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Abstract

In this paper, we introduce an iterative scheme for finding the common element of
the set of fixed points of a countable family of nonexpansive mappings, the set of so-
lutions of variational inequality for p-Lipschitzian, relaxed (4,y)-cocoercive mapping
and the set of solutions of a generalized equilibrium problem. We show that the iter-
ative sequence converges strongly to a common element of the three sets. Our results
generalize many recent results, for example, the results of B. Ali [2].
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1 Introduction

Let K be a nonempty closed convex subset of a real Hilbert space H. A mappingA: K — H
is called monotone if

(Ax—Ay,x—y)>0, VYx,ye K. (1.1
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A mapping A : K — H is called inverse-strongly monotone (see, for example, [5], [10]) if
there exists a positive real number A such that

(Ax—Ay,x—y) > A|Ax—Ay|?, Vx,yeK.

For such a case, A is called A-inverse-strongly monotone. A A-inverse-strongly monotone
is sometime called A-cocoercive.
A mapping A is said to be relaxed A-cocoercive if there exists A > 0 such that

(Ax—Ay,x—y) > -A|Ax—Ay|]*>, Yx,y€K.
A mapping A is said to be relaxed (4,7y)-cocoercive if there exist 4,y > 0 such that
(Ax—Ay,x—y) > =A|Ax— Ay|* +yllx—yI>, ¥x,y€K.
A mapping A : H — H is said to be p-Lipschitzian if there exists p > 0 such that
lAx = Ayll < pllx=yll, x,y€H.

Let A : K — H be a nonlinear mapping. The variational inequality problem is to find an
x* € K such that (See, for example, [4]-[6])

(Ax*,y—x"y>0, ¥YyeKk. (1.2)

We shall denote the set of solutions of the variational inequality problem (1.2) by VI(K,A).
Finding common element of set of fixed point of nonexpansive mappings and the set of
solution of variational inequality problem has been studied extensively in the literature.
See, for example [13, 10, 15, 24, 27] and the references contained therein.

A monotone mapping A is said to be maximal if the graph G(A) is not properly contained
in the graph of any other monotone map, where

GA) ={(x,y) e HXH :y € Ax}
for a multi-valued mapping A. It is also known that A is maximal if and only if for
(x,f/)eHXH, (x-y,f-g) =0

for every (v,g) € G(A) implies f € Ax.
Let A be a monotone mapping defined from K into H and Nkq be a normal cone to K
atgeK,ie,Ngkg={peH:{(q—u,p)>0, Yue K}. Define a mapping M by

Ag+Nkq, g€ K
Mg =
0, g¢ K.

Then, M is maximal monotone and x* € M~1(0) if and only if x* € VI(K,A), see, for exam-
ple, [20].
A mapping T : K — K is said to be nonexpansive if

ITx=Tyl[<llx=yll, xyeKk. (1.3)
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For each i € N, we define F(T;) := {x* € K : T;x* = x*} and denote by ﬂ F(T)), the set

of common fixed points of countable family of nonexpansive mappings. lTlhe problem of
finding common fixed points of countable family of nonexpansive mappings has been stud-
ied extensively in the literature. See, for example [1, 12, 18] and the references contained
therein.

The computation of fixed points is important in the study of many problems including
inverse problems. For instance, it is not hard to show that the split feasibility problem and
the convex feasibility problem can both be formulated as a problem of finding fixed points
of certain operators. In particular, construction of fixed points of nonexpansive mappings
is applied in image recovery and signal processing and transition operators for initial value
problems of differential inclusions (see, for example, [7], [19], [28]).

Iterative approximation of a common element of the set of fixed points of nonexpan-
sive mappings and set of solutions of variational inequality has been studied extensively by
many authors (see e.g., [10], [11], [15-17], [21], [24], [27], and the references contained
therein). Several physical problems such as the theories of lubrications, filterations and
flows, moving boundary problems, see, for example, [11], [16], can be reduced to varia-
tional inequality problems. Consequently, these problems have solutions as the solutions of
these resultant variational inequality problems.

Let F be a bifunction of K X K into R, the set of reals and ¢ : K — H be a nonlinear
mapping. The generalized equilibrium problem is to find x € K such that

F(x,y)+Wx,y—x) >0, (1.4)

for all y € K. The set of solutions of this generalized equilibrium problem is denoted by EP.
Thus

EP:={x" € K: F(x",y)+{yx*,y—x")>0, VyeK}.

