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Abstract

In this paper, we introduce an iterative scheme for finding the common element of
the set of fixed points of a countable family of nonexpansive mappings, the set of so-
lutions of variational inequality for µ-Lipschitzian, relaxed (λ,γ)-cocoercive mapping
and the set of solutions of a generalized equilibrium problem. We show that the iter-
ative sequence converges strongly to a common element of the three sets. Our results
generalize many recent results, for example, the results of B. Ali [2].
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1 Introduction

Let K be a nonempty closed convex subset of a real Hilbert space H. A mapping A : K→ H
is called monotone if

〈Ax−Ay, x− y〉 ≥ 0, ∀x,y ∈ K. (1.1)
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A mapping A : K → H is called inverse-strongly monotone (see, for example, [5], [10]) if
there exists a positive real number λ such that

〈Ax−Ay, x− y〉 ≥ λ||Ax−Ay||2, ∀x,y ∈ K.

For such a case, A is called λ-inverse-strongly monotone. A λ-inverse-strongly monotone
is sometime called λ-cocoercive.

A mapping A is said to be relaxed λ-cocoercive if there exists λ > 0 such that

〈Ax−Ay, x− y〉 ≥ −λ||Ax−Ay||2, ∀x,y ∈ K.

A mapping A is said to be relaxed (λ,γ)-cocoercive if there exist λ,γ > 0 such that

〈Ax−Ay, x− y〉 ≥ −λ||Ax−Ay||2+γ||x− y||2, ∀x,y ∈ K.

A mapping A : H→ H is said to be µ-Lipschitzian if there exists µ ≥ 0 such that

||Ax−Ay|| ≤ µ||x− y||, x,y ∈ H.

Let A : K→ H be a nonlinear mapping. The variational inequality problem is to find an
x∗ ∈ K such that (See, for example, [4]-[6])

〈Ax∗,y− x∗〉 ≥ 0, ∀y ∈ K. (1.2)

We shall denote the set of solutions of the variational inequality problem (1.2) by VI(K,A).
Finding common element of set of fixed point of nonexpansive mappings and the set of
solution of variational inequality problem has been studied extensively in the literature.
See, for example [13, 10, 15, 24, 27] and the references contained therein.

A monotone mapping A is said to be maximal if the graph G(A) is not properly contained
in the graph of any other monotone map, where

G(A) := {(x,y) ∈ H×H : y ∈ Ax}

for a multi-valued mapping A. It is also known that A is maximal if and only if for

(x, f ) ∈ H×H, 〈x− y, f −g〉 ≥ 0

for every (y,g) ∈G(A) implies f ∈ Ax.
Let A be a monotone mapping defined from K into H and NKq be a normal cone to K

at q ∈ K, i.e., NKq = {p ∈ H : 〈q−u, p〉 ≥ 0, ∀u ∈ K}. Define a mapping M by

Mq =


Aq+NKq, q ∈ K

∅, q < K.

Then, M is maximal monotone and x∗ ∈ M−1(0) if and only if x∗ ∈ VI(K,A), see, for exam-
ple, [20].

A mapping T : K→ K is said to be nonexpansive if

||T x−Ty|| ≤ ||x− y||, x,y ∈ K. (1.3)
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For each i ∈ N, we define F(Ti) := {x∗ ∈ K : Tix∗ = x∗} and denote by
∞⋂

i=1
F(Ti), the set

of common fixed points of countable family of nonexpansive mappings. The problem of
finding common fixed points of countable family of nonexpansive mappings has been stud-
ied extensively in the literature. See, for example [1, 12, 18] and the references contained
therein.

The computation of fixed points is important in the study of many problems including
inverse problems. For instance, it is not hard to show that the split feasibility problem and
the convex feasibility problem can both be formulated as a problem of finding fixed points
of certain operators. In particular, construction of fixed points of nonexpansive mappings
is applied in image recovery and signal processing and transition operators for initial value
problems of differential inclusions (see, for example, [7], [19], [28]).

Iterative approximation of a common element of the set of fixed points of nonexpan-
sive mappings and set of solutions of variational inequality has been studied extensively by
many authors (see e.g., [10], [11], [15-17], [21], [24], [27], and the references contained
therein). Several physical problems such as the theories of lubrications, filterations and
flows, moving boundary problems, see, for example, [11], [16], can be reduced to varia-
tional inequality problems. Consequently, these problems have solutions as the solutions of
these resultant variational inequality problems.

Let F be a bifunction of K ×K into R, the set of reals and ψ : K → H be a nonlinear
mapping. The generalized equilibrium problem is to find x ∈ K such that

F(x,y)+ 〈ψx,y− x〉 ≥ 0, (1.4)

for all y ∈ K. The set of solutions of this generalized equilibrium problem is denoted by EP.
Thus

EP := {x∗ ∈ K : F(x∗,y)+ 〈ψx∗,y− x∗〉 ≥ 0, ∀y ∈ K}.

In the case of ψ ≡ 0, EP is denoted by EP(F) and in the case of F ≡ 0, EP is denoted by
VI(K,A). The problem (1.4) includes as special cases, optimization problems, variational
inequalities, minimax problems, Nash equilibrium problems in noncooperative games, etc
(see, for example, [3], [14]). Numerous problems in physics, optimization and economics
can be reduced to find a solution of the equilibrium problem. Some methods have been
proposed to solve the equilibrium problem. See, for example [9, 23, 25].

