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Abstract

Some recent Jensen’s type inequalities for log-convex functions of selfadjoint opera-
tors in Hilbert spaces under suitable assumptions for the involved operators are sur-
veyed. Applications in relation with some celebrated results due to Hölder-McCarthy
and Ky Fan are provided as well.
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1 Introduction

Let A be a selfadjoint linear operator on a complex Hilbert space (H; 〈., .〉) . The Gelfand map
establishes a ∗-isometrically isomorphism Φ between the set C (S p (A)) of all continuous
functions defined on the spectrum of A, denoted S p (A) , and the C∗-algebra C∗ (A) generated
by A and the identity operator 1H on H as follows (see for instance [13, p. 3]):

For any f ,g ∈C (S p (A)) and any α,β ∈ C we have
(i) Φ (α f +βg) = αΦ ( f )+βΦ (g) ;
(ii) Φ ( f g) = Φ ( f )Φ (g) and Φ

(
f̄
)
= Φ ( f )∗ ;

(iii) ‖Φ ( f )‖ = ‖ f ‖ := supt∈S p(A) | f (t)| ;
(iv) Φ ( f0) = 1H and Φ ( f1) = A, where f0 (t) = 1 and f1 (t) = t, for t ∈ S p (A) .
With this notation we define

f (A) := Φ ( f ) for all f ∈C (S p (A))
∗E-mail address: Sever.Dragomir@vu.edu.au
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and we call it the continuous functional calculus for a selfadjoint operator A.
If A is a selfadjoint operator and f is a real valued continuous function on S p (A), then

f (t) ≥ 0 for any t ∈ S p (A) implies that f (A) ≥ 0, i.e. f (A) is a positive operator on H.
Moreover, if both f and g are real valued functions on S p (A) then the following important
property holds:

f (t) ≥ g (t) for any t ∈ S p (A) implies that f (A) ≥ g (A) (P)

in the operator order of B (H) .
For a recent monograph devoted to various inequalities for functions of selfadjoint op-

erators, see [13] and the references therein. For other results, see [19], [15], [18] and [16].
For recent results, see [2]-[12].

2 Some Jensen’s Type Inequalities for Log-convex Functions

2.1 Preliminary Results

The following result that provides an operator version for the Jensen inequality for convex
functions is due to Mond and Pečarić [17] (see also [13, p. 5]):

Let A be a selfadjoint operator on the Hilbert space H and assume that S p (A) ⊆ [m,M]
for some scalars m,M with m < M. If f is a convex function on [m,M] , then

f (〈Ax, x〉) ≤ 〈 f (A) x, x〉 (MP)

for each x ∈ H with ‖x‖ = 1.
Taking into account the above result and its applications for various concrete examples

of convex functions, it is therefore natural to investigate the corresponding results for the
case of log-convex functions, namely functions f : I→ (0,∞) for which ln f is convex.

We observe that such functions satisfy the elementary inequality

f ((1− t)a+ tb) ≤
[
f (a)

]1−t [ f (b)
]t (2.1)

for any a,b ∈ I and t ∈ [0,1] . Also, due to the fact that the weighted geometric mean is
less than the weighted arithmetic mean, it follows that any log-convex function is a convex
functions. However, obviously, there are functions that are convex but not log-convex.

As an imediate consequence of the Mond-Pečarić inequality above we can provide the
following result:

Theorem 2.1 (Dragomir, 2010, [11]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A)⊆ [m,M] for some scalars m,M with m<M. If g : [m,M]→ (0,∞)
is log-convex, then

g (〈Ax, x〉) ≤ exp 〈lng (A) x, x〉 ≤ 〈g (A) x, x〉 (2.2)

for each x ∈ H with ‖x‖ = 1.

Proof. Consider the function f := lng, which is convex on [m,M] . Writing (MP) for f
we get ln

[
g (〈Ax, x〉)

]
≤ 〈lng (A) x, x〉 , for each x ∈ H with ‖x‖ = 1, which, by taking the

exponential, produces the first inequality in (2.2).
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If we also use (MP) for the exponential function, we get

exp 〈lng (A) x, x〉 ≤
〈
exp

[
lng (A)

]
x, x

〉
= 〈g (A) x, x〉

for each x ∈ H with ‖x‖ = 1 and the proof is complete. �

The case of sequences of operators may be of interest and is embodied in the following
corollary:

Corollary 2.2 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A j

are selfadjoint operators with S p
(
A j

)
⊆ [m,M], j ∈ {1, ...,n} and x j ∈ H, j ∈ {1, ...,n} with∑n

j=1

∥∥∥x j
∥∥∥2
= 1, then

g

 n∑
j=1

〈
A jx j, x j

〉 ≤ exp
〈 n∑

j=1

lng
(
A j

)
x j, x j

〉
≤

〈 n∑
j=1

g
(
A j

)
x j, x j

〉
. (2.3)

Proof. Follows from Theorem 2.1and we omit the details. �

In particular we have:

Corollary 2.3 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A j are
selfadjoint operators with S p

(
A j

)
⊆ [m,M] ⊂I̊, j ∈ {1, ...,n} and p j ≥ 0, j ∈ {1, ...,n} with∑n

j=1 p j = 1, then

g


〈 n∑

j=1

p jA jx, x
〉 ≤

〈 n∏
j=1

[
g
(
A j

)]p j x, x
〉
≤

〈 n∑
j=1

p jg
(
A j

)
x, x

〉
(2.4)

for each x ∈ H with ‖x‖ = 1.

Proof. Follows from Corollary 2.2 by choosing x j =
√p j · x, j ∈ {1, ...,n} where x ∈ H with

‖x‖ = 1. �

It is also important to observe that, as a special case of (MP) we have the following
important inequality in Operator Theory that is well known as the Hölder-McCarthy in-
equality:

Theorem 2.4 (Hölder-McCarthy, 1967, [14]). Let A be a selfadjoint positive operator on a
Hilbert space H. Then

(i) 〈Ar x, x〉 ≥ 〈Ax, x〉r for all r > 1 and x ∈ H with ‖x‖ = 1;
(ii) 〈Ar x, x〉 ≤ 〈Ax, x〉r for all 0 < r < 1 and x ∈ H with ‖x‖ = 1;
(iii) If A is invertible, then

〈
A−r x, x

〉
≥ 〈Ax, x〉−r for all r > 0 and x ∈ H with ‖x‖ = 1.

