C ommunications in $\mathbf{M a t h e m a t i c a l ~} \mathbf{A n a l y s i s}$

Special Volume in Honor of Prof. Stephen Smale

A SURVEY OF JENSEN TYPE INEQUALITIES FOR LOG-CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

S.S. Dragomir*
Mathematics, School of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

(Communicated by Themistocles M. Rassias)

Abstract

Some recent Jensen's type inequalities for log-convex functions of selfadjoint operators in Hilbert spaces under suitable assumptions for the involved operators are surveyed. Applications in relation with some celebrated results due to Hölder-McCarthy and Ky Fan are provided as well.

AMS Subject Classification: 47A63; 47A99.
Keywords: Selfadjoint operators, Functions of Selfadjoint operators, Log-convex functions, Jensen's inequality, Vector inequalities

1 Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space ($H ;\langle.,\rangle$.$) . The Gelfand map$ establishes a *-isometrically isomorphism Φ between the set $C(S p(A))$ of all continuous functions defined on the spectrum of A, denoted $S p(A)$, and the C^{*}-algebra $C^{*}(A)$ generated by A and the identity operator 1_{H} on H as follows (see for instance [13, p. 3]):

For any $f, g \in C(S p(A))$ and any $\alpha, \beta \in \mathbb{C}$ we have
(i) $\Phi(\alpha f+\beta g)=\alpha \Phi(f)+\beta \Phi(g)$;
(ii) $\Phi(f g)=\Phi(f) \Phi(g)$ and $\Phi(\bar{f})=\Phi(f)^{*}$;
(iii) $\|\Phi(f)\|=\|f\|:=\sup _{t \in S p(A)}|f(t)|$;
(iv) $\Phi\left(f_{0}\right)=1_{H}$ and $\Phi\left(f_{1}\right)=A$, where $f_{0}(t)=1$ and $f_{1}(t)=t$, for $t \in \operatorname{Sp}(A)$.

With this notation we define

$$
f(A):=\Phi(f) \text { for all } f \in C(S p(A))
$$

[^0]and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on $S p(A)$, then $f(t) \geq 0$ for any $t \in S p(A)$ implies that $f(A) \geq 0$, i.e. $f(A)$ is a positive operator on H. Moreover, if both f and g are real valued functions on $S p(A)$ then the following important property holds:
\[

$$
\begin{equation*}
f(t) \geq g(t) \text { for any } t \in S p(A) \text { implies that } f(A) \geq g(A) \tag{P}
\end{equation*}
$$

\]

in the operator order of $B(H)$.
For a recent monograph devoted to various inequalities for functions of selfadjoint operators, see [13] and the references therein. For other results, see [19], [15], [18] and [16]. For recent results, see [2]-[12].

2 Some Jensen's Type Inequalities for Log-convex Functions

2.1 Preliminary Results

The following result that provides an operator version for the Jensen inequality for convex functions is due to Mond and Pečarić [17] (see also [13, p. 5]):

Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If f is a convex function on $[m, M]$, then

$$
\begin{equation*}
f(\langle A x, x\rangle) \leq\langle f(A) x, x\rangle \tag{MP}
\end{equation*}
$$

for each $x \in H$ with $\|x\|=1$.
Taking into account the above result and its applications for various concrete examples of convex functions, it is therefore natural to investigate the corresponding results for the case of log-convex functions, namely functions $f: I \rightarrow(0, \infty)$ for which $\ln f$ is convex.

We observe that such functions satisfy the elementary inequality

$$
\begin{equation*}
f((1-t) a+t b) \leq[f(a)]^{1-t}[f(b)]^{t} \tag{2.1}
\end{equation*}
$$

for any $a, b \in I$ and $t \in[0,1]$. Also, due to the fact that the weighted geometric mean is less than the weighted arithmetic mean, it follows that any log-convex function is a convex functions. However, obviously, there are functions that are convex but not log-convex.

As an imediate consequence of the Mond-Pečarić inequality above we can provide the following result:

Theorem 2.1 (Dragomir, 2010, [11]). Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $g:[m, M] \rightarrow(0, \infty)$ is log-convex, then

$$
\begin{equation*}
g(\langle A x, x\rangle) \leq \exp \langle\ln g(A) x, x\rangle \leq\langle g(A) x, x\rangle \tag{2.2}
\end{equation*}
$$

for each $x \in H$ with $\|x\|=1$.
Proof. Consider the function $f:=\ln g$, which is convex on $[m, M]$. Writing (MP) for f we get $\ln [g(\langle A x, x\rangle)] \leq\langle\ln g(A) x, x\rangle$, for each $x \in H$ with $\|x\|=1$, which, by taking the exponential, produces the first inequality in (2.2).

If we also use (MP) for the exponential function, we get

$$
\exp \langle\ln g(A) x, x\rangle \leq\langle\exp [\ln g(A)] x, x\rangle=\langle g(A) x, x\rangle
$$

for each $x \in H$ with $\|x\|=1$ and the proof is complete.
The case of sequences of operators may be of interest and is embodied in the following corollary:

Corollary 2.2 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M], j \in\{1, \ldots, n\}$ and $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, then

$$
\begin{equation*}
g\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \leq \exp \left\langle\sum_{j=1}^{n} \ln g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \leq\left\langle\sum_{j=1}^{n} g\left(A_{j}\right) x_{j}, x_{j}\right\rangle . \tag{2.3}
\end{equation*}
$$

Proof. Follows from Theorem 2.1and we omit the details.
In particular we have:
Corollary 2.3 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M] \subset i, j \in\{1, \ldots, n\}$ and $p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$, then

$$
\begin{equation*}
g\left(\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\right) \leq\left\langle\prod_{j=1}^{n}\left[g\left(A_{j}\right)\right]^{p_{j}} x, x\right\rangle \leq\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle \tag{2.4}
\end{equation*}
$$

for each $x \in H$ with $\|x\|=1$.
Proof. Follows from Corollary 2.2 by choosing $x_{j}=\sqrt{p_{j}} \cdot x, j \in\{1, \ldots, n\}$ where $x \in H$ with $\|x\|=1$.

It is also important to observe that, as a special case of (MP) we have the following important inequality in Operator Theory that is well known as the Hölder-McCarthy inequality:

Theorem 2.4 (Hölder-McCarthy, 1967, [14]). Let A be a selfadjoint positive operator on a Hilbert space H. Then
(i) $\left\langle A^{r} x, x\right\rangle \geq\langle A x, x\rangle^{r}$ for all $r>1$ and $x \in H$ with $\|x\|=1$;
(ii) $\left\langle A^{r} x, x\right\rangle \leq\langle A x, x\rangle^{r}$ for all $0<r<1$ and $x \in H$ with $\|x\|=1$;
(iii) If A is invertible, then $\left\langle A^{-r} x, x\right\rangle \geq\langle A x, x\rangle^{-r}$ for all $r>0$ and $x \in H$ with $\|x\|=1$.

Since the function $g(t)=t^{-r}$ for $r>0$ is log-convex, we can improve the HölderMcCarthy inequality as follows:

Proposition 2.5. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible, then

$$
\begin{equation*}
\langle A x, x\rangle^{-r} \leq \exp \left\langle\ln \left(A^{-r}\right) x, x\right\rangle \leq\left\langle A^{-r} x, x\right\rangle \tag{2.5}
\end{equation*}
$$

for all $r>0$ and $x \in H$ with $\|x\|=1$.