Recently, Mainge [12] studied the Halpern-type scheme for approximation of a common
fixed point of a countable family of nonexpansive mappings in a Hilbert space. He proved
the following theorem.

Theorem 1.1. (Mainge, [12] ) Let K be a nonempty closed convex subset of a real Hilbert
space H. Let {Ti}

∞
i=1 be a countable family of self-mappings of K, {αn}

∞
n=1 and {σi,n}

∞
n=1 be

sequences in (0,1) satisfying the following conditions:

(1)
∞∑

i=1
αn =∞,

∞∑
i=1
σi,n = (1−αn),
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(2) 

1
σi,n

∣∣∣∣1− αn−1
αn

∣∣∣∣→ 0, or
∞∑

n=1

1
σi,n
|αn−1−αn| <∞,

1
αn

∣∣∣∣ 1
σi,n
− 1
σi,n−1

∣∣∣∣→ 0, or
∞∑

n=1

∣∣∣∣ 1
σi,n
− 1
σi,n−1

∣∣∣∣ <∞,
1

σi,nαn

∞∑
k=0

∣∣∣∣σk,n−σk,n−1

∣∣∣∣→ 0, or
∞∑

n=1

1
σi,n

∞∑
k=0

∣∣∣∣σk,n−σk,n−1

∣∣∣∣ <∞.
(3) ∀i ∈ NI := {i ∈ N : Ti , I}

(4) lim
n→∞

αn

σi,n
= 0.

Let C : K → K be a contraction map. Then, the sequence {xn}
∞
n=1 defined iteratively by

x1 ∈ K,

xn+1 = αnCxn+

∞∑
i=1

σi,nTixn (1.5)

converges strongly to the unique fixed point of PFoC , where PF is the metric projection from
H onto F.

Motivated by the results of Mainge [12] (Theorem 1.1 above), our aim in this paper is to
introduce a new viscosity iterative method for approximation of a common fixed point for
a countable family of nonexpansive mappings which is also a solution to generalized equi-
librium problem and a variational inequality problem for a µ-Lipschitzian, relaxed (λ,γ)-
cocoercive mapping in a real Hilbert space H. In our results, some conditions in Theorem
1.1 are dispensed with (see Remark 3.3). Furthermore, our results extend many important
recent results.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈., .〉 and norm ||.|| and let K be a nonempty
closed convex subset of H. The weak convergence of {xn}

∞
n=1 to x is denoted by xn ⇀ x as

n→∞, while the strong convergence of {xn}
∞
n=1 to x is written xn→ x as n→∞.

For any point u ∈ H, there exists a unique point PKu ∈ K such that

||u−PKu|| ≤ ||u− y||, ∀y ∈ K. (2.1)

PK is called the metric projection of H onto K. We know that PK is a nonexpansive
mapping of H onto K. It is also known that PK satisfies

〈x− y,PK x−PKy〉 ≥ ||PK x−PKy||2, (2.2)

for all x,y ∈ H. Furthermore, PK x is characterized by the properties PK x ∈ K and

〈x−PK x,PK x− y〉 ≥ 0, (2.3)
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for all y ∈ K and

||x−PK x||2 ≤ ||x− y||2− ||y−PK x||2, ∀x ∈ H, y ∈ K. (2.4)

In the context of the variational inequality problem,

x∗ ∈ VI(K,A)⇔ x∗ = PK(x∗−λAx∗), ∀λ > 0.

In what follows, we shall make use of the following lemmas.

Lemma 2.1. (Suzuki, [22]) Let {xn}
∞
n=1 and {yn}

∞
n=1 be bounded sequences in a Banach

space E and let {βn}
∞
n=1 be a sequence in [0,1] with 0 < liminf

n→∞
βn ≤ limsup

n→∞
βn < 1. Suppose

xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and limsup
n→∞

(
||yn+1 − yn|| − ||xn+1 − xn||

)
≤ 0.

Then, lim
n→∞
||yn− xn|| = 0.

Lemma 2.2. (Xu, [26]) Let {an}
∞
n=1 be a sequence of nonnegative real numbers such that

an+1 ≤ (1−βn)an+βnγn, n ∈ N

where {βn}n ⊂ (0,1), lim
n→∞

βn = 0,
∞∑

n=0
βn =∞ and limsupn γn ≤ 0. Then, lim

n→∞
an = 0.

For solving the equilibrium problem for a bifunction F : K ×K→ R, let us assume that
F satisfies the following conditions:
(A1) F(x, x) = 0 for all x ∈ K;
(A2) F is monotone, i.e., F(x,y)+F(y, x) ≤ 0 for all x,y,∈ K;
(A3) for each x,y ∈ K, lim

t→0
F(tz+ (1− t)x,y) ≤ F(x,y);

(A4) for each x ∈ K, y 7→ F(x,y) is convex and lower semicontinuous.

Lemma 2.3. (Blum and Oettli, [3]) Let K be a nonempty closed convex subset of H and let
F be a bifunction of K ×K into R satisfying (A1)-(A4). Let r > 0 and x ∈ H. Then, there
exists z ∈ K such that

F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0 for all y ∈ K.