Since the function g (t) = t−r for r > 0 is log-convex, we can improve the Hölder-
McCarthy inequality as follows:

Proposition 2.5. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible, then

〈Ax, x〉−r ≤ exp
〈
ln

(
A−r) x, x

〉
≤

〈
A−r x, x

〉
(2.5)

for all r > 0 and x ∈ H with ‖x‖ = 1.
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The following reverse for the Mond-Pečarić inequality that generalizes the scalar Lah-
Ribarić inequality for convex functions is well known, see for instance [13, p. 57]:

Theorem 2.6. Let A be a selfadjoint operator on the Hilbert space H and assume that
S p (A) ⊆ [m,M] for some scalars m,M with m < M. If f is a convex function on [m,M] ,
then

〈 f (A) x, x〉 ≤
M−〈Ax, x〉

M−m
· f (m)+

〈Ax, x〉−m
M−m

· f (M) (2.6)

for each x ∈ H with ‖x‖ = 1.

This result can be improved for log-convex functions as follows:

Theorem 2.7 (Dragomir, 2010, [11]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A)⊆ [m,M] for some scalars m,M with m<M. If g : [m,M]→ (0,∞)
is log-convex, then

〈g (A) x, x〉 ≤
〈[[

g (m)
] M1H−A

M−m
[
g (M)

] A−m1H
M−m

]
x, x

〉
(2.7)

≤
M−〈Ax, x〉

M−m
·g (m)+

〈Ax, x〉−m
M−m

·g (M)

and

g (〈Ax, x〉) ≤
[
g (m)

] M−〈Ax,x〉
M−m

[
g (M)

] 〈Ax,x〉−m
M−m (2.8)

≤

〈[[
g (m)

] M1H−A
M−m

[
g (M)

] A−m1H
M−m

]
x, x

〉
for each x ∈ H with ‖x‖ = 1.

Proof. Observe that, by the log-convexity of g, we have

g (t) = g
( M− t

M−m
·m+

t−m
M−m

·M
)
≤

[
g (m)

] M−t
M−m

[
g (M)

] t−m
M−m (2.9)

for any t ∈ [m,M] .
Applying the property (P) for the operator A, we have that

〈g (A) x, x〉 ≤ 〈Ψ (A) x, x〉

for each x ∈ H with ‖x‖ = 1, where Ψ (t) :=
[
g (m)

] M−t
M−m

[
g (M)

] t−m
M−m , t ∈ [m,M] . This proves

the first inequality in (2.7).
Now, observe that, by the weighted arithmetic mean-geometric mean inequality we have

[
g (m)

] M−t
M−m

[
g (M)

] t−m
M−m ≤

M− t
M−m

·g (m)+
t−m

M−m
·g (M)

for any t ∈ [m,M] .
Applying the property (P) for the operator A we deduce the second inequality in (2.7).
Further on, if we use the inequality (2.9) for t = 〈Ax, x〉 ∈ [m,M] then we deduce the

first part of (2.8).
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Now, observe that the function Ψ introduced above can be rearranged to read as

Ψ (t) = g (m)
[
g (M)
g (m)

] t−m
M−m

, t ∈ [m,M]

showing that Ψ is a convex function on [m,M] .
Applying Mond-Pečarić’s inequality for Ψ we deduce the second part of (2.8) and the

proof is complete. �

The case of sequences of operators is as follows:

Corollary 2.8 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A j

are selfadjoint operators with S p
(
A j

)
⊆ [m,M], j ∈ {1, ...,n} and x j ∈ H, j ∈ {1, ...,n} with∑n

j=1

∥∥∥x j
∥∥∥2
= 1, then

n∑
j=1

〈
g
(
A j

)
x j, x j

〉
(2.10)

≤

〈 n∑
j=1

[[
g (m)

] M1H−A j
M−m

[
g (M)

] A j−m1H
M−m

]
x j, x j

〉

≤
M−

∑n
j=1

〈
A jx j, x j

〉
M−m

·g (m)+

∑n
j=1

〈
A jx j, x j

〉
−m

M−m
·g (M)

and

g

 n∑
j=1

〈
A jx j, x j

〉 (2.11)

≤
[
g (m)

] M−
∑n

j=1〈A j x j ,x j〉
M−m

[
g (M)

]∑n
j=1〈A j x j ,x j〉−m

M−m

≤

〈 n∑
j=1

[[
g (m)

] M1H−A j
M−m

[
g (M)

] A j−m1H
M−m

]
x j, x j

〉
.

In particular we have:

Corollary 2.9 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.1. If A j are
selfadjoint operators with S p

(
A j

)
⊆ [m,M] ⊂I̊, j ∈ {1, ...,n} and p j ≥ 0, j ∈ {1, ...,n} with∑n

j=1 p j = 1, then〈 n∑
j=1

p jg
(
A j

)
x, x

〉
(2.12)

≤

〈 n∑
j=1

p j
[
g (m)

] M1H−A j
M−m

[
g (M)

] A j−m1H
M−m x, x

〉

≤
M−

〈∑n
j=1 p jA jx, x

〉
M−m

·g (m)+

〈∑n
j=1 p jA jx, x

〉
−m

M−m
·g (M)
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and

g


〈 n∑

j=1

p jA jx, x
〉 (2.13)

≤
[
g (m)

] M−
〈∑n

j=1 p jA j x,x
〉

M−m
[
g (M)

] 〈∑n
j=1 p jA j x,x

〉
−m

M−m

≤

〈 n∑
j=1

p j
[
g (m)

] M1H−A j
M−m

[
g (M)

] A j−m1H
M−m x, x

〉
.

The above result from Theorem 2.7 can be utilized to produce the following reverse
inequality for negative powers of operators:

Proposition 2.10. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p (A) ⊆ [m,M] (0 < m < M) , then〈

A−r x, x
〉
≤

〈[
m

M1H−A
M−m M

A−m1H
M−m

]−r
x, x

〉
(2.14)

≤
M−〈Ax, x〉

M−m
·m−r +

〈Ax, x〉−m
M−m

·M−r

and

〈Ax, x〉−r ≤

[
g (m)

M−〈Ax,x〉
M−m g (M)

〈Ax,x〉−m
M−m

]−r
(2.15)

≤

〈[
m

M1H−A
M−m M

A−m1H
M−m

]−r
x, x

〉
for all r > 0 and x ∈ H with ‖x‖ = 1.

2.2 Jensen’s Inequality for Differentiable Log-convex Functions

The following result provides a reverse for the Jensen type inequality (MP):

Theorem 2.11 (Dragomir, 2008, [5]). Let J be an interval and f : J→ R be a convex and
differentiable function on J̊ (the interior of J) whose derivative f ′ is continuous on J̊. If A is
a selfadjoint operators on the Hilbert space H with S p (A) ⊆ [m,M] ⊂ J̊, then

(0 ≤) 〈 f (A) x, x〉− f (〈Ax, x〉) ≤
〈

f ′ (A) Ax, x
〉
−〈Ax, x〉 ·

〈
f ′ (A) x, x

〉
(2.16)

for any x ∈ H with ‖x‖ = 1.