In the case of ¢ =0, EP is denoted by EP(F) and in the case of F =0, EP is denoted by
VI(K,A). The problem (1.4) includes as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems in noncooperative games, etc
(see, for example, [3], [14]). Numerous problems in physics, optimization and economics
can be reduced to find a solution of the equilibrium problem. Some methods have been
proposed to solve the equilibrium problem. See, for example [9, 23, 25].

Recently, Mainge [12] studied the Halpern-type scheme for approximation of a common
fixed point of a countable family of nonexpansive mappings in a Hilbert space. He proved
the following theorem.

Theorem 1.1. (Mainge, [12] ) Let K be a nonempty closed convex subset of a real Hilbert
space H. Let {T;};, be a countable family of self-mappings of K, {ay,};’ | and {ci,}; | be
sequences in (0, 1) satisfying the following conditions:

(1) Z:la'n = 00, Zlai,n = -ay),
i= i=
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(2)
-0 o e —al <o
in
1|1
X | Oin 0-1n1|—)0 or Z U—tn O—tnl|<oo’
[eN] (e8]
O'zn(Yn Z |O-kn_0_kn 1|_>0 or Z Z |O-k,n_0_k,n—l < 0.

n=
(3) VieN; :={ieN:T; I

(4) lim -2

n—oo O-i,n

=0.

Let C: K — K be a contraction map. Then, the sequence {x,} | defined iteratively by
x1 €K,

Xn+1 = @z Cxp + Z OinTixn (1.5)
i=1

converges strongly to the unique fixed point of Pr,c, where P is the metric projection from
Honto F.

Motivated by the results of Mainge [12] (Theorem 1.1 above), our aim in this paper is to
introduce a new viscosity iterative method for approximation of a common fixed point for
a countable family of nonexpansive mappings which is also a solution to generalized equi-
librium problem and a variational inequality problem for a u-Lipschitzian, relaxed (4,7y)-
cocoercive mapping in a real Hilbert space H. In our results, some conditions in Theorem
1.1 are dispensed with (see Remark 3.3). Furthermore, our results extend many important
recent results.

2 Preliminaries

Let H be a real Hilbert space with inner product (.,.) and norm ||.|| and let K be a nonempty
closed convex subset of H. The weak convergence of {x,} , to x is denoted by x, — x as
n — oo, while the strong convergence of {x,,} | toxis ertten X, — xasn— oo,

For any point u € H, there exists a unique pomt Pgu € K such that

llu—Pgull < llu—yll, ¥yeK. 2.1

Pk is called the metric projection of H onto K. We know that Px is a nonexpansive
mapping of H onto K. It is also known that Pk satisfies

(x=y,Pxx—Pgy) 2 |Pgx~PxylP, 2.2)
for all x,y € H. Furthermore, Pgx is characterized by the properties Pxx € K and

(x=Pgx,Pgx—y) >0, 2.3)
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for all y € K and
e Pieall® < [lx=yl* = lly— Pgd, VxeH, yeK. (2.4)
In the context of the variational inequality problem,
x e VI(K,A) & x* = Pr(x* — 1Ax"), YA >0.
In what follows, we shall make use of the following lemmas.

Lemma 2.1. (Suzuki, [22]) Let {x,};’, and {y,};’, be bounded sequences in a Banach

n=1 n=
space E and let {B,} | be a sequence in [0,1] with 0 < liminff, < limsupB, < 1. Suppose
n—00 n—00
St = (L=Bu)yn +Bux for all integers n > 0 and Timsup(|lyus1 = yull = et = xl) < 0.

n—oo

Then, lim |y, — x,|| = 0.
n—-oo
Lemma 2.2. (Xu, [26]) Let {a,}; | be a sequence of nonnegative real numbers such that
ane1 < (1 =By)an +Buyn, n €N

where {8,}, € (0,1), lim 8, =0, 3 B, = o0 and limsup, ¥, < 0. Then, lim a, = 0.
n—-oo

n=0 n—oo

For solving the equilibrium problem for a bifunction F : K X K — R, let us assume that
F satisfies the following conditions:
(Al) F(x,x)=0forall xeK;
(A2) F is monotone, i.e., F(x,y)+ F(y,x) <0 for all x,y,€ K;
(A3) for each x,y e K, }i_r)%F(tz+ (1-x,y) < F(x,y);

(A4) foreach x € K, y+ F(x,y) is convex and lower semicontinuous.