Lemma 2.4. (Combettes and Hirstoaga, [8]) Assume that F : K ×K → R satisfies (A1)-
(A4). For r > 0 and x ∈ H, define a mapping Tr : H→ K as follows:

Tr(x) = {z ∈ K : F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0,∀y ∈ K}

for all z ∈ H. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x,y ∈ H,

||Tr x−Try||2 ≤ 〈Tr x−Try, x− y〉;

(3) F(Tr) = EP(F);

(4) EP(F) is closed and convex.
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3 Main Results

We now prove the following theorems.

Theorem 3.1. Let K be a closed convex subset of a real Hilbert space H. Let F be a bi-
function from K×K satisfying (A1)− (A4), A be a µ-Lipschitzian, relaxed (λ,γ)-cocoercive
mapping of K into H and ψ be an α-inverse, strongly monotone mapping of K into H. Let
{Ti}

∞
i=1 be a countable family of nonexpansive mappings of K into H and let

Ω :=
∞⋂

i=1

F(Ti)
⋂

VI(K,A)
⋂

EP , ∅.

Let f : H→H be a contraction map with constant β ∈ (0,1). For a fixed δ ∈ (0,1), let {xn}
∞
n=1

and {un}
∞
n=1 be generated by x1 ∈ H,

F(un,y)+ 〈ψxn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0 ∀y ∈ K

ρn = PK(un− snAun)

xn+1 = αn f (xn)+ (1−δ)(1−αn)xn+δ
∞∑

i=1
σi,nTiρn;

(3.1)

for all n ≥ 1, where {αn}
∞
n=1, {βn}

∞
n=1, {σi,n}

∞
n=1 are sequences in [0,1], for all i ≥ 1, {sn}

∞
n=1,

{rn}
∞
n=1 ⊂ (0,∞) satisfying:

(1)
∞∑

i=1
σi,n = (1−αn)

(2) lim
n→∞

αn = 0,
∞∑

n=1
αn =∞

(3) 0 < c ≤ rn ≤ d < 2α, lim
n→∞
|rn+1− rn| = 0

(4) lim
n→∞

∞∑
i=1

∣∣∣∣σi,n+1−σi,n

∣∣∣∣ = 0

(5) 0 < a ≤ sn ≤ b < 2(γ−λµ2)
µ2 , lim

n→∞
|sn+1− sn| = 0,

then {xn}
∞
n=1 converges strongly to z, where z = PΩ f (z).

Proof. We break the proof into steps.
(i) We first show that I − snA and I − rnψ are nonexpansive. For all x,y ∈ K and sn ∈

(0, 2(γ−λµ2)
µ2 ], we obtain

||(I− snA)x− (I− snA)y||2 = ||x− y− sn(Ax−Ay)||2

= ||x− y||2−2sn〈x− y,Ax−Ay〉+ s2
n||Ax−Ay||2

≤ ||x− y||2−2sn[−λ||Ax−Ay||2+γ||x− y||2]+ s2
n||Ax−Ay||2

≤ ||x− y||2+2snµ
2λ||x− y||2−2snγ||x− y||2+µ2s2

n||x− y||2

= (1+2snµ
2λ−2snγ+µ

2s2
n)||x− y||2 ≤ ||x− y||2.
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This shows that I − snA is nonexpansive for each n ≥ 1. Also, for all x,y ∈ K and 0 < c ≤
rn ≤ d < 2α, we obtain

||(I− rnψ)x− (I− rnψ)y||2 = ||x− y− rn(ψx−ψy)||2

= ||x− y||2−2rn〈x− y,ψx−ψy〉+ r2
n ||ψx−ψy||2

≤ ||x− y||2−2rnα||ψx−ψy||2+ r2
n ||ψx−ψy||2

≤ ||x− y||2+ rn(rn−2α)||ψx−ψy||2

≤ ||x− y||2.

Hence, I− rnψ is nonexpansive.
(ii) Next, we show that {xn}

∞
n=1 is bounded. Now, let x∗ ∈Ω and if {Trn}

∞
n=1 is a sequence

of mappings defined as in Lemma 2.4, then we have x∗ = PK(x∗− snAx∗) = Trn(x∗− rnψx∗).
Since ρn = PK(un − snAun), for each n ≥ 1 and ψ is an α-inverse, strongly monotone map-
ping, we have

||ρn− x∗||2 = ||PK(un− snAun)−PK(x∗− snAx∗)||2

≤ ||(un− snAun)− (x∗− snAx∗)||2

≤ ||un− x∗||2 = ||Trn(xn− rnψxn)−Trn(x∗− rnψx∗)||2

≤ ||(xn− rnψxn)− (x∗− rnψx∗)||2

≤ ||(I− rnψ)xn− (I− rnψ)x∗||2

≤ ||xn− x∗||2.

Furthermore, we obtain

||xn+1− x∗|| = ||αn f (xn)+ (1−δ)(1−αn)xn+δ

∞∑
i=1

σi,nTiρn− x∗||

≤ αn|| f (xn)− x∗||+ (1−δ)(1−αn)||xn− x∗||+δ
∞∑

i=1

σi,n||ρn− x∗||

≤ αn(|| f (xn)− f (x∗)||+ || f (x∗)− x∗||)+ (1−δ)(1−αn)||xn− x∗||+δ
∞∑

i=1

σi,n||xn− x∗||

≤ [1−αn(1−β)]||xn− x∗||+αn(1−β)
1

(1−β)
|| f (x∗)− x∗||

≤ max{||xn− x∗||,
1

(1−β)
|| f (x∗)− x∗||}

...