The following reverse for the Mond-Pečarić inequality that generalizes the scalar LahRibarić inequality for convex functions is well known, see for instance [13, p. 57]:

Theorem 2.6. Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If f is a convex function on $[m, M]$, then

$$
\begin{equation*}
\langle f(A) x, x\rangle \leq \frac{M-\langle A x, x\rangle}{M-m} \cdot f(m)+\frac{\langle A x, x\rangle-m}{M-m} \cdot f(M) \tag{2.6}
\end{equation*}
$$

for each $x \in H$ with $\|x\|=1$.
This result can be improved for log-convex functions as follows:
Theorem 2.7 (Dragomir, 2010, [11]). Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $g:[m, M] \rightarrow(0, \infty)$ is log-convex, then

$$
\begin{align*}
\langle g(A) x, x\rangle & \leq\left\langle\left[[g(m)]^{\frac{M 1_{H}-A}{M-m}}[g(M)]^{\frac{A-m 1_{H}}{M-m}}\right] x, x\right\rangle \tag{2.7}\\
& \leq \frac{M-\langle A x, x\rangle}{M-m} \cdot g(m)+\frac{\langle A x, x\rangle-m}{M-m} \cdot g(M)
\end{align*}
$$

and

$$
\left.\left.\left.\left.\begin{array}{rl}
g(\langle A x, x\rangle) & \leq[g(m)]^{\frac{M-(A x, x\rangle}{M-m}}[g(M)]^{\frac{\langle A x, x\rangle-m}{M-m}} \tag{2.8}\\
& \leq\left\langle\left[[g(m)]^{\frac{M 1}{H-A}} \frac{A-m}{M-m}\right.\right.
\end{array} g(M)\right]^{\frac{A-m 1_{H}}{M-m}}\right] x, x\right\rangle\right)
$$

for each $x \in H$ with $\|x\|=1$.
Proof. Observe that, by the log-convexity of g, we have

$$
\begin{equation*}
g(t)=g\left(\frac{M-t}{M-m} \cdot m+\frac{t-m}{M-m} \cdot M\right) \leq[g(m)]^{\frac{M-t}{M-m}}[g(M)]^{\frac{t-m}{M-m}} \tag{2.9}
\end{equation*}
$$

for any $t \in[m, M]$.
Applying the property (P) for the operator A, we have that

$$
\langle g(A) x, x\rangle \leq\langle\Psi(A) x, x\rangle
$$

for each $x \in H$ with $\|x\|=1$, where $\Psi(t):=[g(m)]^{\frac{M-t}{M-m}}[g(M)]^{\frac{t-m}{M-m}}, t \in[m, M]$. This proves the first inequality in (2.7).

Now, observe that, by the weighted arithmetic mean-geometric mean inequality we have

$$
[g(m)]^{\frac{M-t}{M-m}}[g(M)]^{\frac{t-m}{M-m}} \leq \frac{M-t}{M-m} \cdot g(m)+\frac{t-m}{M-m} \cdot g(M)
$$

for any $t \in[m, M]$.
Applying the property (P) for the operator A we deduce the second inequality in (2.7).
Further on, if we use the inequality (2.9) for $t=\langle A x, x\rangle \in[m, M]$ then we deduce the first part of (2.8).

Now, observe that the function Ψ introduced above can be rearranged to read as

$$
\Psi(t)=g(m)\left[\frac{g(M)}{g(m)}\right]^{\frac{t-m}{M-m}}, t \in[m, M]
$$

showing that Ψ is a convex function on $[m, M]$.
Applying Mond-Pečarić's inequality for Ψ we deduce the second part of (2.8) and the proof is complete.

The case of sequences of operators is as follows:
Corollary 2.8 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M], j \in\{1, \ldots, n\}$ and $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, then

$$
\begin{align*}
& \sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle \tag{2.10}\\
& \leq\left\langle\sum_{j=1}^{n}\left[[g(m)]^{\frac{M 1_{H}-A_{j}}{M-m}}[g(M)]^{\frac{A_{j}-m 1_{H}}{M-m}}\right]_{j}, x_{j}\right\rangle \\
& \leq \frac{M-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle}{M-m} \cdot g(m)+\frac{\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle-m}{M-m} \cdot g(M)
\end{align*}
$$

and

$$
\begin{align*}
& g\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right) \tag{2.11}\\
& \leq[g(m)]^{\frac{M-\sum_{j=1}^{n}\left\langle A^{\prime} x_{j}, x_{j}\right\rangle}{M-m}}[g(M)]^{\frac{\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle-m}{M-m}} \\
& \leq\left\langle\sum_{j=1}^{n}\left[[g(m)]^{\frac{M 1}{H-A_{j}}}[g(M)]^{\frac{A_{j}-m 1_{H}}{M-m}}\right]^{M-m}, x_{j}\right\rangle .
\end{align*}
$$

In particular we have:
Corollary 2.9 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M] \subset i, j \in\{1, \ldots, n\}$ and $p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$, then

$$
\begin{align*}
& \left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle \tag{2.12}\\
& \leq\left\langle\sum_{j=1}^{n} p_{j}[g(m)]^{\frac{M 1_{H}-A_{j}}{M-m}}[g(M)]^{\frac{A_{j}-m 1_{H}}{M-m}} x, x\right\rangle \\
& \leq \frac{M-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle}{M-m} \cdot g(m)+\frac{\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle-m}{M-m} \cdot g(M)
\end{align*}
$$

and

$$
\begin{align*}
& g\left(\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\right) \tag{2.13}\\
& \leq[g(m)]^{\frac{M-\left\langle\sum_{j=1}^{n} p^{p} A_{j} x_{x} x\right\rangle}{M-m}}[g(M)]^{\frac{\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle-m}{M-m}} \\
& \leq\left\langle\sum_{j=1}^{n} p_{j}[g(m)]^{\frac{M 1^{H}-A_{j}}{M-m}}[g(M)]^{\frac{A_{j}-m 1_{H}}{M-m}} x, x\right\rangle .
\end{align*}
$$

The above result from Theorem 2.7 can be utilized to produce the following reverse inequality for negative powers of operators:

Proposition 2.10. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible and $S p(A) \subseteq[m, M](0<m<M)$, then

$$
\begin{align*}
\left\langle A^{-r} x, x\right\rangle & \leq\left\langle\left[m^{\frac{M 1_{H}-A}{M-m}} M^{\frac{A-m 1_{H}}{M-m}}\right]^{-r} x, x\right\rangle \tag{2.14}\\
& \leq \frac{M-\langle A x, x\rangle}{M-m} \cdot m^{-r}+\frac{\langle A x, x\rangle-m}{M-m} \cdot M^{-r}
\end{align*}
$$

and

$$
\begin{align*}
\langle A x, x\rangle^{-r} & \leq\left[g(m)^{\frac{M-(A x, x\rangle}{M-m}} g(M)^{\frac{\langle A x, x-m}{M-m}}\right]^{-r} \tag{2.15}\\
& \leq\left\langle\left[m^{\frac{M 11_{H}-A}{M-m}} M^{\frac{A-m 1}{} M-m}\right]^{-r} x, x\right\rangle
\end{align*}
$$

for all $r>0$ and $x \in H$ with $\|x\|=1$.

2.2 Jensen's Inequality for Differentiable Log-convex Functions

The following result provides a reverse for the Jensen type inequality (MP):
Theorem 2.11 (Dragomir, 2008, [5]). Let J be an interval and $f: J \rightarrow \mathbb{R}$ be a convex and differentiable function on J (the interior of J) whose derivative f^{\prime} is continuous on J. If A is a selfadjoint operators on the Hilbert space H with $S p(A) \subseteq[m, M] \subset J$, then

$$
\begin{equation*}
(0 \leq)\langle f(A) x, x\rangle-f(\langle A x, x\rangle) \leq\left\langle f^{\prime}(A) A x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle f^{\prime}(A) x, x\right\rangle \tag{2.16}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
The following result may be stated:
Proposition 2.12 (Dragomir, 2010, [11]). Let J be an interval and $g: J \rightarrow \mathbb{R}$ be a differentiable log-convex function on J Jhose derivative g^{\prime} is continuous on J. If A is a selfadjoint operator on the Hilbert space H with $S p(A) \subseteq[m, M] \subset J$, then

$$
\begin{align*}
& (1 \leq) \frac{\exp \langle\ln g(A) x, x\rangle}{g(\langle A x, x\rangle)} \tag{2.17}\\
& \leq \exp \left[\left\langle g^{\prime}(A)[g(A)]^{-1} A x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle g^{\prime}(A)[g(A)]^{-1} x, x\right\rangle\right]
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.