Lemma 2.3. (Blum and Oettli, [3]) Let K be a nonempty closed convex subset of H and let
F be a bifunction of K X K into R satisfying (Al)-(A4). Let r >0 and x € H. Then, there
exists 7 € K such that

1
F(z,y)+—(y—2,z—x)>20 for all ye K.
r

Lemma 2.4. (Combettes and Hirstoaga, [8]) Assume that F : K X K — R satisfies (Al)-
(A4). For r >0 and x € H, define a mapping T, : H — K as follows:

T:(x)={zeK:F(z,y)+ %(y—z,z—@ >0,¥y €K}
for all z€ H. Then, the following hold:
(1) T, is single-valued;
(2) T, is firmly nonexpansive, i.e., for any x,y € H,
1T = Ty < (Tpx =Ty, x = y);
(3) F(T,)=EP(F);
(4) EP(F) is closed and convex.
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3 Main Results

We now prove the following theorems.

Theorem 3.1. Let K be a closed convex subset of a real Hilbert space H. Let F be a bi-
Jfunction from K X K satisfying (A1) — (A4), A be a u-Lipschitzian, relaxed (A,7y)-cocoercive
mapping of K into H and  be an a-inverse, strongly monotone mapping of K into H. Let
{T:}2, be a countable family of nonexpansive mappings of K into H and let

Q:= ﬁ F(T)) ﬂ VI(K,A) ﬂ EP #0.
i=1

Let f - H— H be a contraction map with constant B € (0,1). For a fixed 6 € (0, 1), let {x,}) |
and {u,};’ | be generated by x, € H,

F(uy,y) + WX,y — ) + r]—n<y—un,un -x,)20 Vyek
Pn = Px(u, — s,Auy) (3.1)
Xas1 = @ f () + (1= 8)(1 = n)xn +6 3, 03 Tipn:

i=1

for all n > 1, where {an}:7 |, {Ba} (s {Tin}" | are sequences in [0,1], for all i > 1, {s,}" |,
{ra}s2 | € (0,00) satisfying:

(1) ;] Tin=(1-ay)
(2) lima, =0, > a@,=o00
n—o0 n=1

(3) O<c<r,<d<2a, lim|r,—r,=0
n—oo

=0

[ee)
(4) lim 3 |ojps1 = Cin
noe i
— 12 .
(5) 0<a<s,<b<2¥  lim|s, s — 5./ =0,
H n—oo

then {x,}," | converges strongly to z, where z = P f(2).

Proof. We break the proof into steps.
(i) We first show that I — s5,A and I — r,i are nonexpansive. For all x,y € K and s, €

) i
(0, %], we obtain

llx = y = sa(Ax — Ay)|?

llx = YI* = 28,¢x— y, Ax — Ay) + spl|Ax — Ay|

[l = yII* = 25, [~ AllAx — AyI* + yllx = yIIP] + spllAx — Ayl>
ll2c = Y11 + 28,7 Allx = Y112 = 2syllx = Yl + 2 2l =yl

(I = s,A)x— (I = s,A)y|*

IANIAN

(1+ 25,2 =25,y + 2 sillx = yI* < flx = yl1%.
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This shows that / — s,A is nonexpansive for each n > 1. Also, for all x,y e K and 0 < ¢ <
r, <d < 2a, we obtain

(I = ) x = (I = i)yl llx =y = ru(rx = yy)l?

llx = yII* = 2r(x =y, x —yry) + rallyx — iyl

< e =yl = 2mallyx =yl + rallyx — gyl
< =Yl + (= 20)lx — oyl *
< lx-yl%

Hence, I — r,¢ is nonexpansive.

(i) Next, we show that {x,} > | is bounded. Now, let x* € Qandif (T, }oo | 1s a sequence
of mappings defined as in Lemma 2.4, then we have x* = Pg(x* — s,Ax™) =T, (x* — rpyx™).
Since p,, = Px(u, — s,Auy), for each n > 1 and ¢ is an a-inverse, strongly monotone map-
ping, we have

lon =117 = 1Pk (utn — snAuy) — Pr(x* = 5,Ax")|I*
< ety — SpAuy) — (x* = 5,Ax)|1?
< Nty = NP = T, G = ratn) = T, (X = rtpx™)| P
< 1o = raxn) = (° = x|
< N = ra)x, — I = r)x"|I?
<l =X

Furthermore, we obtain

o1 = X711 = llewn f (xn) + (1 = 6)(1 = @n)xn + 52 TinTipn— X7

i=1

anllf(xn) = X711+ (1 = 6)(1 — @n)llx, — X7 +6Zf7i,n||,0n = x|

<
i=1
< @l ) = FEON+IFE) = XD + (1= 8)(1 = @)l = x NI +8 Y Tiallxy — 2]
i=1
< [1—an(l—ﬁ)]llxn—x*ll+an(1—ﬁ)ﬁllf(x*)—x*ll
< max{nxn—x*u,ﬁnﬂx*)—x*n}
< max(llx - < —— G = 21} (3.2)
< 1 . 1-5) . .

