through an angle equal to double the angle of q (art.

286), and noted that if one was interested in a rotation through the angle of the quaternion

(instead of double its angle), q had to be replaced by its square root (art. 288). Taking the

square root of a quaternion divides its angle by two [4]. A practical example is given in

[33] (art. 121), who discussed the apparent diurnal rotation of stars, which was done using

equation (3.12) with α an appropriate observed angle. Hamilton also considered the special

case of a quaternion of the form q = ba−1 and found that the effect of (ba−1)1/2B(ab−1)1/2,

where B stood for body, is a rotation of B around an axis perpendicular to a and b that
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brings a into the direction of b. Therefore, this is a rotation in one plane or plane rotation

(Hamilton’s italics, art. 288). This result agrees with the interpretation of equation (3.11).

The composition of two conical rotations with axes passing through a common point O was

also discussed by Hamilton [22] (arts. 286, 341), who showed (again) that their composition

is equivalent to a single rotation around an axis trough O, with the new rotation derived from

the product of the quaternions corresponding to the original rotations.

This work of Hamilton on rotations was considered in detail here because some of its

aspects seem to have been overlooked by Altmann [1], who presented a rather negative

view of Hamilton’s work on this subject while at the same time emphasizing Rodrigues

contributions. At the core of Altmann’s argument is a comparison of the expressions for q

given by equations (3.7) and (3.12). The difference between the two expressions is the pres-

ence of a half-angle in the latter. Recall that equation (3.7) generates an arbitrary rotation

of angle 2β when used in qrq−1 (with a simple modification when a rotation of angle β is

desired), and that a plane rotation is a special case of rotation (which Altmann referred to

as a rectangular transformation). Altmann [1] (p. 303) stated that “Hamilton committed a

serious error of judgment in basing his parameterization on the special case of the rectangu-

lar transformation.” In view of the general study of rotations carried out by Hamilton [21],

[22], this statement seems unwarranted. Moreover, the statement in Altmann [1] (p. 300) to

the effect that “Hamilton and his colleagues” searched for a quaternion transformation of a

pure quaternion that would produce another pure quaternion is incorrect. As noted earlier,

in his 1847 paper Hamilton [21] did not search for that transformation, corresponding to

equation (3.13); he was led to it by the straightforward consideration of the most general

case of rotation, represented by equation (4.2).

Altmann’s statement “... the germ of the canker that eventually consumed the quater-

nion body.” [1] (p. 297) in the context of Hamilton’s work on rotations seems to imply that

this was the cause of the quaternions demise, but the reasons for it lie elsewhere. In fact,

Hamilton had expected that quaternions would play a fundamental role in applications to

physics and geometry, but that was not the case. There was nothing wrong with the results

derived using them. The problem was that there was little that quaternions could do that

could not be done with more conventional methods or with vectors. In addition, quaternions

had become coordinate-free entities, and using them to solve particular problems was not

necessarily simpler than using methods based on coordinates. Some of the arguments in fa-

vor and against quaternions can be found in, e.g, [9], [11], [28], and [34]. It is ironic that the

scalar and vector products, which were introduced by Hamilton, proved to be so useful by

themselves that they ended up replacing quaternions. In this context, it is worth mentioning

that this move from quaternions to vectors was championed by two famous mathematical

physicists, W. Gibbs (American) and O. Heaviside (English). Gibbs [17] (p. 157), however,

acknowledged that “the quaternion affords a convenient notation for rotations”, although he

also noted that an alternative representation for rotations was available. The quaternionic

notation referred to corresponds to the first equality in equation (3.13). It is interesting that

the quaternion operation singled out by Gibbs is precisely the same operation that has led

to the current popularity of quaternions.

Altmann [1] also pointed out that the Euler-Rodrigues parameters were not known to

Euler, which is probably correct, as there seems to be no evidence that Euler was aware
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of the importance of the half-angles. These parameters were, however, known to Gauss in

1819, although his results were published in 1900, well after his death [16]. Moreover, as

noted above, they were derived independently by Hamilton [21], although Altmann [1] (p.