The following result may be stated:

Proposition 2.12 (Dragomir, 2010, [11]). Let J be an interval and g : J→ R be a differen-
tiable log-convex function on J̊ whose derivative g′ is continuous on J̊. If A is a selfadjoint
operator on the Hilbert space H with S p (A) ⊆ [m,M] ⊂ J̊, then

(1 ≤)
exp 〈lng (A) x, x〉

g (〈Ax, x〉)
(2.17)

≤ exp
[〈

g′ (A)
[
g (A)

]−1 Ax, x
〉
−〈Ax, x〉 ·

〈
g′ (A)

[
g (A)

]−1 x, x
〉]

for each x ∈ H with ‖x‖ = 1.
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Proof. It follows by the inequality (2.16) written for the convex function f = lng that

〈lng (A) x, x〉 ≤ lng (〈Ax, x〉)

+
〈
g′ (A)

[
g (A)

]−1 Ax, x
〉
−〈Ax, x〉 ·

〈
g′ (A)

[
g (A)

]−1 x, x
〉

for each x ∈ H with ‖x‖ = 1.
Now, taking the exponential and dividing by g (〈Ax, x〉) > 0 for each x ∈ H with ‖x‖ = 1,

we deduce the desired result (2.17). �

Corollary 2.13 (Dragomir, 2010, [11]). Assume that g is as in the Proposition 2.12 and A j

are selfadjoint operators with S p
(
A j

)
⊆ [m,M] ⊂J̊, j ∈ {1, ...,n} .

If and x j ∈ H, j ∈ {1, ...,n} with
∑n

j=1

∥∥∥x j
∥∥∥2
= 1, then

(1 ≤)
exp

〈∑n
j=1 lng

(
A j

)
x j, x j

〉
g
(∑n

j=1

〈
A jx, x j

〉) (2.18)

≤ exp


〈 n∑

j=1

g′
(
A j

) [
g
(
A j

)]−1
A jx j, x j

〉

−

n∑
j=1

〈
A jx j, x j

〉
·

n∑
j=1

〈
g′

(
A j

) [
g
(
A j

)]−1
x j, x j

〉 .
If p j ≥ 0, j ∈ {1, ...,n} with

∑n
j=1 p j = 1, then

(1 ≤)

〈∏n
j=1

[
g
(
A j

)]p j x, x
〉

g
(〈∑n

j=1 p jA jx, x
〉) (2.19)

≤ exp


〈 n∑

j=1

p jg′
(
A j

) [
g
(
A j

)]−1
A jx, x

〉

−

n∑
j=1

p j
〈
A jx, x

〉
·

n∑
j=1

p j

〈
g′

(
A j

) [
g
(
A j

)]−1
x, x

〉
for each x ∈ H with ‖x‖ = 1.

Remark 2.14. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible,
then

(1 ≤) 〈Ax, x〉r exp
〈
ln

(
A−r) x, x

〉
≤ exp

[
r
(
〈Ax, x〉 ·

〈
A−1x, x

〉
−1

)]
(2.20)

for all r > 0 and x ∈ H with ‖x‖ = 1.

The following result that provides both a refinement and a reverse of the multiplicative
version of Jensen’s inequality can be stated as well:
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Theorem 2.15 (Dragomir, 2010, [11]). Let J be an interval and g : J→ R be a log-convex
differentiable function on J̊ whose derivative g′ is continuous on J̊. If A is a selfadjoint
operators on the Hilbert space H with S p (A) ⊆ [m,M] ⊂ J̊, then

1 ≤
〈
exp

[
g′ (〈Ax, x〉)
g (〈Ax, x〉)

(A−〈Ax, x〉1H)
]

x, x
〉

(2.21)

≤
〈g (A) x, x〉
g (〈Ax, x〉)

≤
〈
exp

[
g′ (A)

[
g (A)

]−1 (A−〈Ax, x〉1H)
]

x, x
〉

for each x ∈ H with ‖x‖ = 1, where 1H denotes the identity operator on H.

Proof. It is well known that if h : J → R is a convex differentiable function on J̊, then the
following gradient inequality holds

h (t)−h (s) ≥ h′ (s) (t− s)

for any t, s ∈J̊.
Now, if we write this inequality for the convex function h = lng, then we get

lng (t)− lng (s) ≥
g′ (s)
g (s)

(t− s) (2.22)

which is equivalent with

g (t) ≥ g (s)exp
[
g′ (s)
g (s)

(t− s)
]

(2.23)

for any t, s ∈J̊.
Further, if we take s := 〈Ax, x〉 ∈ [m,M] ⊂ J̊, for a fixed x ∈ H with ‖x‖ = 1, in the

inequality (2.23), then we get

g (t) ≥ g (〈Ax, x〉)exp
[
g′ (〈Ax, x〉)
g (〈Ax, x〉)

(t−〈Ax, x〉)
]

for any t ∈J̊.
Utilising the property (P) for the operator A and the Mond-Pečarić inequality for the

exponential function, we can state the following inequality that is of interest in itself as
well:

〈g (A)y,y〉 ≥ g (〈Ax, x〉)
〈
exp

[
g′ (〈Ax, x〉)
g (〈Ax, x〉)

(A−〈Ax, x〉1H)
]
y,y

〉
(2.24)

≥ g (〈Ax, x〉)exp
[
g′ (〈Ax, x〉)
g (〈Ax, x〉)

(〈Ay,y〉− 〈Ax, x〉)
]

for each x,y ∈ H with ‖x‖ = ‖y‖ = 1.
Further, if we put y = x in (2.24), then we deduce the first and the second inequality in

(2.21).
Now, if we replace s with t in (2.23) we can also write the inequality

g (t)exp
[
g′ (t)
g (t)

(s− t)
]
≤ g (s)
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which is equivalent with

g (t) ≤ g (s)exp
[
g′ (t)
g (t)

(t− s)
]

(2.25)

for any t, s ∈J̊.
Further, if we take s := 〈Ax, x〉 ∈ [m,M] ⊂ J̊, for a fixed x ∈ H with ‖x‖ = 1, in the

inequality (2.25), then we get

g (t) ≤ g (〈Ax, x〉)exp
[
g′ (t)
g (t)

(t−〈Ax, x〉)
]

for any t ∈J̊.
Utilising the property (P) for the operator A, then we can state the following inequality

that is of interest in itself as well:

〈g (A)y,y〉 ≤ g (〈Ax, x〉)
〈
exp

[
g′ (A)

[
g (A)

]−1 (A−〈Ax, x〉1H)
]
y,y

〉
(2.26)

for each x,y ∈ H with ‖x‖ = ‖y‖ = 1.
Finally, if we put y = x in (2.26), then we deduce the last inequality in (2.21). �

The case of operator sequences is embodied in the following corollary:

Corollary 2.16 (Dragomir, 2010, [11]). Assume that g is as in the Proposition 2.12 and A j

are selfadjoint operators with S p
(
A j

)
⊆ [m,M] ⊂J̊, j ∈ {1, ...,n} .