Proof. It follows by the inequality (2.16) written for the convex function $f=\ln g$ that

$$
\begin{aligned}
\langle\ln g(A) x, x\rangle & \leq \ln g(\langle A x, x\rangle) \\
& +\left\langle g^{\prime}(A)[g(A)]^{-1} A x, x\right\rangle-\langle A x, x\rangle \cdot\left\langle g^{\prime}(A)[g(A)]^{-1} x, x\right\rangle
\end{aligned}
$$

for each $x \in H$ with $\|x\|=1$.
Now, taking the exponential and dividing by $g(\langle A x, x\rangle)>0$ for each $x \in H$ with $\|x\|=1$, we deduce the desired result (2.17).

Corollary 2.13 (Dragomir, 2010, [11]). Assume that g is as in the Proposition 2.12 and A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M] \subset J, j \in\{1, \ldots, n\}$.

If and $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, then

$$
\begin{align*}
& (1 \leq) \frac{\exp \left\langle\sum_{j=1}^{n} \ln g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}{g\left(\sum_{j=1}^{n}\left\langle A_{j} x, x_{j}\right\rangle\right)} \tag{2.18}\\
& \leq \exp \left[\left\langle\sum_{j=1}^{n} g^{\prime}\left(A_{j}\right)\left[g\left(A_{j}\right)\right]^{-1} A_{j} x_{j}, x_{j}\right\rangle\right. \\
& \left.-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle \cdot \sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right)\left[g\left(A_{j}\right)\right]^{-1} x_{j}, x_{j}\right\rangle\right]
\end{align*}
$$

If $p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$, then

$$
\begin{align*}
& (1 \leq) \frac{\left\langle\prod_{j=1}^{n}\left[g\left(A_{j}\right)\right]^{p_{j}} x, x\right\rangle}{g\left(\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\right)} \tag{2.19}\\
& \leq \exp \left[\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right)\left[g\left(A_{j}\right)\right]^{-1} A_{j} x, x\right\rangle\right. \\
& \left.-\sum_{j=1}^{n} p_{j}\left\langle A_{j} x, x\right\rangle \cdot \sum_{j=1}^{n} p_{j}\left\langle g^{\prime}\left(A_{j}\right)\left[g\left(A_{j}\right)\right]^{-1} x, x\right\rangle\right]
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
Remark 2.14. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible, then

$$
\begin{equation*}
(1 \leq)\langle A x, x\rangle^{r} \exp \left\langle\ln \left(A^{-r}\right) x, x\right\rangle \leq \exp \left[r\left(\langle A x, x\rangle \cdot\left\langle A^{-1} x, x\right\rangle-1\right)\right] \tag{2.20}
\end{equation*}
$$

for all $r>0$ and $x \in H$ with $\|x\|=1$.
The following result that provides both a refinement and a reverse of the multiplicative version of Jensen's inequality can be stated as well:

Theorem 2.15 (Dragomir, 2010, [11]). Let J be an interval and $g: J \rightarrow \mathbb{R}$ be a log-convex differentiable function on \bar{J} whose derivative g^{\prime} is continuous on J. If A is a selfadjoint operators on the Hilbert space H with $S p(A) \subseteq[m, M] \subset J$, then

$$
\begin{align*}
1 & \leq\left\langle\exp \left[\frac{g^{\prime}(\langle A x, x\rangle)}{g(\langle A x, x\rangle)}\left(A-\langle A x, x\rangle 1_{H}\right)\right] x, x\right\rangle \tag{2.21}\\
& \leq \frac{\langle g(A) x, x\rangle}{g(\langle A x, x\rangle)} \leq\left\langle\exp \left[g^{\prime}(A)[g(A)]^{-1}\left(A-\langle A x, x\rangle 1_{H}\right)\right] x, x\right\rangle
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$, where 1_{H} denotes the identity operator on H.
Proof. It is well known that if $h: J \rightarrow \mathbb{R}$ is a convex differentiable function on $\stackrel{\circ}{\mathrm{J}}$, then the following gradient inequality holds

$$
h(t)-h(s) \geq h^{\prime}(s)(t-s)
$$

for any $t, s \in \mathbf{J}$.
Now, if we write this inequality for the convex function $h=\ln g$, then we get

$$
\begin{equation*}
\ln g(t)-\ln g(s) \geq \frac{g^{\prime}(s)}{g(s)}(t-s) \tag{2.22}
\end{equation*}
$$

which is equivalent with

$$
\begin{equation*}
g(t) \geq g(s) \exp \left[\frac{g^{\prime}(s)}{g(s)}(t-s)\right] \tag{2.23}
\end{equation*}
$$

for any $t, s \in \mathrm{~J}$.
Further, if we take $s:=\langle A x, x\rangle \in[m, M] \subset \mathbf{J}$, for a fixed $x \in H$ with $\|x\|=1$, in the inequality (2.23), then we get

$$
g(t) \geq g(\langle A x, x\rangle) \exp \left[\frac{g^{\prime}(\langle A x, x\rangle)}{g(\langle A x, x\rangle)}(t-\langle A x, x\rangle)\right]
$$

for any $t \in \mathrm{~J}$.
Utilising the property (P) for the operator A and the Mond-Pečaric inequality for the exponential function, we can state the following inequality that is of interest in itself as well:

$$
\begin{align*}
\langle g(A) y, y\rangle & \geq g(\langle A x, x\rangle)\left\langle\exp \left[\frac{g^{\prime}(\langle A x, x\rangle)}{g(\langle A x, x\rangle)}\left(A-\langle A x, x\rangle 1_{H}\right)\right] y, y\right\rangle \tag{2.24}\\
& \geq g(\langle A x, x\rangle) \exp \left[\frac{g^{\prime}(\langle A x, x\rangle)}{g(\langle A x, x\rangle)}(\langle A y, y\rangle-\langle A x, x\rangle)\right]
\end{align*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$.
Further, if we put $y=x$ in (2.24), then we deduce the first and the second inequality in (2.21).

Now, if we replace s with t in (2.23) we can also write the inequality

$$
g(t) \exp \left[\frac{g^{\prime}(t)}{g(t)}(s-t)\right] \leq g(s)
$$

which is equivalent with

$$
\begin{equation*}
g(t) \leq g(s) \exp \left[\frac{g^{\prime}(t)}{g(t)}(t-s)\right] \tag{2.25}
\end{equation*}
$$

for any $t, s \in \mathrm{~J}$.
Further, if we take $s:=\langle A x, x\rangle \in[m, M] \subset \mathbf{J}$, for a fixed $x \in H$ with $\|x\|=1$, in the inequality (2.25), then we get

$$
g(t) \leq g(\langle A x, x\rangle) \exp \left[\frac{g^{\prime}(t)}{g(t)}(t-\langle A x, x\rangle)\right]
$$

for any $t \in \mathbf{J}$.
Utilising the property (P) for the operator A, then we can state the following inequality that is of interest in itself as well:

$$
\begin{equation*}
\langle g(A) y, y\rangle \leq g(\langle A x, x\rangle)\left\langle\exp \left[g^{\prime}(A)[g(A)]^{-1}\left(A-\langle A x, x\rangle 1_{H}\right)\right] y, y\right\rangle \tag{2.26}
\end{equation*}
$$

for each $x, y \in H$ with $\|x\|=\|y\|=1$.
Finally, if we put $y=x$ in (2.26), then we deduce the last inequality in (2.21).
The case of operator sequences is embodied in the following corollary:
Corollary 2.16 (Dragomir, 2010, [11]). Assume that g is as in the Proposition 2.12 and A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M] \subset J, j \in\{1, \ldots, n\}$.