302) claimed that Hamilton had never considered half-angles. Therefore, what we see here

is another example of the process of discovery and rediscovery that is not uncommon in

mathematics. The transpose of the matrix M (see 2.8) is another case; it was introduced

without a proof by Euler in 1771 [12] (§XXXIII), was rediscovered by Cayley in 1845

[6], and a similar matrix also appeared in Gauss’ posthumously published notes. This latter

work is extremely important because it essentially introduced quaternions in the context of

transformations of coordinates involving magnification and rotation. This work appeared

in three separate notes that were combined for publication. In the published version they

are divided into two parts (I and II). Part I has eight subsections, with the first seven dated

1819 and the last one dated between 1822 and 1823. These dates were inferred by one

of the editors of the notes. Part II was later and could not be dated. In barely three pages

corresponding to Part I.2-6 Gauss did the following:

1) Introduced a quadruple of scalars g = (a,b,c,d) with a, b, c and d proportional to the s,

l, m, and n, respectively, that are obtained by taking the positive square roots in equations

(2.12) and (2.11). These scalars satisfy a2+b2+c2+d2 = 2. Gauss referred to his quadruple

as a scale.

2) Introduced a 3×3 scheme similar to 1
2
MT , although there are differences in the signs of

some of the off-diagonal elements.

3) Gave the rule for the composition of two transformation of coordinates, which agrees

with equation (3.4) except for the sign of the vector product. However, a transposition of

the second and third components of Gauss’ quadruples produces Hamilton’s result [27] (p.

433). Gauss also noted that the composition was not commutative.

4) Gave expressions for a, b, c and d in terms of a stationary point and a rotation angle

that coincide with the Euler-Rodrigues parameters introduced in equations (2.6) when the

magnification is equal to 1.

5) Introduced the quadruple g′ = (a,−b,−c,−d) (which corresponds to the conjugation of

a quaternion) and found that the composition of g and g′ was equal to the quadruple (a2+

b2+ c2+d2,0,0,0), which is equivalent to equation (3.6). However, his expression for ghg′,

where h is another quadruple, is not equivalent to the results presented here.

In Part I.8 Gauss referred to three rotation points P,P′,P′′ and angles λ,λ′ ,λ′′ and noted

that the angles of the spherical triangle formed by the three points were λ/2,λ′/2,λ′′/2. In

Part II Gauss elaborated on the meaning of his scale (a,b,c,d). Using modern terminology,

if (b,c,d) are the elements of a vector u and ρ = |u|, then the components of u/ρ are the

direction cosines of a line OP (O indicates the origin of the coordinate system). Moreover,

if k =
√

a2+ρ2, then, a = k cosθ and ρ = k sinθ is a rotation of angle 2θ about OP with a

magnification k.

All of these results were presented without proof or even motivation. Gauss did not

introduce units similar to the i, j, k of Hamilton, but other than that, it is clear that Gauss

had anticipated some of the basic properties of quaternions. Some German mathematicians
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knew these results before their posthumous publication, and claimed that Gauss had some

priority on the discovery of the quaternions. This happened after Hamilton’s death (in 1865),

and two of his followers addressed these claims and other related matters [35], [25]. It is

also clear that Gauss had described rotations in terms of the parameters introduced later by

Rodrigues and that he was aware of the relation between rotations, spherical triangles, and

half-angles before Rodrigues, although Altmann [1] (p. 302) claimed priority for the latter.

Therefore, what constituted major achievements of two other mathematicians was three

short unpublished notes of Gauss. Those familiar with Gauss work will not be surprised

by that; it is just another example of his amazing foresight and his reluctance to publish

anything that he did not consider to be ripe (e.g., [2]).

Finally, a few words regarding Rodrigues. He was a French mathematician, banker, and

social reformer. His life was remarkable [18], [1], and although his number of mathematical

contributions was not large, they were important. In fact, in addition to the rotation param-

eters named after him, he is also known for the formula that bears his name in the context

of Legendre polynomials.
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