If and x j ∈ H, j ∈ {1, ...,n} with
∑n

j=1

∥∥∥x j
∥∥∥2
= 1, then

1 ≤
〈 n∑

j=1

exp

g′
(∑n

j=1

〈
A jx j, x j

〉)
g
(∑n

j=1

〈
A jx j, x j

〉) A j−

n∑
j=1

〈
A jx j, x j

〉
1H


 x j, x j

〉
(2.27)

≤

∑n
j=1

〈
g
(
A j

)
x j, x j

〉
g
(∑n

j=1

〈
A jx j, x j

〉)
≤

〈 n∑
j=1

exp

g′ (A j
) [

g
(
A j

)]−1

A j−

n∑
j=1

〈
A jx j, x j

〉
1H


 x j, x j

〉
.

If p j ≥ 0, j ∈ {1, ...,n} with
∑n

j=1 p j = 1, then for each x ∈ H with ‖x‖ = 1

1 ≤
〈 n∑

j=1

p j exp

g′
(〈∑n

j=1 p jA jx, x
〉)

g
(〈∑n

j=1 p jA jx, x
〉) (2.28)

×

A j−

〈 n∑
j=1

p jA jx, x
〉

1H


 x, x

〉

≤

〈∑n
j=1 p jg

(
A j

)
x, x

〉
g
(〈∑n

j=1 p jA jx, x
〉)

≤

〈 n∑
j=1

p j exp

g′ (A j
) [

g
(
A j

)]−1

A j−

〈 n∑
j=1

p jA jx, x
〉

1H


 x, x

〉
.
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Remark 2.17. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible,
then

1 ≤
〈
exp

[
r
(
1H −〈Ax, x〉−1 A

)]
x, x

〉
(2.29)

≤
〈
A−r x, x

〉
〈Ax, x〉r ≤

〈
exp

[
r
(
1H −〈Ax, x〉A−1

)]
x, x

〉
for all r > 0 and x ∈ H with ‖x‖ = 1.

The following reverse inequality may be proven as well:

Theorem 2.18 (Dragomir, 2010, [11]). Let J be an interval and g : J→ R be a log-convex
differentiable function on J̊ whose derivative g′ is continuous on J̊. If A is a selfadjoint
operators on the Hilbert space H with S p (A) ⊆ [m,M] ⊂ J̊, then

(1 ≤)

〈[
g (M)

] A−m1H
M−m

[
g (m)

] M1H−A
M−m x, x

〉
〈g (A) x, x〉

(2.30)

≤

〈
g (A)exp

[
(M1H−A)(A−m1H)

M−m

(
g′(M)
g(M) −

g′(m)
g(m)

)]
x, x

〉
〈g (A) x, x〉

≤ exp
[
1
4

(M−m)
(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
for each x ∈ H with ‖x‖ = 1.

Proof. Utilising the inequality (2.22) we have successively

g ((1−λ) t+λs)
g (s)

≥ exp
[
(1−λ)

g′ (s)
g (s)

(t− s)
]

(2.31)

and
g ((1−λ) t+λs)

g (t)
≥ exp

[
−λ

g′ (t)
g (t)

(t− s)
]

(2.32)

for any t, s ∈J̊ and any λ ∈ [0,1] .
Now, if we take the power λ in the inequality (2.31) and the power 1−λ in (2.32) and

multiply the obtained inequalities, we deduce[
g (t)

]1−λ [g (s)
]λ

g ((1−λ) t+λs)
(2.33)

≤ exp
[
(1−λ)λ

(
g′ (t)
g (t)
−

g′ (s)
g (s)

)
(t− s)

]
for any t, s ∈J̊ and any λ ∈ [0,1] .

Further on, if we choose in (2.33) t = M, s = m and λ = M−u
M−m , then, from (2.33) we get

the inequality [
g (M)

] u−m
M−m

[
g (m)

] M−u
M−m

g (u)
(2.34)

≤ exp
[
(M−u) (u−m)

M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
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which, together with the inequality

(M−u) (u−m)
M−m

≤
1
4

(M−m)

produce

[
g (M)

] u−m
M−m

[
g (m)

] M−u
M−m (2.35)

≤ g (u)exp
[
(M−u) (u−m)

M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
≤ g (u)exp

[
1
4

(M−m)
(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
for any u ∈ [m,M] .

If we apply the property (P) to the inequality (2.35) and for the operator A we deduce
the desired result. �

Corollary 2.19 (Dragomir, 2010, [11]). Assume that g is as in the Theorem 2.18 and A j are
selfadjoint operators with S p

(
A j

)
⊆ [m,M] ⊂J̊, j ∈ {1, ...,n} .

If x j ∈ H, j ∈ {1, ...,n} with
∑n

j=1

∥∥∥x j
∥∥∥2
= 1, then

(1 ≤)

∑n
j=1

〈[
g (M)

] A j−m1H
M−m

[
g (m)

] M1H−A j
M−m x j, x j

〉
∑n

j=1

〈
g
(
A j

)
x j, x j

〉 (2.36)

≤

∑n
j=1

〈
g
(
A j

)
exp

[
(M1H−A j)(A j−m1H)

M−m

(
g′(M)
g(M) −

g′(m)
g(m)

)]
x j, x j

〉
∑n

j=1

〈
g
(
A j

)
x j, x j

〉
≤ exp

[
1
4

(M−m)
(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
.