≤ max{||x1− x∗||,
1

(1−β)
|| f (x∗)− x∗||}. (3.2)

Therefore, {xn}
∞
n=1 is bounded. Furthermore, {un}

∞
n=1, {ρn}

∞
n=1, {Tiρn}

∞
n=1 and {Aun}

∞
n=1 are

bounded.
(iii) Next, we show that ||xn+1− xn|| → 0, n→∞.
From un = Trn(xn− rnψxn) and un+1 = Trn+1(xn+1− rn+1ψxn+1), we obtain

F(un,y)+ 〈ψxn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈ K (3.3)
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and

F(un+1,y)+ 〈ψxn+1,y−un+1〉+
1

rn+1
〈y−un+1,un+1− xn+1〉 ≥ 0. (3.4)

Substituting y = un+1 in (3.3) and y = un in (3.4), we have

F(un,un+1)+ 〈ψxn,un+1−un〉+
1
rn
〈un+1−un,un− xn〉 ≥ 0

and
F(un+1,un)+ 〈ψxn+1,un−un+1〉+

1
rn+1
〈un−un+1,un+1− xn+1〉 ≥ 0.

So, from (A2), we have

〈ψxn+1−ψxn,un−un+1〉+ 〈un+1−un,
un− xn

rn
−

un+1− xn+1

rn+1
〉 ≥ 0

and hence,

0 ≤ 〈un−un+1,rn(ψxn+1−ψxn)+
rn

rn+1
(un+1− xn+1)− (un− xn)〉

= 〈un+1−un,un−un+1+ (1−
rn

rn+1
)un+1+ (xn+1− rnψxn+1)

−(xn− rnψxn)− xn+1+
rn

rn+1
xn+1〉

= 〈un+1−un,un−un+1+ (1−
rn

rn+1
)(un+1− xn+1)+ (xn+1− rnψxn+1)

−(xn− rnψxn)〉.

It then follows that

||un+1−un||
2 ≤ ||un+1−un||

{∣∣∣∣1− rn

rn+1

∣∣∣∣||un+1− xn+1||+ ||xn+1− xn||
}

and so we have
||un+1−un|| ≤

∣∣∣∣1− rn

rn+1

∣∣∣∣||un+1− xn+1||+ ||xn+1− xn||.

Without loss of generality, we assume that there exists d1 ∈ R such that rn > d1 > 0, ∀n ≥ 1.
Then

||un+1−un|| ≤ ||xn+1− xn||+
1

rn+1
|rn+1− rn|||un+1− xn+1||

≤ ||xn+1− xn||+
1
d1
|rn+1− rn|M1, (3.5)

where M1 := sup
n≥1
||un− xn||.Define βn := (1−δ)αn+δ. Suppose xn+1 = (1−βn)xn+βnyn. Then

yn =
xn+1− xn+βnxn

βn

=
αn f (xn)+δ

∑∞
i=1σi,nTiPK(un− snAun)

βn
=
αn f (xn)+δ

∑∞
i=1σi,nTiρn

βn
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Hence, we obtain,

||yn+1− yn|| − ||xn+1− xn|| ≤
αn+1

βn+1
|| f (xn+1)||+

αn

βn

∣∣∣∣| f (xn)||

+
δ(1−αn+1)

βn+1
||un+1−un|| − ||xn+1− xn||+

δ

βn+1

∞∑
i=1

∣∣∣∣σi,n+1−σi,n

∣∣∣∣||TiPK(I− sn+1A)un||

+
δ

βnβn+1
|βn+1−βn|

∞∑
i=1

σi,n+1||TiPK(I− sn+1A)un||+
δ(1−αn)||Aun||

βn
|sn+1− sn|. (3.6)

Using (3.5) in (3.6), we obtain that

||yn+1− yn|| − ||xn+1− xn|| ≤
αn+1

βn+1
|| f (xn+1)||+

αn

βn

∣∣∣∣| f (xn)||+
∣∣∣∣δ(1−αn+1)

βn+1
−1
∣∣∣∣||xn+1− xn||

+
δ(1−αn+1)

βn+1

1
d1
|rn+1− rn|M1+

δ

βn+1

∞∑
i=1

∣∣∣∣σi,n+1−σi,n

∣∣∣∣M+ δ

βnβn+1
|βn+1−βn|

∞∑
i=1

σi,n+1M

+
δ(1−αn)M

βn
|sn+1− sn|,

where M := sup
n≥1
{||Aun||, ||TiPK(I − snA)un||}. This implies that limsup(||yn+1 − yn|| − ||xn+1 −

xn||) ≤ 0. Hence, by Lemma 2.1, we have lim ||yn− xn|| = 0. Consequently, we have

lim
n→∞
||xn+1− xn|| = lim

n→∞
βn||yn− xn|| = 0. (3.7)

Using (3.7), we have

lim
n→∞
||un+1−un|| = 0. (3.8)

Now,

||ρn+1−ρn|| = ||PK(un+1− sn+1Aun+1)−PK(un− snAun)||

≤ ||(un+1− sn+1Aun+1)− (un− snAun)||

= ||(un+1− sn+1Aun+1)− (un− sn+1Aun)+ (sn− sn+1)Aun||

≤ ||un+1−un||+ |sn− sn+1|||Aun||.