Therefore, {x,};°, is bounded. Furthermore, {u,}> |, {on}" ;s {Tipa},, and {Au,}>? | are
bounded.

(ii1) Next, we show that ||x,,41 — x,|]| = 0, n — oo.

From u, = T, (X — rayx,) and w41 = T, (Xn+1 — Frs1¥Xn41), We Obtain

1
F(up,y) +¥x,y —up) + r—(y— Up, Uy —Xp) 20, VyeK (3.3)
n
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and

F(upi1,y) + (WXni1,y — Upy1) + (V= Uns1,Uns1 — Xns1) 2 0.

n+1
Substituting y = u,; in (3.3) and y = u,, in (3.4), we have
1
F(up,up1)+ <'//xne Upl — Up) + r_<un+1 —Up, Uy — Xp) >0
n

and

F(upi1,un) + WXng1,Up — Ups1) + (Up = Ups1,Uns1 — Xng1) 2 0.

n+l1

So, from (A2), we have

Up—Xp  Up+l — Xn+l

Wxpe1 — WYX, Uy — Up1) + Uil — U, - )>0
'n Tn+l
and hence,
I'n
0 < (up—ttyst1, rn(xp —frxy) + (Un+1 — Xne1) — (Un — X))

Tn+l

I'n
Yupi1 + (Xne1 — FafXns1)

= (Ups1 —Up, Uy — Upy1 +(1 =
Fn+1

I'n
—(Xp = raXn) = Xpg1 + ——Xp11)

n+l1
I'n
= (Ups1 = Up, Uy —Upy +(1 = YUn1 = Xn+1) + (Xns1 — M Xns1)
n+1
_(xn_rnw-xn»-
It then follows that
2 I'n
ot =l < ot = g {{1 = ~ |l = el 1 — xall}
n+

and so we have ,
n

[2tn41 = Xna 1] + [ Xn41 — Xl

it 1 =l < |1 -
T'n+1

34

Without loss of generality, we assume that there exists d; € R such thatr, >d; >0, Vn>1.

Then
1
i1 —unll < [Xne1 = Xall + ——1rns1 — rallltns 1 — Xns1ll
Tn+1
1
< Al — xall + d_lrn+] — My,
1

3.5

where M := supl|u, — x,||. Define 8, := (1 -96)a,, + 8. Suppose x,+1 = (1 —B,)x, +Byyn. Then

n>1

_ Xptl = X +BnXn
n — an
anf(xn) + 5221 O-i,nTiPK(un - snAun) _ a’nf(xn) + 522] O-i,nTipn
Br - Br
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Hence, we obtain,

1yn+1 = yall = 1xn41 — xnll < it ||f(xn+1)||+ “ NGl
Bn+i ,3
o(1—apnys1)
+—n+1”“n+l = |l = xp11 = Xnll + |0-l n+l —Tin WT;Pg (I — sp41A)upl|
ﬁn+l n+1
6(1 —an)llAuy|l
Bnﬂn+l 1Br+1 =Bl ZO-’ nt | TiP g (I = Spp1A)up|| + #“nﬂ —sul. (3.6)
Using (3.5) in (3.6), we obtain that
An+1 o(1 —aps1)
Iwss =l =g =5l < S o)l + 22 F Gl + |5 = s =
Bu+1 ,8n+
5(1 —ape1) 1 S
—ﬁn+1 d_1| n+l — Inl M +,8n+1 |0—tn+l Oin|M+ ﬁn,Bn+l ——|Bn+1 BanO—IrHIM
ol —a,) M
+(—n|sn+l _Snla
B

where M := sup{||Au,|,|ITiPx(I — s,A)u,||}. This implies that limsup(|[y,+1 — Vull = [Xn+1 —
n>1
xn|]) < 0. Hence, by Lemma 2.1, we have lim||y, — x,|| = 0. Consequently, we have

Jim [0 = xall = 1im Byllyn — Xl = 0. (3.7)
Using (3.7), we have
Tim flu 1~ unll = 0. (3.8)
Now,
lon+1 —pnll = IPk(Un+1 = Sp+1Attns1) — P (tn — spAup)|
< | Cpe1 = Spr1Autns1) = (U = SpAuy) |

1(ttn1 = Sne1Attni1) = Uy — Spa1AUR) + (S — Spa1) Aty ||

tn1 — unll + 157 — Sna1lllAuy]].