If p j ≥ 0, j ∈ {1, ...,n} with
∑n

j=1 p j = 1, then for each x ∈ H with ‖x‖ = 1

(1 ≤)

〈∑n
j=1 p j

[
g (M)

] A j−m1H
M−m

[
g (m)

] M1H−A j
M−m x, x

〉
〈∑n

j=1 p jg
(
A j

)
x, x

〉 (2.37)

≤

〈∑n
j=1 p jg

(
A j

)
exp

[
(M1H−A j)(A j−m1H)

M−m

(
g′(M)
g(M) −

g′(m)
g(m)

)]
x, x

〉
〈∑n

j=1 p jg
(
A j

)
x, x

〉
≤ exp

[
1
4

(M−m)
(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
.
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Remark 2.20. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible
and S p (A) ⊆ [m,M] (0 < m < M) , then

(1 ≤)

〈[
g (M)

] r(m1H−A)
M−m

[
g (m)

] r(A−M1H)
M−m x, x

〉
〈A−r x, x〉

(2.38)

≤

〈
A−r exp

[
r(M1H−A)(A−m1H)

Mm

]
x, x

〉
〈A−r x, x〉

≤ exp
[
1
4

r
(M−m)2

mM

]

2.3 Applications for Ky Fan’s Inequality

Consider the function g : (0,1)→ R, g (t) =
(

1−t
t

)r
,r > 0. Observe that for the new function

f : (0,1)→ R, f (t) = lng (t) we have

f ′ (t) =
−r

t (1− t)
and f ′′ (t) =

2r
(

1
2 − t

)
t2 (1− t)2 for t ∈ (0,1)

showing that the function g is log-convex on the interval
(
0, 12

)
.

If pi > 0 for i ∈ {1, ...,n} with
∑n

i=1 pi = 1 and ti ∈
(
0, 12

)
for i ∈ {1, ...,n} , then by applying

the Jensen inequality for the convex function f (with r = 1) on the interval
(
0, 12

)
we get

∑n
i=1 piti

1−
∑n

i=1 piti
≥

n∏
i=1

(
ti

1− ti

)pi

, (2.39)

which is the weighted version of the celebrated Ky Fan’s inequality, see [1, p. 3].
This inequality is equivalent with

n∏
i=1

(
1− ti

ti

)pi

≥
1−

∑n
i=1 piti∑n

i=1 piti
,

where pi > 0 for i ∈ {1, ...,n} with
∑n

i=1 pi = 1 and ti ∈
(
0, 12

)
for i ∈ {1, ...,n} .

By the weighted arithmetic mean - geometric mean inequality we also have that

n∑
i=1

pi (1− ti) t−1
i ≥

n∏
i=1

(
1− ti

ti

)pi

giving the double inequality

n∑
i=1

pi (1− ti) t−1
i ≥

n∏
i=1

(
(1− ti) t−1

i

)pi
≥

n∑
i=1

pi (1− ti)

 n∑
i=1

piti

−1

. (2.40)

The following operator inequalities generalizing (2.40) may be stated:
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Proposition 2.21. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p (A) ⊂

(
0, 12

)
, then

〈(
A−1 (1H −A)

)r
x, x

〉
≥ exp

〈
ln

(
A−1 (1H −A)

)r
x, x

〉
(2.41)

≥
(
〈(1H −A) x, x〉 〈Ax, x〉−1

)r

for each x ∈ H with ‖x‖ = 1 and r > 0.
In particular, 〈

A−1 (1H −A) x, x
〉
≥ exp

〈
ln

(
A−1 (1H −A)

)
x, x

〉
(2.42)

≥ 〈(1H −A) x, x〉 〈Ax, x〉−1

for each x ∈ H with ‖x‖ = 1.

The proof follows by Theorem 2.1 applied for the log-convex function g (t) =
(

1−t
t

)r
,r >

0, t ∈
(
0, 12

)
.

Proposition 2.22. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p (A) ⊆ [m,M] ⊂

(
0, 12

)
, then

〈(
(1H −A) A−1

)r
x, x

〉
(2.43)

≤

〈
(
1−m

m

) r(M1H−A)
M−m

(
1−M

M

) r(A−m1H)
M−m

 x, x
〉

≤
M−〈Ax, x〉

M−m
·

(
1−m

m

)r

+
〈Ax, x〉−m

M−m
·

(
1−M

M

)r

and (
1−〈Ax, x〉
〈Ax, x〉

)r

(2.44)

≤

(
1−m

m

) r(M−〈Ax,x〉)
M−m

(
1−M

M

) r(〈Ax,x〉−m)
M−m

≤

〈
(
1−m

m

) r(M1H−A)
M−m

(
1−M

M

) r(A−m1H)
M−m

 x, x
〉

for each x ∈ H with ‖x‖ = 1 and r > 0.

The proof follows by Theorem 2.7 applied for the log-convex function g (t) =
(

1−t
t

)r
,r >

0, t ∈
(
0, 12

)
.

Finally we have:
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Proposition 2.23. Let A be a selfadjoint positive operator on a Hilbert space H. If A is
invertible and S p (A) ⊂

(
0, 12

)
, then

(1 ≤)
exp

〈
ln

(
(1H −A) A−1

)r
x, x

〉
(
(1−〈Ax, x〉) 〈Ax, x〉−1

)r (2.45)

≤ exp
[
r
(
〈Ax, x〉 ·

〈
A−1 (1H −A)−1 x, x

〉
−

〈
(1H −A)−1 x, x

〉)]
and

1 ≤
〈
exp

[
r (1−〈Ax, x〉)−1

(
1H −〈Ax, x〉−1 A

)]
x, x

〉
(2.46)

≤

〈(
(1H −A) A−1

)r
x, x

〉
(
(1−〈Ax, x〉) 〈Ax, x〉−1

)r

≤
〈
exp

[
r (1H −A)−1

(
〈Ax, x〉A−1−1H

)]
x, x

〉
for each x ∈ H with ‖x‖ = 1 and r > 0.

The proof follows by Proposition 2.12 and Theorem 2.15 applied for the log-convex
function g (t) =

(
1−t

t

)r
,r > 0, t ∈

(
0, 12

)
. The details are omitted.

2.4 More Inequalities for Differentiable Log-convex Functions

The following results providing companion inequalities for the Jensen inequality for differ-
entiable log-convex functions hold:

Theorem 2.24 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A) ⊆ [m,M] for some scalars m,M with m < M. If g : J→ (0,∞) is a
differentiable log-convex function with the derivative continuous on J̊ and [m,M] ⊂ J̊, then

exp
[
〈g′ (A) Ax, x〉
〈g (A) x, x〉

−
〈g (A) Ax, x〉
〈g (A) x, x〉

·
〈g′ (A) x, x〉
〈g (A) x, x〉

]
(2.47)

≥
exp

[
〈g(A) lng(A)x,x〉
〈g(A)x,x〉

]
g
(
〈g(A)Ax,x〉
〈g(A)x,x〉

) ≥ 1

for each x ∈ H with ‖x‖ = 1.
If

〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

∈ J̊ for each x ∈ H with ‖x‖ = 1, (C)

then

exp

g′
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

)
g
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

) (
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

−
〈Ag (A) x, x〉
〈g (A) x, x〉

) (2.48)