If and $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, then

$$
\begin{align*}
1 & \leq\left\langle\sum_{j=1}^{n} \exp \left[\frac{g^{\prime}\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)}{g\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)}\left(A_{j}-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle 1_{H}\right)\right] x_{j}, x_{j}\right\rangle \tag{2.27}\\
& \leq \frac{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}{g\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)} \\
& \leq\left\langle\sum_{j=1}^{n} \exp \left[g^{\prime}\left(A_{j}\right)\left[g\left(A_{j}\right)\right]^{-1}\left(A_{j}-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle 1_{H}\right)\right] x_{j}, x_{j}\right\rangle .
\end{align*}
$$

$$
\text { If } p_{j} \geq 0, j \in\{1, \ldots, n\} \text { with } \sum_{j=1}^{n} p_{j}=1, \text { then for each } x \in H \text { with }\|x\|=1
$$

$$
\begin{align*}
1 & \leq\left\langle\sum _ { j = 1 } ^ { n } p _ { j } \operatorname { e x p } \left[\frac{g^{\prime}\left(\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\right)}{g\left(\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\right)}\right.\right. \tag{2.28}\\
& \left.\left.\times\left(A_{j}-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle 1_{H}\right)\right] x, x\right\rangle \\
& \leq \frac{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle}{g\left(\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle\right)} \\
& \leq\left\langle\sum_{j=1}^{n} p_{j} \exp \left[g^{\prime}\left(A_{j}\right)\left[g\left(A_{j}\right)\right]^{-1}\left(A_{j}-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle 1_{H}\right)\right] x, x\right\rangle .
\end{align*}
$$

Remark 2.17. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible, then

$$
\begin{align*}
1 & \leq\left\langle\exp \left[r\left(1_{H}-\langle A x, x\rangle^{-1} A\right)\right] x, x\right\rangle \tag{2.29}\\
& \leq\left\langle A^{-r} x, x\right\rangle\langle A x, x\rangle^{r} \leq\left\langle\exp \left[r\left(1_{H}-\langle A x, x\rangle A^{-1}\right)\right] x, x\right\rangle
\end{align*}
$$

for all $r>0$ and $x \in H$ with $\|x\|=1$.
The following reverse inequality may be proven as well:
Theorem 2.18 (Dragomir, 2010, [11]). Let J be an interval and $g: J \rightarrow \mathbb{R}$ be a log-convex differentiable function on $\stackrel{\circ}{ }$ whose derivative g^{\prime} is continuous on J. If A is a selfadjoint operators on the Hilbert space H with $S p(A) \subseteq[m, M] \subset J$, then

$$
\begin{align*}
& (1 \leq) \frac{\left\langle[g(M)]^{\frac{A-m 1_{H}}{M-m}}[g(m)]^{\frac{M 1_{H}-A}{M-m}} x, x\right\rangle}{\langle g(A) x, x\rangle} \tag{2.30}\\
& \leq \frac{\left\langle g(A) \exp \left[\frac{\left(M 1_{H}-A\right)\left(A-m 1_{H}\right.}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] x, x\right\rangle}{\langle g(A) x, x\rangle} \\
& \leq \exp \left[\frac{1}{4}(M-m)\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right]
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
Proof. Utilising the inequality (2.22) we have successively

$$
\begin{equation*}
\frac{g((1-\lambda) t+\lambda s)}{g(s)} \geq \exp \left[(1-\lambda) \frac{g^{\prime}(s)}{g(s)}(t-s)\right] \tag{2.31}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{g((1-\lambda) t+\lambda s)}{g(t)} \geq \exp \left[-\lambda \frac{g^{\prime}(t)}{g(t)}(t-s)\right] \tag{2.32}
\end{equation*}
$$

for any $t, s \in \mathrm{~J}$ and any $\lambda \in[0,1]$.
Now, if we take the power λ in the inequality (2.31) and the power $1-\lambda$ in (2.32) and multiply the obtained inequalities, we deduce

$$
\begin{align*}
& \frac{[g(t)]^{1-\lambda}[g(s)]^{\lambda}}{g((1-\lambda) t+\lambda s)} \tag{2.33}\\
& \leq \exp \left[(1-\lambda) \lambda\left(\frac{g^{\prime}(t)}{g(t)}-\frac{g^{\prime}(s)}{g(s)}\right)(t-s)\right]
\end{align*}
$$

for any $t, s \in \mathbf{J}$ and any $\lambda \in[0,1]$.
Further on, if we choose in (2.33) $t=M, s=m$ and $\lambda=\frac{M-u}{M-m}$, then, from (2.33) we get the inequality

$$
\begin{align*}
& \frac{[g(M)]^{\frac{u-m}{M-m}}[g(m)]^{\frac{M-u}{M-m}}}{g(u)} \tag{2.34}\\
& \leq \exp \left[\frac{(M-u)(u-m)}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right]
\end{align*}
$$

which, together with the inequality

$$
\frac{(M-u)(u-m)}{M-m} \leq \frac{1}{4}(M-m)
$$

produce

$$
\begin{align*}
& {[g(M)]^{\frac{1-m}{M-m}}[g(m)]^{\frac{M-u}{-m}}} \tag{2.35}\\
& \leq g(u) \exp \left[\frac{(M-u)(u-m)}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] \\
& \leq g(u) \exp \left[\frac{1}{4}(M-m)\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right]
\end{align*}
$$

for any $u \in[m, M]$.
If we apply the property (P) to the inequality (2.35) and for the operator A we deduce the desired result.

Corollary 2.19 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.18 and A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M] \subset J, j \in\{1, \ldots, n\}$.

If $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, then

$$
\begin{align*}
& (1 \leq) \frac{\sum_{j=1}^{n}\left\langle[g(M)]^{\frac{A_{j}-m 1_{H}}{M-m}}[g(m)]^{\frac{M 1_{H}-A_{j}}{M-m}} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle} \tag{2.36}\\
& \leq \frac{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) \exp \left[\frac{\left(M 1_{H}-A_{j}\right)\left(A_{j}-m 1_{H}\right)}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle} \\
& \leq \exp \left[\frac{1}{4}(M-m)\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] .
\end{align*}
$$

If $p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$, then for each $x \in H$ with $\|x\|=1$

$$
\begin{align*}
& (1 \leq) \frac{\left\langle\sum_{j=1}^{n} p_{j}[g(M)]^{\frac{A_{j}-m 1_{H}}{M-m}}[g(m)]^{\frac{M 1_{H}-A_{j}}{M-m}} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle} \tag{2.37}\\
& \leq \frac{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) \exp \left[\frac{\left(M 1_{H}-A_{j}\right)\left(A_{j}-m 1_{H}\right)}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle} \\
& \leq \exp \left[\frac{1}{4}(M-m)\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] .
\end{align*}
$$

Remark 2.20. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible and $S p(A) \subseteq[m, M](0<m<M)$, then

$$
\begin{align*}
& (1 \leq) \frac{\left\langle[g(M)]^{\frac{r\left(m 1_{H}-A\right)}{M-m}}[g(m)]^{\frac{r\left(A-M 1_{H}\right)}{M-m}} x, x\right\rangle}{\left\langle A^{-r} x, x\right\rangle} \tag{2.38}\\
& \leq \frac{\left\langle A^{-r} \exp \left[\frac{r\left(M 1_{H}-A\right)\left(A-m 1_{H}\right)}{M m}\right] x, x\right\rangle}{\left\langle A^{-r} x, x\right\rangle} \leq \exp \left[\frac{1}{4} r \frac{(M-m)^{2}}{m M}\right]
\end{align*}
$$