IA

Again, from (3.8), we have
nli_)rglollpnu —pall = 0. (3.9

(iv) Next, we show that lim ||T;0, —u,|| =0, i=1,2,....
n—oo
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Now,

[

Pt = 212 = llan(FCin) = x7) + (1= 8)(1 = @) (n = X) +8 ) Tin(Tipn =X
i=1
anllfCon) = X 1P + (1= 8)(1 =)l = X2 +8 ) iallon = X711
i=1
anllfCon) = X 1P + (1= 8)(1 =l = 21248 )" il Ty, Con = rh) = T, (6 = rp)|P
i=1

IA

IA

INA

@l f () = X2+ (1= 0)(1 = )lln = X" +6 D il = rathn) = (8 = )2
i=1

llF () = X2+ (1= 6)(1 = )y = X1 +6 " 01 = 212+ (i — 20y, — |
i=1

IA

[ee)
2 2 2
= @ullfCo) =X 1P+ Ity = X1 +6 > it = 20) g, — x|
i=1
Hence,
[se]
2 2 2 %112
§ ) Tinraa=r)lg, =y’ < anllfCo) = X1 + Ity = XN = 1 = 2]
i=1

Since0<c<r,<d<2a, lima,=0and lim||x,; — x,|| = 0, we have lim |[yrx,, —¥x*|| = 0.
n—oo n—oo

n—oo

If x* € Q, then we have

et = X¥1% < N\ T, G = Pt ) = T, (X = Fath X < G = Fathn) = (X7 = rgh X, sty — X°)

1

= o = ) = O = rga P ot = 21 = 1 = rx) = (3 = rpx”) = (= I
1

< o = Il = 1P = = ) = (0 = ) = g = 2P

1
= =l = X1+ ety — XN = Nt = Xall? + 270000 — s X — ™) = P2, — x|
Sl = x

and hence,

A

2 2 2
letw = X715 < 30 = X717 = ot = Xnll™ + 27 (X0 — s X —hx™)
2 2
— 1l x, — x|

1560 = 211 = ety = Xl + 27126, — wnlllltrx, — rx|). (3.10)

IA
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From (3.2), we have

Pt =212 = llan(FCen) = x7) + (1= 6)(1 = @)y = X) 48 ) i n(Tipn =X

i=1

< an||f(xn>—x*||2+<1—6)(1—an>||xn—x*||2+6io-i,nnnpn—x*||2
i=1
< oz,1||f(xn>—x*||2+<1—5)(1—cmuxn—x"‘nz+c5§]cri,n||pn—x*n2
i=1
< allfCa) = 1P+ (1= 8)(1 = a)llx, — x| +6ial~,ﬂnun -
i=1
= an||f<xn>—x*||2+<1—6)(1—ozn>||xn—x*||2+6io—,~,n[nxn—x*||2—||xn—un||2
i=1
#2716 = wlllgrn = x|l
< an||f<xn>—x*||2+<1—5)(1—cmnxn—x"‘||2+5§]cri,n||xn—x"‘||2—5§]cri,n||xn—unn2
i=1 i=1
+2rn6io-i,n“xn_unH”lﬁxn_wX*IL
i=1
Hence,

IA

IA

IA

6 Y Tinllxn—al® < @ull f(0) = X I + (1 = 6)(1 = @p)llx, — x|
i=1

(o) [
2 2
8 ) ialltn = XN = 11 = X1 + 2706 > ially =l — x|
i=1 i=1

[ee)

aullfCon) = X 1P + (1= 8)(1 =) +6 ) il — x|
i=1

(59

2
—[1xn 1 =7l +2rn5§ TinllXn = nllllgpxn — x|
i=1

(e

2 2 2
anllf (Cxn) = X117 + (1 = )l = x7N° = llxpe1 = X7 +2rn520'i,nllxn—unllll$xn—¢X*ll
i=1

(o9
2 2 2
@l FCon) = X1 + 10 = 2712 = i = X7+ 2708 ) 0riallin = oy = g
i=1

[se]
2
@l £(0) = X712 116 = Xt 10150 = X1+ 6t = XD + 2708 > 07l — el — gl
i=1

By (3.7), we have

lim [lu,, — x,]| = 0. 3.11)
n—oo
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Furthermore,

Pt = 212 < @all F ) = X1P + (1= 8)(1 = @)l = X 1248 )" i allon — x|
i=1

llf () = X7+ (1= 6) (1 =)y = X1 +6 D o[l = s, Aty) = (" = 5,Ax")]?)
i=1

IA

28y
2

allf () = X2+ (1= 0)(A =)y = x"IF +6 D (Il = "I + (2504 + 57 -
i=1

IA

NlAu, - Ax*|I?)