≥
g
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

)
exp

(
〈g(A) lng(A)x,x〉
〈g(A)x,x〉

) ≥ 1,

for each x ∈ H with ‖x‖ = 1.
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Proof. By the gradient inequality for the convex function lng we have

g′ (t)
g (t)

(t− s) ≥ lng (t)− lng (s) ≥
g′ (s)
g (s)

(t− s) (2.49)

for any t, s ∈ J̊, which by multiplication with g (t) > 0 is equivalent with

g′ (t) (t− s) ≥ g (t) lng (t)−g (t) lng (s) ≥
g′ (s)
g (s)

(tg (t)− sg (t)) (2.50)

for any t, s ∈ J̊.
Fix s ∈ J̊ and apply the property (P) to get that〈

g′ (A) Ax, x
〉
− s

〈
g′ (A) x, x

〉
≥ 〈g (A) lng (A) x, x〉− 〈g (A) x, x〉 lng (s) (2.51)

≥
g′ (s)
g (s)

(〈Ag (A) x, x〉− s 〈g (A) x, x〉)

for any x ∈ H with ‖x‖ = 1, which is an inequality of interest in itself as well.
Since

〈g (A) Ax, x〉
〈g (A) x, x〉

∈ [m,M] for any x ∈ H with ‖x‖ = 1

then on choosing s := 〈g(A)Ax,x〉
〈g(A)x,x〉 in (2.51) we get

〈
g′ (A) Ax, x

〉
−
〈g (A) Ax, x〉
〈g (A) x, x〉

〈
g′ (A) x, x

〉
≥ 〈g (A) lng (A) x, x〉− 〈g (A) x, x〉 lng

(
〈g (A) Ax, x〉
〈g (A) x, x〉

)
≥ 0,

which, by division with 〈g (A) x, x〉 > 0, produces

〈g′ (A) Ax, x〉
〈g (A) x, x〉

−
〈g (A) Ax, x〉
〈g (A) x, x〉

·
〈g′ (A) x, x〉
〈g (A) x, x〉

(2.52)

≥
〈g (A) lng (A) x, x〉
〈g (A) x, x〉

− lng
(
〈g (A) Ax, x〉
〈g (A) x, x〉

)
≥ 0

for any x ∈ H with ‖x‖ = 1.
Taking the exponential in (2.52) we deduce the desired inequality (2.47).
Now, assuming that the condition (C) holds, then by choosing s := 〈g

′(A)Ax,x〉
〈g′(A)x,x〉 in (2.51)

we get

0 ≥ 〈g (A) lng (A) x, x〉− 〈g (A) x, x〉 lng
(
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

)

≥
g′

(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

)
g
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

) (
〈Ag (A) x, x〉−

〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

〈g (A) x, x〉
)
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which, by dividing with 〈g (A) x, x〉 > 0 and rearranging, is equivalent with

g′
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

)
g
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

) (
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

−
〈Ag (A) x, x〉
〈g (A) x, x〉

)
(2.53)

≥ lng
(
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

)
−
〈g (A) lng (A) x, x〉
〈g (A) x, x〉

≥ 0

for any x ∈ H with ‖x‖ = 1.
Finally, on taking the exponential in (2.53) we deduce the desired inequality (2.48). �

Remark 2.25. We observe that a sufficient condition for (C) to hold is that either g′ (A) or
−g′ (A) is a positive definite operator on H.

Corollary 2.26 (Dragomir, 2010, [12]). Assume that A and g are as in Theorem 2.24. If the
condition (C) holds, then we have the double inequality

lng
(
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

)
≥
〈g (A) lng (A) x, x〉
〈g (A) x, x〉

≥ lng
(
〈g (A) Ax, x〉
〈g (A) x, x〉

)
, (2.54)

for any x ∈ H with ‖x‖ = 1.

Remark 2.27. Assume that A is a positive definite operator on H. Since for r > 0 the function
g (t) = t−r is log-convex on (0,∞) and

〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

=

〈
A−r x, x

〉〈
A−r−1x, x

〉 > 0

for any x ∈ H with ‖x‖ = 1, then on applying the inequality (2.54) we deduce the following
interesting result

ln
( 〈

A−r x, x
〉〈

A−r−1x, x
〉) ≤ 〈

A−r ln Ax, x
〉

〈A−r x, x〉
≤ ln


〈
A−r+1x, x

〉
〈A−r x, x〉

 (2.55)

for any x ∈ H with ‖x‖ = 1.
The details of the proof are left to the interested reader.
The case of sequences of operators is embodied in the following corollary:

Corollary 2.28 (Dragomir, 2010, [12]). Let A j, j ∈ {1, ...,n} be selfadjoint operators on the
Hilbert space H and assume that S p

(
A j

)
⊆ [m,M] for some scalars m,M with m < M and

each j ∈ {1, ...,n} . If g : J→ (0,∞) is a differentiable log-convex function with the derivative
continuous on J̊ and [m,M] ⊂ J̊, then

exp


∑n

j=1

〈
g′

(
A j

)
A jx j, x j

〉
∑n

j=1

〈
g
(
A j

)
x j, x j

〉 (2.56)

−

∑n
j=1

〈
g
(
A j

)
A jx j, x j

〉
∑n

j=1

〈
g
(
A j

)
x j, x j

〉 · ∑n
j=1

〈
g′

(
A j

)
x j, x j

〉
∑n

j=1

〈
g
(
A j

)
x j, x j

〉 
≥

exp
[∑n

j=1〈g(A j) lng(A j)x j,x j〉∑n
j=1〈g(A j)x j,x j〉

]
g
(∑n

j=1〈g(A j)A j x j,x j〉∑n
j=1〈g(A j)x j,x j〉

) ≥ 1
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for each x j ∈ H, j ∈ {1, ...,n} with
∑n

j=1

∥∥∥x j
∥∥∥2
= 1.

If ∑n
j=1

〈
g′

(
A j

)
A jx j, x j

〉
∑n

j=1

〈
g′

(
A j

)
x j, x j

〉 ∈ J̊ (2.57)

for each x j ∈ H, j ∈ {1, ...,n} with
∑n

j=1

∥∥∥x j
∥∥∥2
= 1, then

exp


g′

(∑n
j=1〈g

′(A j)A j x j,x j〉∑n
j=1〈g

′(A j)x j,x j〉

)
g
(∑n

j=1〈g
′(A j)A j x j,x j〉∑n

j=1〈g
′(A j)x j,x j〉

) (2.58)

×


∑n

j=1

〈
g′

(
A j

)
A jx j, x j

〉
∑n

j=1

〈
g′

(
A j

)
x j, x j

〉 − ∑n
j=1

〈
A jg

(
A j

)
x j, x j

〉
∑n

j=1

〈
g
(
A j

)
x j, x j

〉 


≥

g
(∑n

j=1〈g
′(A j)A j x j,x j〉∑n

j=1〈g
′(A j)x j,x j〉

)
exp

(∑n
j=1〈g(A j) lng(A j)x j,x j〉∑n

j=1〈g(A j)x j,x j〉

) ≥ 1,

for each x j ∈ H, j ∈ {1, ...,n} with
∑n

j=1

∥∥∥x j
∥∥∥2
= 1.