Again, from (3.8), we have

lim
n→∞
||ρn+1−ρn|| = 0. (3.9)

(iv) Next, we show that lim
n→∞
||Tiρn−un|| = 0, i = 1,2, ....
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Now,

||xn+1− x∗||2 = ||αn( f (xn)− x∗)+ (1−δ)(1−αn)(xn− x∗)+δ
∞∑

i=1

σi,n(Tiρn− x∗)||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||ρn− x∗||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||Trn(xn− rnψxn)−Trn(x∗− rnψx∗)||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||(xn− rnψxn)− (x∗− rnψx∗)||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n
[
||xn− x∗||2+ rn(rn−2α)||ψxn−ψx∗||2

]
= αn|| f (xn)− x∗||2+ ||xn− x∗||2+δ

∞∑
i=1

σi,nrn(rn−2α)||ψxn−ψx∗||2.

Hence,

δ

∞∑
i=1

σi,nrn(2α− rn)||ψxn−ψx∗||2 ≤ αn|| f (xn)− x∗||2+ ||xn− x∗||2− ||xn+1− x∗||2

Since 0< c≤ rn ≤ d < 2α, lim
n→∞

αn = 0 and lim
n→∞
||xn+1− xn||= 0, we have lim

n→∞
||ψxn−ψx∗||= 0.

If x∗ ∈Ω, then we have

||un− x∗||2 ≤ ||Trn(xn− rnψxn)−Trn(x∗− rnψx∗)||2 ≤ 〈(xn− rnψxn)− (x∗− rnψx∗),un− x∗〉

=
1
2

[
||(xn− rnψxn)− (x∗− rnψx∗)||2+ ||un− x∗||2− ||(xn− rnψxn)− (x∗− rnψx∗)− (un− x∗)||2

]
≤

1
2

[
||xn− x∗||2+ ||un− x∗||2− ||(xn− rnψxn)− (x∗− rnψx∗)− (un− x∗)||2

]
=

1
2

[
||xn− x∗||2+ ||un− x∗||2− ||un− xn||

2+2rn〈xn−un,ψxn−ψx∗〉− r2
n ||ψxn−ψx∗||2

]
and hence,

||un− x∗||2 ≤ ||xn− x∗||2− ||un− xn||
2+2rn〈xn−un,ψxn−ψx∗〉

−r2
n ||ψxn−ψx∗||2

≤ ||xn− x∗||2− ||un− xn||
2+2rn||xn−un||||ψxn−ψx∗||. (3.10)
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From (3.2), we have

||xn+1− x∗||2 = ||αn( f (xn)− x∗)+ (1−δ)(1−αn)(xn− x∗)+δ
∞∑

i=1

σi,n(Tiρn− x∗)||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||Tiρn− x∗||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||ρn− x∗||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||un− x∗||2

= αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n
[
||xn− x∗||2− ||xn−un||

2

+2rn||xn−un||||ψxn−ψx∗||
]

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||xn− x∗||2−δ
∞∑

i=1

σi,n||xn−un||
2

+2rnδ

∞∑
i=1

σi,n||xn−un||||ψxn−ψx∗||.

Hence,

δ

∞∑
i=1

σi,n||xn−un||
2 ≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2

+δ

∞∑
i=1

σi,n||xn− x∗||2− ||xn+1− x∗||2+2rnδ

∞∑
i=1

σi,n||xn−un||||ψxn−ψx∗||

= αn|| f (xn)− x∗||2+ ((1−δ)(1−αn)+δ
∞∑

i=1

σi,n)||xn− x∗||2

−||xn+1− x∗||2+2rnδ

∞∑
i=1

σi,n||xn−un||||ψxn−ψx∗||

≤ αn|| f (xn)− x∗||2+ (1−αn)||xn− x∗||2− ||xn+1− x∗||2+2rnδ

∞∑
i=1

σi,n||xn−un||||ψxn−ψx∗||

≤ αn|| f (xn)− x∗||2+ ||xn− x∗||2− ||xn+1− x∗||2+2rnδ

∞∑
i=1

σi,n||xn−un||||ψxn−ψx∗||

≤ αn|| f (xn)− x∗||2+ ||xn− xn+1||(||xn− x∗||+ ||xn+1− x∗||)+2rnδ

∞∑
i=1

σi,n||xn−un||||ψxn−ψx∗||

By (3.7), we have

lim
n→∞
||un− xn|| = 0. (3.11)
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Furthermore,

||xn+1− x∗||2 ≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||ρn− x∗||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n
(
||(un− snAun)− (x∗− snAx∗)||2

)
≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ

∞∑
i=1

σi,n
(
||un− x∗||2+

(
2snλ+ s2

n−
2snγ

µ2

)
||Aun−Ax∗||2

)
≤ αn|| f (xn)− x∗||2+ ||xn− x∗||2+δ

∞∑
i=1

σi,n
(
2snλ+ s2

n−
2snγ

µ2

)
||Aun−Ax∗||2

Hence,

−

∞∑
i=1

σi,n
(
2snλ+ s2

n−
2snγ

µ2

)
||Aun−Ax∗||2 ≤ αn|| f (xn)− x∗||2+ ||xn− x∗||2− ||xn+1− x∗||2

≤ ||xn− xn+1||(||xn− x∗||+ ||xn+1− x∗||)+αn|| f (xn)− x∗||2. (3.12)