* * - 2S 7 *
llf () = X IP 4+ 11y = NP +8 Y in(202+ 57 - - JlAu, — Ax"|?

i=1

IA

Hence,

- i o-i,n(an/l + si -

i=1
< 1 = st e = X1+ 1 = X711 + @l f ) = I (3.12)

2sny 2 2 2 2
2 )IIAun—Ax*II < @l f o) = X517 + Mo = X717 = [over — 7|

By (3.7), we obtain lim ||Au,, — Ax*|| = 0. Furthermore, we have
n—-oo

Pk (tty — SpAuty) — X*|I* = |Px (s, — $p A1) — Pr(x* — 5,Ax")||?

Uy — $pAuy) — (x* — 5,Ax"), P (,, — $,Au,) — x*)

IA

= %[n(un = snAity) = (& = 5p Ax)P + 1Pty = spAty) = 2|
Nt = $nAn) = (5" = 5,Ax%) = (Picty = $pAup) = x|
< %[nun — X + 1Pk (1t = spAtt) = X1 = 1t = Pic ity = 5nAuy)) = s (At = Ax")|?]
= %[nun = XM+ PR (1t = 57 Aup) = 51 = Il = P (1t = S Aup)II* + 2, = Pty = 5, Ay ), Aty — Ax")

—su?lAuy - Ax*|?]-
Therefore,

2 2 2
1Pk (n — $pAup) — x*I1° < |ty — x| = ||ty — P (utyy — SpAut)l|

+25,(utn — Pr(tty — SpAuty), Aty — AX) = 5,2 || Au, — Ax*|%.
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Hence, we have

(17641 _X*HZ = |lan f(xn) + (1 =6)(1 — ap)xy, +620'i,nTiPK(un - SnAun)_x*”2

i=1

IA

anllFCon) =X 1P + (1= 8) (1 =)l = "I +6 )" il Pt = spAuy) = x|
i=1

anll O =P+ (L= 8)(1 =)l = X7 +6 " illtn = x"IP =8 )" oty = Pty = sy Au)|
i=1 i=1

IA

+ 2508 ) Tinttn = Pi(tty = $,Atty), Aty = AX*Y =8 3" 05| Aty — A"
i=1 i=1

[e6]
2 2 2
anllFCon) =X 1P + 10 = X2 =8 )" rinlltn = PicCity = spAu)|
i=1

IA

+26 O-i,nsnllun_PK(un_snAun)””Aun_Ax*”
i=1

This implies that

oo
2 2 2 2
5> Tinllin = Px(itn = sy AP < @ullf () = I + 16 = 21 = 1 = 7
i=1

+2(SZ O_i,nan”n - PK(un - snA”n)””A”n _AX*”
i=1

2
@l f ) = X117+ 112 = Xnat 11X = XN+ X001 = X7

IA

+26 O_i,nanun_PK(un_snAun)””Aun_AX*H (3.13)
i=1

Using lima,, =0, lim|lx, —x,+1||=0 and lim|Au, —Ax*|| =0 in (3.13), we have

lim ||u, — Px(un — s,Auy)|| = 0. (3.14)
n—oo

Now, consider the following estimates

IT:Px(I — s Aty — unll* < I TiPx(I = 5, Aty — x* + X" — uy|*

16" = nl* + 2(T; P (I = 5, Aty — X*, X* = ) + | TiP (I = 52410, — ||

2015 = unll? + 2TiPx(I = $3A)tty — thy + 1ty — X, X" — 1)

201x" = ul* + 2 TiPx (I = 53 Aty — ty, X* = 1) = 2ty — 7|

UT:Px (I — s,y — thy, X* — uy,). (3.15)

I IA
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Using (3.15), we obtain
Xna1 = X" 1y — X°) = @ (f () = X"ty — X°) + (1 — @) (1 = )X — X7, 1ty — X™)

+6 > in{TiPg(I — s, Aty — tty + tty — X" 1ty — X™)
i=1
= @p(f(xn) = X" upy — XY+ (1 — ) (1 = 8){xy — tty + 1ty — X*upy — X™)

+0 Y il TiPr(I = $,A) Uy — Uy tty — XY + (1 = @)l — x*|1?
=1
= @u(f(xn) =X up — XY+ (1= @) (1 = )Xy — U,y — X™)

+0 Y il TiPr(I = $,A)uy — U 1ty — XY + (1 = ) (1 = 6)luty, — x*|
i=1
+8(1 — @)l — x*|1?

which implies that

8 > Tin{TiPr(I— spA)p —tty, X" —tty) = @n{f(Xn) — X", up — x*)
i=1
+(1 = )1 = )Xy =ttty — XY + (1 — @)ty — X7, 1y — X*)
—(Xpe1 — X" Uy — X*)
= @p(f(xn) = X 1oty — XY+ (1 = @) (1 = )Xy — th, up — X*)
+(1 = )ty = Xy 1,y — X°). (3.16)

By (3.16) and (3.15), we obtain

RS .