The following particular case for sequences of operators also holds:

Corollary 2.29 (Dragomir, 2010, [12]). With the assumptions of Corollary 2.28 and if
p j ≥ 0, j ∈ {1, ...,n} with

∑n
j=1 p j = 1, then

exp


〈∑n

j=1 p jg′
(
A j

)
A jx, x

〉〈∑n
j=1 p jg

(
A j

)
x, x

〉 (2.59)

−

〈∑n
j=1 p jg

(
A j

)
A jx, x

〉〈∑n
j=1 p jg

(
A j

)
x, x

〉 · 〈∑n
j=1 p jg′

(
A j

)
x, x

〉〈∑n
j=1 p jg

(
A j

)
x, x

〉 
≥

exp
[ 〈∑n

j=1 p jg(A j) lng(A j)x,x
〉〈∑n

j=1 p jg(A j)x,x
〉 ]

g
( 〈∑n

j=1 p jg(A j)A j x,x
〉〈∑n

j=1 p jg(A j)x,x
〉 ) ≥ 1

for each x ∈ H, with ‖x‖ = 1.
If 〈∑n

j=1 p jg′
(
A j

)
A jx, x

〉〈∑n
j=1 p jg′

(
A j

)
x, x

〉 ∈ J̊ (2.60)
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for each x ∈ H, with ‖x‖ = 1, then

exp


g′

( 〈∑n
j=1 p jg′(A j)A j x,x

〉〈∑n
j=1 p jg′(A j)x,x

〉 )
g
( 〈∑n

j=1 p jg′(A j)A j x,x
〉〈∑n

j=1 p jg′(A j)x,x
〉 ) (2.61)

×


〈∑n

j=1 p jg′
(
A j

)
A jx, x

〉〈∑n
j=1 p jg′

(
A j

)
x, x

〉 − 〈∑n
j=1 p jA jg

(
A j

)
x, x

〉〈∑n
j=1 p jg

(
A j

)
x, x

〉 


≥

g
( 〈∑n

j=1 p jg′(A j)A j x,x
〉〈∑n

j=1 p jg′(A j)x,x
〉 )

exp
( 〈∑n

j=1 p jg(A j) lng(A j)x,x
〉〈∑n

j=1 p jg(A j)x,x
〉 ) ≥ 1,

for each x ∈ H, with ‖x‖ = 1.

Proof. Follows from Corollary 2.28 by choosing x j =
√p j · x, j ∈ {1, ...,n} where x ∈ H with

‖x‖ = 1. �

The following result providing different inequalities also holds:

Theorem 2.30 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A) ⊆ [m,M] for some scalars m,M with m < M. If g : J→ (0,∞) is a
differentiable log-convex function with the derivative continuous on J̊ and [m,M] ⊂ J̊, then〈

exp
[
g′ (A)

(
A−
〈g (A) Ax, x〉
〈g (A) x, x〉

1H

)]
x, x

〉
(2.62)

≥

〈 g (A)

g
(
〈g(A)Ax,x〉
〈g(A)x,x〉

)
g(A)

x, x
〉

≥

〈
exp

g′
(
〈g(A)Ax,x〉
〈g(A)x,x〉

)
g
(
〈g(A)Ax,x〉
〈g(A)x,x〉

) (
Ag (A)−

〈g (A) Ax, x〉
〈g (A) x, x〉

g (A)
) x, x

〉
≥ 1

for each x ∈ H with ‖x‖ = 1.
If the condition (C) from Theorem 2.24 holds, then

〈
exp

g′
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

)
g
(
〈g′(A)Ax,x〉
〈g′(A)x,x〉

) (
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

g (A)−Ag (A)
) x, x

〉
(2.63)

≥

〈(
g
(
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

) [
g (A)

]−1
)g(A)

x, x
〉

≥

〈
exp

[
g′ (A)

(
〈g′ (A) Ax, x〉
〈g′ (A) x, x〉

1H −A
)]

x, x
〉
≥ 1

for each x ∈ H with ‖x‖ = 1.



100 S. S. Dragomir

Proof. By taking the exponential in (2.50) we have the following inequality

exp
[
g′ (t) (t− s)

]
≥

(
g (t)
g (s)

)g(t)

≥ exp
[
g′ (s)
g (s)

(tg (t)− sg (t))
]

(2.64)

for any t, s ∈ J̊.
If we fix s ∈ J̊ and apply the property (P) to the inequality (2.64), we deduce

〈
exp

[
g′ (A) (A− s1H)

]
x, x

〉
≥

〈(
g (A)
g (s)

)g(A)

x, x
〉

(2.65)

≥

〈
exp

[
g′ (s)
g (s)

(Ag (A)− sg (A))
]

x, x
〉

for each x ∈ H with ‖x‖ = 1, where 1H is the identity operator on H.
By Mond-Pečarić’s inequality applied for the convex function exp we also have〈

exp
[
g′ (s)
g (s)

(Ag (A)− sg (A))
]

x, x
〉

(2.66)

≥ exp
(
g′ (s)
g (s)

(〈Ag (A) x, x〉− s 〈g (A) x, x〉)
)

for each s ∈ J̊ and x ∈ H with ‖x‖ = 1.
Now, if we choose s := 〈g(A)Ax,x〉

〈g(A)x,x〉 ∈ [m,M] in (2.65) and (2.66) we deduce the desired
result (2.62).

Observe that, the inequality (2.64) is equivalent with

exp
[
g′ (s)
g (s)

(sg (t)− tg (t))
]
≥

(
g (s)
g (t)

)g(t)

≥ exp
[
g′ (t) (s− t)

]
(2.67)

for any t, s ∈ J̊.
If we fix s ∈ J̊ and apply the property (P) to the inequality (2.67) we deduce〈

exp
[
g′ (s)
g (s)

(sg (A)−Ag (A))
]

x, x
〉
≥

〈(
g (s)

[
g (A)

]−1
)g(A)

x, x
〉

(2.68)

≥
〈
exp

[
g′ (A) (s1H −A)

]
x, x

〉
for each x ∈ H with ‖x‖ = 1.