2.3 Applications for Ky Fan's Inequality

Consider the function $g:(0,1) \rightarrow \mathbb{R}, g(t)=\left(\frac{1-t}{t}\right)^{r}, r>0$. Observe that for the new function $f:(0,1) \rightarrow \mathbb{R}, f(t)=\ln g(t)$ we have

$$
f^{\prime}(t)=\frac{-r}{t(1-t)} \text { and } f^{\prime \prime}(t)=\frac{2 r\left(\frac{1}{2}-t\right)}{t^{2}(1-t)^{2}} \text { for } t \in(0,1)
$$

showing that the function g is log-convex on the interval $\left(0, \frac{1}{2}\right)$.
If $p_{i}>0$ for $i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$ and $t_{i} \in\left(0, \frac{1}{2}\right)$ for $i \in\{1, \ldots, n\}$, then by applying the Jensen inequality for the convex function f (with $r=1$) on the interval $\left(0, \frac{1}{2}\right)$ we get

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} p_{i} t_{i}}{1-\sum_{i=1}^{n} p_{i} t_{i}} \geq \prod_{i=1}^{n}\left(\frac{t_{i}}{1-t_{i}}\right)^{p_{i}} \tag{2.39}
\end{equation*}
$$

which is the weighted version of the celebrated Ky Fan's inequality, see [1, p. 3].
This inequality is equivalent with

$$
\prod_{i=1}^{n}\left(\frac{1-t_{i}}{t_{i}}\right)^{p_{i}} \geq \frac{1-\sum_{i=1}^{n} p_{i} t_{i}}{\sum_{i=1}^{n} p_{i} t_{i}},
$$

where $p_{i}>0$ for $i \in\{1, \ldots, n\}$ with $\sum_{i=1}^{n} p_{i}=1$ and $t_{i} \in\left(0, \frac{1}{2}\right)$ for $i \in\{1, \ldots, n\}$.
By the weighted arithmetic mean - geometric mean inequality we also have that

$$
\sum_{i=1}^{n} p_{i}\left(1-t_{i}\right) t_{i}^{-1} \geq \prod_{i=1}^{n}\left(\frac{1-t_{i}}{t_{i}}\right)^{p_{i}}
$$

giving the double inequality

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i}\left(1-t_{i}\right) t_{i}^{-1} \geq \prod_{i=1}^{n}\left(\left(1-t_{i}\right) t_{i}^{-1}\right)^{p_{i}} \geq \sum_{i=1}^{n} p_{i}\left(1-t_{i}\right)\left(\sum_{i=1}^{n} p_{i} t_{i}\right)^{-1} . \tag{2.40}
\end{equation*}
$$

The following operator inequalities generalizing (2.40) may be stated:

Proposition 2.21. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible and $S p(A) \subset\left(0, \frac{1}{2}\right)$, then

$$
\begin{align*}
\left\langle\left(A^{-1}\left(1_{H}-A\right)\right)^{r} x, x\right\rangle & \geq \exp \left\langle\ln \left(A^{-1}\left(1_{H}-A\right)\right)^{r} x, x\right\rangle \tag{2.41}\\
& \geq\left(\left\langle\left(1_{H}-A\right) x, x\right\rangle\langle A x, x\rangle^{-1}\right)^{r}
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$ and $r>0$.
In particular,

$$
\begin{align*}
\left\langle A^{-1}\left(1_{H}-A\right) x, x\right\rangle & \geq \exp \left\langle\ln \left(A^{-1}\left(1_{H}-A\right)\right) x, x\right\rangle \tag{2.42}\\
& \geq\left\langle\left(1_{H}-A\right) x, x\right\rangle\langle A x, x\rangle^{-1}
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
The proof follows by Theorem 2.1 applied for the log-convex function $g(t)=\left(\frac{1-t}{t}\right)^{r}, r>$ $0, t \in\left(0, \frac{1}{2}\right)$.

Proposition 2.22. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible and $S p(A) \subseteq[m, M] \subset\left(0, \frac{1}{2}\right)$, then

$$
\begin{align*}
& \left\langle\left(\left(1_{H}-A\right) A^{-1}\right)^{r} x, x\right\rangle \tag{2.43}\\
& \leq\left\langle\left\langle\left(\frac{1-m}{m}\right)^{\frac{r\left(M_{H}-A\right)}{M-m}}\left(\frac{1-M}{M}\right)^{\frac{r\left(A-m 1_{H}\right)}{M-m}}\right] x, x\right\rangle \\
& \leq \frac{M-\langle A x, x\rangle}{M-m} \cdot\left(\frac{1-m}{m}\right)^{r}+\frac{\langle A x, x\rangle-m}{M-m} \cdot\left(\frac{1-M}{M}\right)^{r}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\frac{1-\langle A x, x\rangle}{\langle A x, x\rangle}\right)^{r} \tag{2.44}\\
& \leq\left(\frac{1-m}{m}\right)^{\frac{r(M-(A x, x)}{M-m}}\left(\frac{1-M}{M}\right)^{\frac{r(A x, x\rangle-m)}{M-m}} \\
& \leq\left\langle\left[\left(\frac{1-m}{m}\right)^{\frac{r\left(M 1_{H}-A\right)}{M-m}}\left(\frac{1-M}{M}\right)^{\frac{r\left(A-m 1_{H}\right)}{M-m}}\right] x, x\right\rangle
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$ and $r>0$.
The proof follows by Theorem 2.7 applied for the log-convex function $g(t)=\left(\frac{1-t}{t}\right)^{r}, r>$ $0, t \in\left(0, \frac{1}{2}\right)$.

Finally we have:

Proposition 2.23. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible and $S p(A) \subset\left(0, \frac{1}{2}\right)$, then

$$
\begin{align*}
& (1 \leq) \frac{\exp \left\langle\ln \left(\left(1_{H}-A\right) A^{-1}\right)^{r} x, x\right\rangle}{\left((1-\langle A x, x\rangle)\langle A x, x\rangle^{-1}\right)^{r}} \tag{2.45}\\
& \leq \exp \left[r\left(\langle A x, x\rangle \cdot\left\langle A^{-1}\left(1_{H}-A\right)^{-1} x, x\right\rangle-\left\langle\left(1_{H}-A\right)^{-1} x, x\right\rangle\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
1 & \leq\left\langle\exp \left[r(1-\langle A x, x\rangle)^{-1}\left(1_{H}-\langle A x, x\rangle^{-1} A\right)\right] x, x\right\rangle \tag{2.46}\\
& \leq \frac{\left\langle\left(\left(1_{H}-A\right) A^{-1}\right)^{r} x, x\right\rangle}{\left((1-\langle A x, x\rangle)\langle A x, x\rangle^{-1}\right)^{r}} \\
& \leq\left\langle\exp \left[r\left(1_{H}-A\right)^{-1}\left(\langle A x, x\rangle A^{-1}-1_{H}\right)\right] x, x\right\rangle
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$ and $r>0$.
The proof follows by Proposition 2.12 and Theorem 2.15 applied for the log-convex function $g(t)=\left(\frac{1-t}{t}\right)^{r}, r>0, t \in\left(0, \frac{1}{2}\right)$. The details are omitted.

2.4 More Inequalities for Differentiable Log-convex Functions

The following results providing companion inequalities for the Jensen inequality for differentiable log-convex functions hold:

Theorem 2.24 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $g: J \rightarrow(0, \infty)$ is a differentiable log-convex function with the derivative continuous on J and $[m, M] \subset J$, then

$$
\begin{align*}
& \exp \left[\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\langle g(A) x, x\rangle}-\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle} \cdot \frac{\left\langle g^{\prime}(A) x, x\right\rangle}{\langle g(A) x, x\rangle}\right] \tag{2.47}\\
& \geq \frac{\exp \left[\frac{\langle g(A) \ln g(A) x, x\rangle}{\langle g(A) x, x\rangle}\right]}{g\left(\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\right)} \geq 1
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
If

$$
\begin{equation*}
\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle} \in J \text { for each } x \in H \text { with }\|x\|=1 \tag{C}
\end{equation*}
$$

then

$$
\begin{align*}
& \exp \left[\frac{g^{\prime}\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}{g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}-\frac{\langle A g(A) x, x\rangle}{\langle g(A) x, x\rangle}\right)\right] \tag{2.48}\\
& \geq \frac{g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}{\exp \left(\frac{\langle g(A) \ln g(A) x, x\rangle}{\langle g(A) x, x\rangle}\right)} \geq 1,
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.