By (3.7), we obtain lim
n→∞
||Aun−Ax∗|| = 0. Furthermore, we have

||PK(un− snAun)− x∗||2 = ||PK(un− snAun)−PK(x∗− snAx∗)||2

≤ 〈(un− snAun)− (x∗− snAx∗),PK(un− snAun)− x∗〉

=
1
2

[
||(un− snAun)− (x∗− snAx∗)||2+ ||PK(un− snAun)− x∗||2

−||(un− snAun)− (x∗− snAx∗)− (PK(un− snAun)− x∗)||2
]

≤
1
2

[
||un− x∗||2+ ||PK(un− snAun)− x∗||2− ||(un−PK(un− snAun))− sn(Aun−Ax∗)||2

]
=

1
2

[
||un− x∗||2+ ||PK(un− snAun)− x∗||2− ||un−PK(un− snAun)||2+2sn〈un−PK(un− snAun),Aun−Ax∗〉

−sn
2||Aun−Ax∗||2

]
.

Therefore,

||PK(un− snAun)− x∗||2 ≤ ||un− x∗||2− ||un−PK(un− snAun)||2

+2sn〈un−PK(un− snAun),Aun−Ax∗〉− sn
2||Aun−Ax∗||2.
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Hence, we have

||xn+1− x∗||2 = ||αn f (xn)+ (1−δ)(1−αn)xn+δ

∞∑
i=1

σi,nTiPK(un− snAun)− x∗||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||PK(un− snAun)− x∗||2

≤ αn|| f (xn)− x∗||2+ (1−δ)(1−αn)||xn− x∗||2+δ
∞∑

i=1

σi,n||un− x∗||2−δ
∞∑

i=1

σi,n||un−PK(un− snAun)||2

+ 2snδ

∞∑
i=1

σi,n〈un−PK(un− snAun),Aun−Ax∗〉−δ
∞∑

i=1

σi,nsn
2||Aun−Ax∗||2

≤ αn|| f (xn)− x∗||2+ ||xn− x∗||2−δ
∞∑

i=1

σi,n||un−PK(un− snAun)||2

+2δ
∞∑

i=1

σi,nsn||un−PK(un− snAun)||||Aun−Ax∗||

This implies that

δ

∞∑
i=1

σi,n||un−PK(un− snAun)||2 ≤ αn|| f (xn)− x∗||2+ ||xn− x∗||2− ||xn+1− x∗||2

+2δ
∞∑

i=1

σi,nsn||un−PK(un− snAun)||||Aun−Ax∗||

≤ αn|| f (xn)− x∗||2+ ||xn− xn+1||(||xn− x∗||+ ||xn+1− x∗||)

+2δ
∞∑

i=1

σi,nsn||un−PK(un− snAun)||||Aun−Ax∗|| (3.13)

Using limαn = 0, lim ||xn− xn+1|| = 0 and lim ||Aun−Ax∗|| = 0 in (3.13), we have

lim
n→∞
||un−PK(un− snAun)|| = 0. (3.14)

Now, consider the following estimates

||TiPK(I− snA)un−un||
2 ≤ ||TiPK(I− snA)un− x∗+ x∗−un||

2

= ||x∗−un||
2+2〈TiPK(I− snA)un− x∗, x∗−un〉+ ||TiPK(I− snA)un− x∗||2

≤ 2||x∗−un||
2+2〈TiPK(I− snA)un−un+un− x∗, x∗−un〉

= 2||x∗−un||
2+2〈TiPK(I− snA)un−un, x∗−un〉−2||un− x∗||2

= 2〈TiPK(I− snA)un−un, x∗−un〉. (3.15)
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Using (3.15), we obtain

〈xn+1− x∗,un− x∗〉 = αn〈 f (xn)− x∗,un− x∗〉+ (1−αn)(1−δ)〈xn− x∗,un− x∗〉

+δ

∞∑
i=1

σi,n〈TiPK(I− snA)un−un+un− x∗,un− x∗〉

= αn〈 f (xn)− x∗,un− x∗〉+ (1−αn)(1−δ)〈xn−un+un− x∗,un− x∗〉

+δ

∞∑
i=1

σi,n〈TiPK(I− snA)un−un,un− x∗〉+δ(1−αn)||un− x∗||2

= αn〈 f (xn)− x∗,un− x∗〉+ (1−αn)(1−δ)〈xn−un,un− x∗〉

+δ

∞∑
i=1

σi,n〈TiPK(I− snA)un−un,un− x∗〉+ (1−αn)(1−δ)||un− x∗||2

+δ(1−αn)||un− x∗||2

which implies that

δ

∞∑
i=1

σi,n〈TiPK(I− snA)un−un, x∗−un〉 = αn〈 f (xn)− x∗,un− x∗〉

+(1−αn)(1−δ)〈xn−un,un− x∗〉+ (1−αn)〈un− x∗,un− x∗〉

−〈xn+1− x∗,un− x∗〉

= αn〈 f (xn)− xn+1,un− x∗〉+ (1−αn)(1−δ)〈xn−un,un− x∗〉

+(1−αn)〈un− xn+1,un− x∗〉. (3.16)

By (3.16) and (3.15), we obtain

δ

2

∞∑
i=1

σi,n||TiPK(I− snA)un−un||
2 ≤ αn〈 f (xn)− xn+1,un− x∗〉

+(1−αn)(1−δ)〈xn−un,un− x∗〉+ (1−αn)〈un− xn+1,un− x∗〉.