3 2, il TiPx (= 5uAYut =l < @ f (50) = ety = 3°)
i=1

+(1 = a)(1 = 6){xp — up, up — X+ (I =)ty = Xp1,Upn — x*).

[e6]
n=1

and {u,}°° , are bounded and by (3.11), we have that

Since {x,} el

lim |T;Px(I — s, A)u, —u,|| =0, Vi=1,2,... (3.17)
n—oo
By (3.17) and (3.11), we have

Iim ||T;Px(I — 5,A)u, — x,]| =0, Vi=1,2,... (3.18)
n—o0
(v) Finally, we show that

limsup(f(z) —z,x,—2) <0,

n—oo

where z = Pr f(z). To do this, we choose a subsequence {xnj} of {x,}” | such that limsup(f(z)—

n—oo

2, Xy —2) = lIim(f(2) — 2, xn; — 2). As {un},_, is bounded, there exists a subsequence {Mn,-};‘;l
J—o0o



90 J. N. Ezeora and Y. Shehu

of {u,};’ , which converges weakly to w. We first show that w € N F(T;Px(I — s,A)). As-
i=1
sume the contrary that w # T;Px (I — s,A)w, i=1,2,.... Then by Opial condition, we obtain

liminflju,, —wl| < liminf|lu,, — T;Px(I — s,A)wl|
J—)OO N N

]—)OO

IA

hjrgg’lf(”l/lnj —T;Px(I - snA)unjH

+ NTiPx(I = spA)un; — TiPg (I = s,A)Wl|)

liminf|lu,, —wl|.
]—)OO N

IA

This is a contradiction. Hence, w € (" F(T;Pg(I — 5,A)).
i=1
We next show that w € EP. Since u, =T, (x, —rpyx,), n =1, we have for any y € K
that

1
F(up,y) + Yxn,y —uy) + r—(y = Uy, Uy — Xp) 2 0.
n

Furthermore, replacing n by n; in the last inequality and using (A2), we obtain

1
<l//xnj’y_unj> + r_<y_unj7unj _xnj> > F(y’ unj)- (319)
nj
Letz; :=ty+ (1 —t)w for all t € (0,1] and y € K. This implies that z; € K. Then, by (3.19),
we have
u}’l

= X,
<Zl‘ —I/ln/.,l//Zt> - <Zt _Mnj"l’xnj>_ <Zt_unj, %>+F(Z[,Mnj)
nj

[\

<Zt—14n,«,WZt>

Un; — Xp;

)

<Zt un"wzt 'ﬁun) <ZI Ltn.,lﬂun. wxn~> <Zt Un;,
J J J J J J
nj

+F(Zl"unj)'

Since ||xnj - u,,jll — 0, j— oo, we obtain ||1//xnj - z,bunjll — 0. Furthermore, by the mono-
tonicity of ¢, we obtain (z; — un;,yz; —Yuy,,;) > 0. Then, by (A4) we obtain

(Zr=w¥z1) 2 F(z,w), j— 0. (3.20)
Using (A1), (A4) and (3.20) we also obtain

0 = F(znz) <tF(z,y)+ (1 =DF(z,w)
tF(zs,y) + (1 = t)zs —w,¥zs)
= tF(z,y) + (1 =DKy —w,¥z;)

IA

and hence
0<F(z,y)+ (1 =)y —w,¥zs).

Letting + — 0, we have, for each y € K,

0< Fw,y)+(y—w,yw). (3.21)
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This implies that w € EP.
Next, we show u € V(K,A). Put

M = Aw+ Ngw, we kK
B 0, w¢ K.