Proof. By the gradient inequality for the convex function $\ln g$ we have

$$
\begin{equation*}
\frac{g^{\prime}(t)}{g(t)}(t-s) \geq \ln g(t)-\ln g(s) \geq \frac{g^{\prime}(s)}{g(s)}(t-s) \tag{2.49}
\end{equation*}
$$

for any $t, s \in J$, which by multiplication with $g(t)>0$ is equivalent with

$$
\begin{equation*}
g^{\prime}(t)(t-s) \geq g(t) \ln g(t)-g(t) \ln g(s) \geq \frac{g^{\prime}(s)}{g(s)}(t g(t)-s g(t)) \tag{2.50}
\end{equation*}
$$

for any $t, s \in J$.
Fix $s \in J$ and apply the property (P) to get that

$$
\begin{align*}
\left\langle g^{\prime}(A) A x, x\right\rangle-s\left\langle g^{\prime}(A) x, x\right\rangle & \geq\langle g(A) \ln g(A) x, x\rangle-\langle g(A) x, x\rangle \ln g(s) \tag{2.51}\\
& \geq \frac{g^{\prime}(s)}{g(s)}(\langle A g(A) x, x\rangle-s\langle g(A) x, x\rangle)
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$, which is an inequality of interest in itself as well.
Since

$$
\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle} \in[m, M] \text { for any } x \in H \text { with }\|x\|=1
$$

then on choosing $s:=\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}$ in (2.51) we get

$$
\begin{aligned}
& \left\langle g^{\prime}(A) A x, x\right\rangle-\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\left\langle g^{\prime}(A) x, x\right\rangle \\
& \geq\langle g(A) \ln g(A) x, x\rangle-\langle g(A) x, x\rangle \ln g\left(\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\right) \geq 0
\end{aligned}
$$

which, by division with $\langle g(A) x, x\rangle>0$, produces

$$
\begin{align*}
& \frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\langle g(A) x, x\rangle}-\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle} \cdot \frac{\left\langle g^{\prime}(A) x, x\right\rangle}{\langle g(A) x, x\rangle} \tag{2.52}\\
& \geq \frac{\langle g(A) \ln g(A) x, x\rangle}{\langle g(A) x, x\rangle}-\ln g\left(\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\right) \geq 0
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Taking the exponential in (2.52) we deduce the desired inequality (2.47).
Now, assuming that the condition (C) holds, then by choosing $s:=\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}$ in (2.51) we get

$$
\begin{aligned}
0 & \geq\langle g(A) \ln g(A) x, x\rangle-\langle g(A) x, x\rangle \ln g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right) \\
& \geq \frac{g^{\prime}\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}{g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}\left(\langle A g(A) x, x\rangle-\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\langle g(A) x, x\rangle\right)
\end{aligned}
$$

which, by dividing with $\langle g(A) x, x\rangle>0$ and rearranging, is equivalent with

$$
\begin{align*}
& \frac{g^{\prime}\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}{g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}-\frac{\langle A g(A) x, x\rangle}{\langle g(A) x, x\rangle}\right) \tag{2.53}\\
& \geq \ln g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)-\frac{\langle g(A) \ln g(A) x, x\rangle}{\langle g(A) x, x\rangle} \geq 0
\end{align*}
$$

for any $x \in H$ with $\|x\|=1$.
Finally, on taking the exponential in (2.53) we deduce the desired inequality (2.48).
Remark 2.25. We observe that a sufficient condition for (C) to hold is that either $g^{\prime}(A)$ or $-g^{\prime}(A)$ is a positive definite operator on H.
Corollary 2.26 (Dragomir, 2010, [12]). Assume that A and g are as in Theorem 2.24. If the condition (C) holds, then we have the double inequality

$$
\begin{equation*}
\ln g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right) \geq \frac{\langle g(A) \ln g(A) x, x\rangle}{\langle g(A) x, x\rangle} \geq \ln g\left(\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\right) \tag{2.54}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
Remark 2.27. Assume that A is a positive definite operator on H. Since for $r>0$ the function $g(t)=t^{-r}$ is log-convex on $(0, \infty)$ and

$$
\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}=\frac{\left\langle A^{-r} x, x\right\rangle}{\left\langle A^{-r-1} x, x\right\rangle}>0
$$

for any $x \in H$ with $\|x\|=1$, then on applying the inequality (2.54) we deduce the following interesting result

$$
\begin{equation*}
\ln \left(\frac{\left\langle A^{-r} x, x\right\rangle}{\left\langle A^{-r-1} x, x\right\rangle}\right) \leq \frac{\left\langle A^{-r} \ln A x, x\right\rangle}{\left\langle A^{-r} x, x\right\rangle} \leq \ln \left(\frac{\left\langle A^{-r+1} x, x\right\rangle}{\left\langle A^{-r} x, x\right\rangle}\right) \tag{2.55}
\end{equation*}
$$

for any $x \in H$ with $\|x\|=1$.
The details of the proof are left to the interested reader.
The case of sequences of operators is embodied in the following corollary:
Corollary 2.28 (Dragomir, 2010, [12]). Let $A_{j}, j \in\{1, \ldots, n\}$ be selfadjoint operators on the Hilbert space H and assume that $S p\left(A_{j}\right) \subseteq[m, M]$ for some scalars m, M with $m<M$ and each $j \in\{1, \ldots, n\}$. If $g: J \rightarrow(0, \infty)$ is a differentiable log-convex function with the derivative continuous on J and $[m, M] \subset J$, then

$$
\begin{align*}
& \exp \left[\frac{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right. \tag{2.56}\\
& \left.-\frac{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle} \cdot \frac{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right] \\
& \geq \frac{\exp \left[\frac{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) \ln g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right]}{g\left(\frac{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right)} \geq 1
\end{align*}
$$

for each $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
If

$$
\begin{equation*}
\frac{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle} \in J \tag{2.57}
\end{equation*}
$$

for each $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, then

$$
\begin{align*}
& \exp \left[\frac{g^{\prime}\left(\frac{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right)}{g\left(\frac{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) A_{j} x_{j} x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right)}\right. \tag{2.58}\\
& \left.\times\left(\frac{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle}-\frac{\sum_{j=1}^{n}\left\langle A_{j} g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right)\right] \\
& \geq \frac{g\left(\frac{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) A_{j} x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g^{\prime}\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right)}{\exp \left(\frac{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) \ln g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}{\sum_{j=1}^{n}\left\langle g\left(A_{j}\right) x_{j}, x_{j}\right\rangle}\right)} \geq 1,
\end{align*}
$$

for each $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$.
The following particular case for sequences of operators also holds:
Corollary 2.29 (Dragomir, 2010, [12]). With the assumptions of Corollary 2.28 and if $p_{j} \geq 0, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n} p_{j}=1$, then

$$
\begin{align*}
& \exp \left[\frac{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle}\right. \tag{2.59}\\
& \left.-\frac{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle} \cdot \frac{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle}\right] \\
& \geq \frac{\exp \left[\frac{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) \ln g\left(A_{j}\right) x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle}\right]}{g\left(\frac{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle}\right)} \geq 1
\end{align*}
$$

for each $x \in H$, with $\|x\|=1$.
If

$$
\begin{equation*}
\frac{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) x, x\right\rangle} \in J \tag{2.60}
\end{equation*}
$$

for each $x \in H$, with $\|x\|=1$, then

$$
\begin{align*}
& \exp \left[\frac{g^{\prime}\left(\frac{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) x, x\right\rangle}\right)}{g\left(\frac{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) x, x\right\rangle}\right)}\right. \tag{2.61}\\
& \left.\times\left(\frac{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) x, x\right\rangle}-\frac{\left\langle\sum_{j=1}^{n} p_{j} A_{j} g\left(A_{j}\right) x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle}\right)\right] \\
& \geq \frac{g\left(\frac{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) A_{j} x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g^{\prime}\left(A_{j}\right) x, x\right\rangle}\right)}{\exp \left(\frac{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) \ln g\left(A_{j}\right) x, x\right\rangle}{\left\langle\sum_{j=1}^{n} p_{j} g\left(A_{j}\right) x, x\right\rangle}\right)} \geq 1
\end{align*}
$$

for each $x \in H$, with $\|x\|=1$.
Proof. Follows from Corollary 2.28 by choosing $x_{j}=\sqrt{p_{j}} \cdot x, j \in\{1, \ldots, n\}$ where $x \in H$ with $\|x\|=1$.