Since {xn}
∞
n=1 and {un}

∞
n=1 are bounded and by (3.11), we have that

lim
n→∞
||TiPK(I− snA)un−un|| = 0, ∀i = 1,2, ... (3.17)

By (3.17) and (3.11), we have

lim
n→∞
||TiPK(I− snA)un− xn|| = 0, ∀i = 1,2, ... (3.18)

(v) Finally, we show that

limsup
n→∞

〈 f (z)− z, xn− z〉 ≤ 0,

where z= PF f (z). To do this, we choose a subsequence {xn j} of {xn}
∞
n=1 such that limsup

n→∞
〈 f (z)−

z, xn− z〉 = lim
j→∞
〈 f (z)− z, xn j − z〉. As {un}

∞
n=1 is bounded, there exists a subsequence {un j}

∞
j=1
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of {un}
∞
n=1 which converges weakly to w. We first show that w ∈

∞⋂
i=1

F(TiPK(I − snA)). As-

sume the contrary that w , TiPK(I− snA)w, i = 1,2, .... Then by Opial condition, we obtain

liminf
j→∞

||un j −w|| < liminf
j→∞

||un j −TiPK(I− snA)w||

≤ liminf
j→∞

(
||un j −TiPK(I− snA)un j ||

+ ||TiPK(I− snA)un j −TiPK(I− snA)w||
)

≤ liminf
j→∞

||un j −w||.

This is a contradiction. Hence, w ∈
∞⋂

i=1
F(TiPK(I− snA)).

We next show that w ∈ EP. Since un = Trn(xn − rnψxn), n ≥ 1, we have for any y ∈ K
that

F(un,y)+ 〈ψxn,y−un〉+
1
rn
〈y−un,un− xn〉 ≥ 0.

Furthermore, replacing n by n j in the last inequality and using (A2), we obtain

〈ψxn j ,y−un j〉+
1

rn j

〈y−un j ,un j − xn j〉 ≥ F(y,un j). (3.19)

Let zt := ty+ (1− t)w for all t ∈ (0,1] and y ∈ K. This implies that zt ∈ K. Then, by (3.19),
we have

〈zt −un j ,ψzt〉 ≥ 〈zt −un j ,ψzt〉− 〈zt −un j ,ψxn j〉−
〈
zt −un j ,

un j − xn j

rn j

〉
+F(zt,un j)

= 〈zt −un j ,ψzt −ψun j〉+ 〈zt −un j ,ψun j −ψxn j〉−
〈
zt −un j ,

un j − xn j

rn j

〉
+F(zt,un j).

Since ||xn j − un j || → 0, j→∞, we obtain ||ψxn j −ψun j || → 0. Furthermore, by the mono-
tonicity of ψ, we obtain 〈zt −un j ,ψzt −ψun j〉 ≥ 0. Then, by (A4) we obtain

〈zt −w,ψzt〉 ≥ F(zt,w), j→∞. (3.20)

Using (A1), (A4) and (3.20) we also obtain

0 = F(zt,zt) ≤ tF(zt,y)+ (1− t)F(zt,w)

≤ tF(zt,y)+ (1− t)〈zt −w,ψzt〉

= tF(zt,y)+ (1− t)t〈y−w,ψzt〉

and hence
0 ≤ F(zt,y)+ (1− t)〈y−w,ψzt〉.

Letting t→ 0, we have, for each y ∈ K,

0 ≤ F(w,y)+ 〈y−w,ψw〉. (3.21)
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This implies that w ∈ EP.
Next, we show u ∈ V(K,A). Put

Mw =
{

Aw+NKw, w ∈ K
∅, w < K.

Since A is relaxed (λ,γ)-cocoercive and by condition (v), we have

〈Ax−Ay, x− y〉 ≥ (−λ)||Ax−Ay||2+γ||x− y||2 ≥ (γ−λµ2)||x− y||2 ≥ 0,

which shows that A is monotone. Thus, M is maximal monotone. Let (w1,w2) ∈ G(M).
Since w2−Aw1 ∈ NKw1 and ρn ∈ K, we have

〈w1−ρn,w2−Aw1〉 ≥ 0.

On the other hand, from ρn = PK(I− snA)un, we have

〈w1−ρn,ρn− (I− snA)un〉 ≥ 0.

and hence

〈w1−ρn,
ρn−un

sn
+Aun〉 ≥ 0.

It follows that

〈w1−ρni ,w2〉 ≥ 〈w1−ρni ,Aw1〉 ≥ 〈w1−ρni ,Aw1〉

−〈w1−ρni ,
ρni −uni

sni

+Auni〉

= 〈w1−ρni ,Aw1−
ρni −uni

sni

−Auni〉

= 〈w1−ρni ,Aw1−Aρni〉+ 〈w1−ρni ,Aρni −Auni〉

−〈w1−ρni ,
ρni −uni

sni

〉

≥ 〈w1−ρni ,Aρni −Auni〉− 〈w1−ρni ,
ρni −uni

sni

〉,

which implies that 〈w1−w,w2〉 ≥ 0, (i→∞). We have w ∈ M−10 and hence w ∈ VI(K,A).

Thus, w ∈
∞⋂

i=1
F(Ti)

⋂
EP
⋂

VI(K,A).