Since A is relaxed (4,y)-cocoercive and by condition (v), we have
(Ax—Ay,x=y) = (=Dl Ax =AY +¥llx =1 > (y = d)llx = y* = 0,

which shows that A is monotone. Thus, M is maximal monotone. Let (wi,w;) € G(M).
Since wy — Aw| € Ngw and p, € K, we have

(W1 =pn,w2—Awy) 2 0.
On the other hand, from p,, = Px(I — s,A)u,, we have

W1 =pPp>pn = (I = $pA)ut) 2 0.

and hence
w1 = s = Au) 2 0.
Sn
It follows that
(wy _pni’W2> > (W —pni,AW1> > (wy _pni,AW1>
w1 = 2 Ay
n;
= (W1 —pn;,AW1 _ P~ Un; — Au,)
n;
= (W1 —Pn;, AW1 = App,) + (W1 — Pn;, AP, — Alty,)
—W1 = Pn;» O~ H )
n;
= (wi _pni’A'O"i _Auni> — (w1 _pni’pm — )

n;

which implies that (w; —w,w») >0, (i = c0). We have w € M~'0 and hence w € VI(K, A).
Thus, w € ﬂ F(T)NEPNVI(K,A).

i=1

Now, from (2.3), we have

limsup{f(z) —z, X, — 2)

n—oo

}lelo<f(z)—z,xnj -2)

(f(2)-z,w=2) <0. (3.22)
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Therefore,
Fonet = 2l = o fe) + (1= )(1 = @) +6 Y TinTipn =2l
i=1
= laa(f(xn) —2) + (1 =8)(1 — an)(x, —2) + 6Zai,n(T,-pn -2l
i=1
< NA=8)1=a) (X0 =2)+6 Y Tin(Tipn =2 + 200 f (X)) = 2, Xns1 = 2)
i=1
< (1= an)?lxn = 2P + 20, f (X0) = 2, Xns1 — 2)
< (1= a1 — 2P + 200 f(x0) = F @), Xns1 = 2) + 20 f(2) = 2, Xn1 — 2)
< (1= a1 — 2l + 22,8115 — 2llllXns 1 — 2l + 20 f(2) = 2, Xns1 — 2)
< (1= a1 — 2P + @nBlx, — 2 +1ns1 = 2I7) + 200 f(2) = 2, Xns1 — 2)-

This implies that

1-2a,+a?+a 2«0
o1 -l < 22X Gty o 2O -2
l—a/nﬁ l_a'nﬁ
1= =" — — " — —
| — e~z iy R ey LU RS

= (1=yp)llxn—zl* +6,,

where vy, := 2(11__5,3;” , Op = lff—fnﬁ [anllx,, —2lPP +2(f(2) = 2, Xps1 — z)]. By Lemma 2.2, we get
that {x,}’ , converges strongly to z. This completes the proof. O

Corollary 3.2. (Ali [2]) Let K be a closed convex subset of a real Hilbert space H. Let
F be a bifunction from K X K satisfying (A1) —(A4), A be a u-Lipschitzian, relaxed (A,7y)-
cocoercive mapping of K into H and  be an a-inverse, strongly monotone mapping of K
into H. Let {T;};2| be a countable family of nonexpansive mappings of K into H and let

ﬁ F(T) ﬂ VI(A,C) ﬂ EP(F) # 0.
i=1

Let f : K — K be a contraction map with constant 5 € (0,1). For a fixed 6 € (0,1), let {x,}
and {u,} be generated by u, x| € K,

Fttn, y) + 3=y = thns = X,) 2 0 ¥y € C,

Xn+1 = auu+ (1 =0)(1 — ay)x, + 6221 OinTiPg(uy — spAuy);

Joralln>1, where {an}; |, {Bn}, 2\, {Tin},. | are sequencesin [0,1], forall i>1, {s,};7, C

la,b] for some a,b € (0, 2(7;—;“2)) and ry, € (0,00) satisfying:

(1) Y oin=(-ay)
i=1
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(2) lima, =0, » a,=o0

n=1

(3) liminfr, >0, lim|r, 1 —7, =0
n—oo n—oo

(4) lim > |1 =i = 0
i=1
20y —Au?
(5) 0<asb<w, lim [s5,+1 — 0] =0,
ﬂ n—0o0

then {x,}’ | converges strongly to z, where z = Pru.

Proof. Put Yy =0 and f(x,) =u, Yn>1 in Theorem 3.1. Then, by Theorem 3.1 we have
the desired result. O

Remark 3.3. The conditions

1
Tin

— -l
an

(oo}
-0, or Z el — | < oo,

4

ap

4 _

Tin O'tn 1

— 0, or Z #|<oo

(Tt n Tin-1

in used Theorem 1.1 are dispensed with in all our results. Furthermore, condition

|0'kn—0'kn 1|—>0 or Z Z|0'kn—0'kn 1|
Tin

in Theorem 1.1 is weakened to lim }°, |0' intl —Oin

n—oo

O—tna'nk 0

= 0 1n all our results.

Remark 3.4. The prototypes for the sequences {a,} and {c7; ,} in this paper are the following:

1
= 3 Oip =

VieN.
n+1

n
2in+1)
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