The following result providing different inequalities also holds:
Theorem 2.30 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $g: J \rightarrow(0, \infty)$ is a differentiable log-convex function with the derivative continuous on J and $[m, M] \subset J$, then

$$
\begin{align*}
& \left\langle\exp \left[g^{\prime}(A)\left(A-\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle} 1_{H}\right)\right] x, x\right\rangle \tag{2.62}\\
& \geq\left\langle\left(\frac{g(A)}{g\left(\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\right)}\right)^{g(A)} x, x\right\rangle \\
& \geq\left\langle\exp \left[\frac{g^{\prime}\left(\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\right)}{g\left(\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle}\right)}\left(A g(A)-\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle} g(A)\right)\right] x, x\right\rangle \geq 1
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
If the condition (C) from Theorem 2.24 holds, then

$$
\begin{align*}
& \left\langle\exp \left[\frac{g^{\prime}\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}{g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)}\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle} g(A)-A g(A)\right)\right] x, x\right\rangle \tag{2.63}\\
& \geq\left\langle\left(g\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle}\right)[g(A)]^{-1}\right)^{g(A)} x, x\right\rangle \\
& \geq\left\langle\exp \left[g^{\prime}(A)\left(\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A) x, x\right\rangle} 1_{H}-A\right)\right] x, x\right\rangle \geq 1
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.

Proof. By taking the exponential in (2.50) we have the following inequality

$$
\begin{equation*}
\exp \left[g^{\prime}(t)(t-s)\right] \geq\left(\frac{g(t)}{g(s)}\right)^{g(t)} \geq \exp \left[\frac{g^{\prime}(s)}{g(s)}(t g(t)-s g(t))\right] \tag{2.64}
\end{equation*}
$$

for any $t, s \in J$.
If we fix $s \in J$ and apply the property (P) to the inequality (2.64), we deduce

$$
\begin{align*}
\left\langle\exp \left[g^{\prime}(A)\left(A-s 1_{H}\right)\right] x, x\right\rangle & \geq\left\langle\left(\frac{g(A)}{g(s)}\right)^{g(A)} x, x\right\rangle \tag{2.65}\\
& \geq\left\langle\exp \left[\frac{g^{\prime}(s)}{g(s)}(A g(A)-\operatorname{sg}(A))\right] x, x\right\rangle
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$, where 1_{H} is the identity operator on H.
By Mond-Pečarić's inequality applied for the convex function exp we also have

$$
\begin{align*}
& \left\langle\exp \left[\frac{g^{\prime}(s)}{g(s)}(A g(A)-s g(A))\right] x, x\right\rangle \tag{2.66}\\
& \geq \exp \left(\frac{g^{\prime}(s)}{g(s)}(\langle A g(A) x, x\rangle-s\langle g(A) x, x\rangle)\right)
\end{align*}
$$

for each $s \in J$ and $x \in H$ with $\|x\|=1$.
Now, if we choose $s:=\frac{\langle g(A) A x, x\rangle}{\langle g(A) x, x\rangle} \in[m, M]$ in (2.65) and (2.66) we deduce the desired result (2.62).

Observe that, the inequality (2.64) is equivalent with

$$
\begin{equation*}
\exp \left[\frac{g^{\prime}(s)}{g(s)}(s g(t)-\operatorname{tg}(t))\right] \geq\left(\frac{g(s)}{g(t)}\right)^{g(t)} \geq \exp \left[g^{\prime}(t)(s-t)\right] \tag{2.67}
\end{equation*}
$$

for any $t, s \in J$.
If we fix $s \in J$ and apply the property (P) to the inequality (2.67) we deduce

$$
\begin{align*}
\left\langle\exp \left[\frac{g^{\prime}(s)}{g(s)}(s g(A)-A g(A))\right] x, x\right\rangle & \geq\left\langle\left(g(s)[g(A)]^{-1}\right)^{g(A)} x, x\right\rangle \tag{2.68}\\
& \geq\left\langle\exp \left[g^{\prime}(A)\left(s 1_{H}-A\right)\right] x, x\right\rangle
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
By Mond-Pečarić's inequality we also have

$$
\begin{equation*}
\left\langle\exp \left[g^{\prime}(A)\left(s 1_{H}-A\right)\right] x, x\right\rangle \geq \exp \left[s\left\langle g^{\prime}(A) x, x\right\rangle-\left\langle g^{\prime}(A) A x, x\right\rangle\right] \tag{2.69}
\end{equation*}
$$

for each $s \in J$ and $x \in H$ with $\|x\|=1$.
Taking into account that the condition (C) is valid, then we can choose in (2.68) and (2.69) $s:=\frac{\left\langle g^{\prime}(A) A x, x\right\rangle}{\left\langle g^{\prime}(A), x\right\rangle}$ to get the desired result (2.63).

Remark 2.31. If we apply, for instance, the inequality (2.62) for the log-convex function $g(t)=t^{-1}, t>0$, then, after simple calculations, we get the inequality

$$
\begin{align*}
\left\langle\exp \left(\frac{A^{-2}-\left\langle A^{-1} x, x\right\rangle A^{-1}}{A^{-2}-\left\langle A^{-1} x, x\right\rangle}\right) x, x\right\rangle & \geq\left\langle\left(\left\langle A^{-1} x, x\right\rangle A^{-1}\right)^{A^{-1}} x, x\right\rangle \tag{2.70}\\
& \geq\left\langle\exp \left(\frac{A^{-1}-\left\langle A^{-1} x, x\right\rangle 1_{H}}{\left\langle A^{-1} x, x\right\rangle^{2}}\right) x, x\right\rangle \\
& \geq 1
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
Other similar results can be obtained from the inequality (2.63), however the details are left to the interested reader.

2.5 A Reverse Inequality

The following reverse inequality is also of interest:
Theorem 2.32 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space H and assume that $S p(A) \subseteq[m, M]$ for some scalars m, M with $m<M$. If $g: J \rightarrow(0, \infty)$ is a differentiable log-convex function with the derivative continuous on J and $[m, M] \subset J$, then

$$
\begin{align*}
& (1 \leq) \frac{[g(m)]^{\frac{M-\langle A x, x\rangle}{M-m}}[g(M)]^{\frac{\langle A x, x-m}{M-m}}}{\exp \langle\ln g(A) x, x\rangle} \tag{2.71}\\
& \leq \exp \left[\frac{\left\langle\left(M 1_{H}-A\right)\left(A-m 1_{H}\right) x, x\right\rangle}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] \\
& \leq \exp \left[\frac{(M-\langle A x, x\rangle)(\langle A x, x\rangle-m)}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] \\
& \leq \exp \left[\frac{1}{4}(M-m)\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right]
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
Proof. Utilising the inequality (2.49) we have successively

$$
\begin{equation*}
\ln g((1-\lambda) t+\lambda s)-\ln g(s) \geq(1-\lambda) \frac{g^{\prime}(s)}{g(s)}(t-s) \tag{2.72}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln g((1-\lambda) t+\lambda s)-\ln g(t) \geq-\lambda \frac{g^{\prime}(t)}{g(t)}(t-s) \tag{2.73}
\end{equation*}
$$