Now, from (2.3), we have

limsup
n→∞

〈 f (z)− z, xn− z〉 = lim
j→∞
〈 f (z)− z, xn j − z〉

= 〈 f (z)− z,w− z〉 ≤ 0. (3.22)
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Therefore,

||xn+1− z||2 = ||αn f (xn)+ (1−δ)(1−αn)xn+δ

∞∑
i=1

σi,nTiρn− z||2

= ||αn( f (xn)− z)+ (1−δ)(1−αn)(xn− z)+δ
∞∑

i=1

σi,n(Tiρn− z)||2

≤ ||(1−δ)(1−αn)(xn− z)+δ
∞∑

i=1

σi,n(Tiρn− z)||2+2αn〈 f (xn)− z, xn+1− z〉

≤ (1−αn)2||xn− z||2+2αn〈 f (xn)− z, xn+1− z〉

≤ (1−αn)2||xn− z||2+2αn〈 f (xn)− f (z), xn+1− z〉+2αn〈 f (z)− z, xn+1− z〉

≤ (1−αn)2||xn− z||2+2αnβ||xn− z||||xn+1− z||+2αn〈 f (z)− z, xn+1− z〉

≤ (1−αn)2||xn− z||2+αnβ(||xn− z||2+ ||xn+1− z||2)+2αn〈 f (z)− z, xn+1− z〉.

This implies that

||xn+1− z||2 ≤
1−2αn+α

2
n+αnβ

1−αnβ
||xn− z||2+

2αn

1−αnβ
〈 f (z)− z, xn+1− z〉

=
[
1−

2(1−β)αn

1−αnβ

]
||xn− z||2+

α2
n

1−αnβ
||xn− z||2+

2αn

1−αnβ
〈 f (z)− z, xn+1− z〉

= (1−γn)||xn− z||2+δn,

where γn := 2(1−β)αn
1−αnβ

, δn := αn
1−αnβ

[
αn||xn− z||2+2〈 f (z)− z, xn+1− z〉

]
. By Lemma 2.2, we get

that {xn}
∞
n=1 converges strongly to z. This completes the proof. �

Corollary 3.2. (Ali [2]) Let K be a closed convex subset of a real Hilbert space H. Let
F be a bifunction from K ×K satisfying (A1)− (A4), A be a µ-Lipschitzian, relaxed (λ,γ)-
cocoercive mapping of K into H and ψ be an α-inverse, strongly monotone mapping of K
into H. Let {Ti}

∞
i=1 be a countable family of nonexpansive mappings of K into H and let

∞⋂
i=1

F(Ti)
⋂

VI(A,C)
⋂

EP(F) , ∅.

Let f : K → K be a contraction map with constant β ∈ (0,1). For a fixed δ ∈ (0,1), let {xn}

and {un} be generated by u, x1 ∈ K,
F(un,y)+ 1

rn
〈y−un,un− xn〉 ≥ 0 ∀y ∈C,

xn+1 = αnu+ (1−δ)(1−αn)xn+δ
∑∞

i=1σi,nTiPK(un− snAun);

for all n ≥ 1, where {αn}
∞
n=1, {βn}

∞
n=1, {σi,n}

∞
n=1 are sequences in [0,1], for all i ≥ 1, {sn}

∞
n=1 ⊂

[a,b] for some a,b ∈ (0, 2(γ−λµ2)
µ2 ) and rn ∈ (0,∞) satisfying:

(1)
∞∑

i=1

σi,n = (1−αn)
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(2) lim
n→∞

αn = 0,
∞∑

n=1

αn =∞

(3) liminf
n→∞

rn > 0, lim
n→∞
|rn+1− rn| = 0

(4) lim
n→∞

∞∑
i=1

∣∣∣∣σi,n+1−σi,n

∣∣∣∣ = 0

(5) 0 < a ≤ b <
2(γ−λµ2)

µ2 , lim
n→∞
|sn+1− sn| = 0,

then {xn}
∞
n=1 converges strongly to z, where z = PFu.

Proof. Put ψ ≡ 0 and f (xn) = u, ∀n ≥ 1 in Theorem 3.1. Then, by Theorem 3.1 we have
the desired result. �

Remark 3.3. The conditions
1
σi,n

∣∣∣∣1− αn−1
αn

∣∣∣∣→ 0, or
∞∑

n=1

1
σi,n
|αn−1−αn| <∞,

1
αn

∣∣∣∣ 1
σi,n
− 1
σi,n−1

∣∣∣∣→ 0, or
∞∑

n=1

∣∣∣∣ 1
σi,n
− 1
σi,n−1

∣∣∣∣ <∞
in used Theorem 1.1 are dispensed with in all our results. Furthermore, condition

1
σi,nαn

∞∑
k=0

∣∣∣∣σk,n−σk,n−1

∣∣∣∣→ 0, or
∞∑

n=1

1
σi,n

∞∑
k=0

∣∣∣∣σk,n−σk,n−1

∣∣∣∣ <∞.
in Theorem 1.1 is weakened to lim

n→∞

∑∞
i=1

∣∣∣∣σi,n+1−σi,n

∣∣∣∣ = 0 in all our results.

Remark 3.4. The prototypes for the sequences {αn} and {σi,n} in this paper are the following:

αn :=
1

n+1
; σi,n :=

n
2i(n+1)

, ∀i ∈ N.
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