By Mond-Pečarić’s inequality we also have〈
exp

[
g′ (A) (s1H −A)

]
x, x

〉
≥ exp

[
s
〈
g′ (A) x, x

〉
−

〈
g′ (A) Ax, x

〉]
(2.69)

for each s ∈ J̊ and x ∈ H with ‖x‖ = 1.
Taking into account that the condition (C) is valid, then we can choose in (2.68) and

(2.69) s := 〈g
′(A)Ax,x〉
〈g′(A)x,x〉 to get the desired result (2.63). �
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Remark 2.31. If we apply, for instance, the inequality (2.62) for the log-convex function
g (t) = t−1, t > 0, then, after simple calculations, we get the inequality〈

exp

A−2−
〈
A−1x, x

〉
A−1

A−2−
〈
A−1x, x

〉  x, x
〉
≥

〈(〈
A−1x, x

〉
A−1

)A−1

x, x
〉

(2.70)

≥

〈
exp

A−1−
〈
A−1x, x

〉
1H〈

A−1x, x
〉2

 x, x
〉

≥ 1

for each x ∈ H with ‖x‖ = 1.
Other similar results can be obtained from the inequality (2.63), however the details are

left to the interested reader.

2.5 A Reverse Inequality

The following reverse inequality is also of interest:

Theorem 2.32 (Dragomir, 2010, [12]). Let A be a selfadjoint operator on the Hilbert space
H and assume that S p (A) ⊆ [m,M] for some scalars m,M with m < M. If g : J→ (0,∞) is a
differentiable log-convex function with the derivative continuous on J̊ and [m,M] ⊂ J̊, then

(1 ≤)
[
g (m)

] M−〈Ax,x〉
M−m

[
g (M)

] 〈Ax,x〉−m
M−m

exp 〈lng (A) x, x〉
(2.71)

≤ exp
[
〈(M1H −A) (A−m1H) x, x〉

M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
≤ exp

[
(M−〈Ax, x〉) (〈Ax, x〉−m)

M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
≤ exp

[
1
4

(M−m)
(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
for each x ∈ H with ‖x‖ = 1.

Proof. Utilising the inequality (2.49) we have successively

lng ((1−λ) t+λs)− lng (s) ≥ (1−λ)
g′ (s)
g (s)

(t− s) (2.72)

and
lng ((1−λ) t+λs)− lng (t) ≥ −λ

g′ (t)
g (t)

(t− s) (2.73)

for any t, s ∈J̊ and any λ ∈ [0,1] .
Now, if we multiply (2.72) by λ and (2.73) by 1−λ and sum the obtained inequalities,

we deduce

(1−λ) lng (t)+λ lng (s)− lng ((1−λ) t+λs) (2.74)

≤ (1−λ)λ
[(

g′ (t)
g (t)
−

g′ (s)
g (s)

)
(t− s)

]
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for any t, s ∈J̊ and any λ ∈ [0,1] .
Now, if we choose λ := M−u

M−m , s := m and t := M in (2.74) then we get the inequality

u−m
M−m

lng (M)+
M−u
M−m

lng (m)− lng (u) (2.75)

≤

[
(M−u) (u−m)

M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
for any u ∈ [m,M] .

If we use the property (P) for the operator A we get

〈Ax, x〉−m
M−m

lng (M)+
M−〈Ax, x〉

M−m
lng (m)−〈lng (A) x, x〉 (2.76)

≤

[
〈(M1H −A) (A−m1H) x, x〉

M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
for each x ∈ H with ‖x‖ = 1.

Taking the exponential in (2.76) we deduce the first inequality in (2.71).
Now, consider the function h : [m,M]→ R, h (t) = (M− t) (t−m) . This function is con-

cave in [m,M] and by Mond-Pečarić’s inequality we have

〈(M1H −A) (A−m1H) x, x〉 ≤ (M−〈Ax, x〉) (〈Ax, x〉−m)

for each x ∈ H with ‖x‖ = 1, which proves the second inequality in (2.71).
For the last inequality, we observe that

(M−〈Ax, x〉) (〈Ax, x〉−m) ≤
1
4

(M−m)2 ,

and the proof is complete. �

Corollary 2.33 (Dragomir, 2010, [12]). Assume that g is as in Theorem 2.32 and A j are
selfadjoint operators with S p

(
A j

)
⊆ [m,M] ⊂J̊, j ∈ {1, ...,n} .

If and x j ∈ H, j ∈ {1, ...,n} with
∑n

j=1

∥∥∥x j
∥∥∥2
= 1, then

(1 ≤)
[
g (m)

] M−
∑n

j=1〈A j x j ,x j〉
M−m

[
g (M)

]∑n
j=1〈A j x j ,x j〉−m

M−m

exp
(∑n

j

〈
lng

(
A j

)
x j, x j

〉) (2.77)

≤ exp


∑n

j=1

〈(
M1H −A j

) (
A j−m1H

)
x j, x j

〉
M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)
≤ exp


(
M−

∑n
j=1

〈
A jx j, x j

〉)(∑n
j=1

〈
A jx j, x j

〉
−m

)
M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)
≤ exp

[
1
4

(M−m)
(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
.
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If p j ≥ 0, j ∈ {1, ...,n} with
∑n

j=1 p j = 1, then

(1 ≤)
[
g (m)

] M−
〈∑n

j=1 p jA j x,x
〉

M−m
[
g (M)

] 〈∑n
j=1 p jA j x,x

〉
−m

M−m〈∏n
j=1

[
g
(
A j

)]p j x, x
〉 (2.78)

≤ exp


∑n

j=1 p j
〈(

M1H −A j
) (

A j−m1H
)

x j, x j
〉

M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)
≤ exp


(
M−

〈∑n
j=1 p jA jx, x

〉)(〈∑n
j=1 p jA jx, x

〉
−m

)
M−m

(
g′ (M)
g (M)

−
g′ (m)
g (m)

)
≤ exp

[
1
4

(M−m)
(
g′ (M)
g (M)

−
g′ (m)
g (m)

)]
for each x ∈ H with ‖x‖ = 1.

Remark 2.34. Let A be a selfadjoint positive operator on a Hilbert space H. If A is invertible,
then

(1 ≤)
m
〈Ax,x〉−M

M−m M
m−〈Ax,x〉

M−m

exp
〈
ln A−1x, x

〉 ≤ exp
[
〈(M1H −A) (A−m1H) x, x〉

Mm

]
(2.79)

≤ exp
[
(M−〈Ax, x〉) (〈Ax, x〉−m)

Mm

]
≤ exp

[
1
4

(M−m)2

mM

]
for all x ∈ H with ‖x‖ = 1.
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