for any $t, s \in \mathbf{J}$ and any $\lambda \in[0,1]$.
Now, if we multiply (2.72) by λ and (2.73) by $1-\lambda$ and sum the obtained inequalities, we deduce

$$
\begin{align*}
& (1-\lambda) \ln g(t)+\lambda \ln g(s)-\ln g((1-\lambda) t+\lambda s) \tag{2.74}\\
& \leq(1-\lambda) \lambda\left[\left(\frac{g^{\prime}(t)}{g(t)}-\frac{g^{\prime}(s)}{g(s)}\right)(t-s)\right]
\end{align*}
$$

for any $t, s \in \mathbb{\mathrm { J }}$ and any $\lambda \in[0,1]$.
Now, if we choose $\lambda:=\frac{M-u}{M-m}, s:=m$ and $t:=M$ in (2.74) then we get the inequality

$$
\begin{align*}
& \frac{u-m}{M-m} \ln g(M)+\frac{M-u}{M-m} \ln g(m)-\ln g(u) \tag{2.75}\\
& \leq\left[\frac{(M-u)(u-m)}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right]
\end{align*}
$$

for any $u \in[m, M]$.
If we use the property (P) for the operator A we get

$$
\begin{align*}
& \frac{\langle A x, x\rangle-m}{M-m} \ln g(M)+\frac{M-\langle A x, x\rangle}{M-m} \ln g(m)-\langle\ln g(A) x, x\rangle \tag{2.76}\\
& \leq\left[\frac{\left\langle\left(M 1_{H}-A\right)\left(A-m 1_{H}\right) x, x\right\rangle}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right]
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
Taking the exponential in (2.76) we deduce the first inequality in (2.71).
Now, consider the function $h:[m, M] \rightarrow \mathbb{R}, h(t)=(M-t)(t-m)$. This function is concave in $[m, M]$ and by Mond-Pečarić's inequality we have

$$
\left\langle\left(M 1_{H}-A\right)\left(A-m 1_{H}\right) x, x\right\rangle \leq(M-\langle A x, x\rangle)(\langle A x, x\rangle-m)
$$

for each $x \in H$ with $\|x\|=1$, which proves the second inequality in (2.71).
For the last inequality, we observe that

$$
(M-\langle A x, x\rangle)(\langle A x, x\rangle-m) \leq \frac{1}{4}(M-m)^{2},
$$

and the proof is complete.
Corollary 2.33 (Dragomir, 2010, [12]). Assume that g is as in Theorem 2.32 and A_{j} are selfadjoint operators with $S p\left(A_{j}\right) \subseteq[m, M] \subset J, j \in\{1, \ldots, n\}$.

If and $x_{j} \in H, j \in\{1, \ldots, n\}$ with $\sum_{j=1}^{n}\left\|x_{j}\right\|^{2}=1$, then

$$
\begin{align*}
& (1 \leq) \frac{[g(m)]^{\frac{M-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle}{M-m}}[g(M)]^{\frac{\sum_{j=1}^{n}\left\langle A_{j} x_{j} x_{j}\right\rangle-m}{M-m}}}{\exp \left(\sum_{j}^{n}\left\langle\ln g\left(A_{j}\right) x_{j}, x_{j}\right\rangle\right)} \tag{2.77}\\
& \leq \exp \left[\frac{\sum_{j=1}^{n}\left\langle\left(M 1_{H}-A_{j}\right)\left(A_{j}-m 1_{H}\right) x_{j}, x_{j}\right\rangle}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] \\
& \leq \exp \left[\frac{\left(M-\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle\right)\left(\sum_{j=1}^{n}\left\langle A_{j} x_{j}, x_{j}\right\rangle-m\right)}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] \\
& \leq \exp \left[\frac{1}{4}(M-m)\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] .
\end{align*}
$$

$$
\begin{align*}
& \text { If } p_{j} \geq \\
& \qquad \tag{2.78}\\
& \qquad \begin{array}{l}
(1 \leq) \frac{[g(m)]^{\frac{M-\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle}{M-m}}[g(M)]^{\frac{\left\langle\sum_{j=1}^{n} p_{j} A_{j} x, x\right\rangle-m}{M-m}}}{\left\langle\prod_{j=1}^{n}\left[g\left(A_{j}\right)\right]^{p_{j}} x, x\right\rangle} \\
\end{array} \\
& \leq \exp \left[\frac{\sum_{j=1}^{n} p_{j}\left\langle\left(M 1_{H}-A_{j}\right)\left(A_{j}-m 1_{H}\right) x_{j}, x_{j}\right\rangle}{M-m}\left(\frac{g^{\prime}(M)}{g(M)}-\frac{g^{\prime}(m)}{g(m)}\right)\right] \\
&
\end{align*}
$$

for each $x \in H$ with $\|x\|=1$.
Remark 2.34. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible, then

$$
\begin{align*}
(1 \leq) \frac{m^{\frac{\langle A x, x\rangle-M}{M-m}} M^{\frac{m-\langle A x, x\rangle}{M-m}}}{\exp \left\langle\ln A^{-1} x, x\right\rangle} & \leq \exp \left[\frac{\left\langle\left(M 1_{H}-A\right)\left(A-m 1_{H}\right) x, x\right\rangle}{M m}\right] \tag{2.79}\\
& \leq \exp \left[\frac{(M-\langle A x, x\rangle)(\langle A x, x\rangle-m)}{M m}\right] \\
& \leq \exp \left[\frac{1}{4} \frac{(M-m)^{2}}{m M}\right]
\end{align*}
$$

for all $x \in H$ with $\|x\|=1$.

References

[1] E.F. Beckenbach and R. Bellman, Inequalities, 4th Edition, Springer-Verlag, Berlin, 1983.
[2] S.S. Dragomir, Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint, RGMIA Res. Rep. Coll., 11(e) (2008), Art. 11.
[3] S.S. Dragomir, Some new Grüss' type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 12.
[4] S.S. Dragomir, Čebyšev's type inequalities for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 9.
[5] S.S. Dragomir, Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 15.
[6] S.S. Dragomir, Some Slater's type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 7.
[7] S.S. Dragomir, Some inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 10.
[8] S.S. Dragomir, Some Jensen's type inequalities for twice differentiable functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 11(e) (2008), Art. 13.
[9] S.S. Dragomir, Hermite-Hadamard's type inequalities for operator convex functions, Preprint RGMIA Res. Rep. Coll., 13(2010), No. 1, Art. 7.
[10] S.S. Dragomir, Hermite-Hadamard's type inequalities for convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll. 13(2010), No. 2, Art. 1.
[11] S.S. Dragomir, Some Jensen's type inequalities for log-convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 13(e)(2010), Art. 2.
[12] S.S. Dragomir, New Jensen's type inequalities for differentiable log-convex functions of selfadjoint operators in Hilbert spaces, Preprint RGMIA Res. Rep. Coll., 13(e)(2010), Art. 3 .
[13] T. Furuta, J. Mićić, J. Pečarić and Y. Seo, Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Element, Zagreb, 2005.
[14] C.A. McCarthy, c_{p}, Israel J. Math., 5(1967), 249-271.
[15] A. Matković, J. Pečarić and I. Perić, A variant of Jensen’s inequality of Mercer's type for operators with applications. Linear Algebra Appl. 418 (2006), no. 2-3, 551-564.
[16] J. Mićić, Y. Seo, S.-E. Takahasi and M. Tominaga, Inequalities of Furuta and MondPečarić, Math. Ineq. Appl., 2(1999), 83-111.
[17] B. Mond and J. Pečarić, Convex inequalities in Hilbert space, Houston J. Math., 19(1993), 405-420.
[18] B. Mond and J. Pečarić, On some operator inequalities, Indian J. Math., 35(1993), 221-232.
[19] B. Mond and J. Pečarić, Classical inequalities for matrix functions, Utilitas Math., 46(1994), 155-166.

[^0]: *E-mail address: Sever.Dragomir@vu.edu.au

