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Abstract

Scattering theory between the fractional power H0 = κ
−1(−∆)κ/2 (κ ≥ 1) of negative

Laplacian and the Hamiltonian H = H0+V perturbed by short- and long-range poten-
tials considered in [14] is revisited and a new proof of the existence and asymptotic
completeness of wave operators is given with utilizing the smooth operator technique.
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1 Introduction

We consider a free Hamiltonian defined in a Hilbert spaceH = L2(Rn)

H0 = κ
−1(−∆)κ/2,

and a perturbation

H = H0+V (1.1)

of H0 by a simple two-body potential V . Here κ ≥ 1,

∆ =

n∑
j=1

∂2

∂x2
j

,

and V is decomposed into a sum V = VS (x)+VL(x) of two real-valued measurable functions
VS (x) and VL(x) on Rn which satisfy the following conditions.
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Assumption 1.1. There exists a constant 0 < δ < 1 such that

‖〈x〉1+δVS (x)(1+H0)−1‖ <∞, (1.2)

where ‖ · ‖ denotes the operator norm and 〈x〉 =
√

1+ |x|2.

Assumption 1.2. Let δ ∈ (0,1) be the same constant as in Assumption 1.1. For all multi-
indices α there exists a constant Cα > 0 such that for all x ∈ Rn

|∂αx VL(x)| ≤Cα〈x〉−|α|−δ, (1.3)

where ∂αx = (∂/∂x1)α1 . . . (∂/∂xn)αn for a mult-index α = (α1, . . . ,αn).

Under these assumptions, V is relatively bounded with respect to H0 with H0-bound < 1.
Thus H defines a selfadjoint operator with domain D(H) =D(H0) = Hκ(Rn), the Sobolev
space of order κ. Therefore the solution of the Schrödinger equation

1
i
∂u
∂t

(t)+Hu(t) = 0, u(0) = f (∈ D(H))

is given by a unitary group e−itH (t ∈ R) as follows.

u(t) = e−itH f .

Similarly for the free Hamiltonian H0, the solution u0(t) of the corresponding Schrödinger
equation with initial condition u0(0) = g is given by

u0(t) = e−itH0g.

We remark that the operator H0 is written as a pseudodifferential operator with symbol
H0(ξ) = κ−1|ξ|κ (κ ≥ 1). Namely for f ∈ D(H0)

H0 f (x)= (2π)−n/2
∫
Rn

eixξκ−1|ξ|κ f̂ (ξ)dξ

= (2π)−n
"
R2n

ei(x−y)ξκ−1|ξ|κ f (y)dydξ

with f̂ = F f denoting the Fourier transform of f . We will use a convention dξ̂ = (2π)−ndξ.
Then this expression is written as follows.

H0 f (x) =
"
R2n

ei(x−y)ξκ−1|ξ|κ f (y)dydξ̂.

The problem of simple scattering theory is whether the both of the limits

W±1 g = lim
t→±∞

eitH Je−itH0g (g ∈ H) (1.4)

W±2 f = lim
t→±∞

eitH0 J−1e−itH f ( f ∈ Hc) (1.5)

exist, if one constructs the identification operator J suitably. This problem is called the
problem of the existence and asymptotic completeness of wave operators. Here we used the
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notation Hc to denote the spectrally continuous subspace of H. The asymptotic complete-
ness means the existence of the limits W±2 g (g ∈ Hc), and this is equivalent to the equality

R(W±1 ) =Hc. (1.6)

From the definition above of W±1 , we see that if the wave operators W±1 exist, the fol-
lowing holds.

e−isHW±1 =W±1 e−isH0 (∀s ∈ R).

Taking Laplace transform of both sides, we easily see that for any Borel set B

EH(B)W±1 =W±1 E0(B),

where EH(B) and E0(B) are the spectral measures for H and H0 respectively. From this
follows that

R(W±1 ) ⊂Hc.

Therefore to prove the asymptotic completeness it suffices to prove the converse inclusion

Hc ⊂ R(W±1 ). (1.7)

The case − is treated similarly to the case +, so that we consider the + case only in the
following.

Assume for a moment that the existence of the wave operator W+1 has been proved, and
suppose that for a given f ∈ Hc, there is a sequence tk→∞ (as k→∞) such that the limit

W+2 f = lim
k→∞

eitkH0 J−1e−itkH f (1.8)

exists. Then we have

f = lim
k→∞

eitHk Je−itkH0eitkH0 J−1e−itkH f

=W+1 W+2 f

∈ R(W+1 ),

and the proof of (1.7) is complete.
The existence of wave operator

W±1 g = lim
t→±∞

eitH Je−itH0g (g ∈ H)

is shown similarly to that of the existence of the limit (1.8). Thus the concern of scattering
theory is to see how the existence of the limit (1.8) is shown, and several proofs are known
for both short-range and long-range perturbations with respect to H0 = −∆. In our previous
paper [14] we extended the results of scattering theory to the Hamiltonian H0 = κ

−1(−∆)κ/2

(κ ≥ 1) including the relativistic Hamiltonian H0 =
√
−∆ with vanishing mass. The present

paper is a continuation of [14] and gives a new simpler proof of the existence and asymptotic
completeness of the wave operators associated to H0 = κ

−1(−∆)κ/2 (κ ≥ 1).
While the scattering theory for the case κ = 2 is as mentioned fairly well investigated,

it seems that only short-range perturbations have been dealt with (e.g., [5], [20], [22], [25])
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concerning the relativistic Hamiltonians. The immediate motivation of our work started in
[14] was to find a proof of the asymptotic completeness in the case of long-range perturba-
tions with respect to the relativistic Hamiltonian H0 =

√
−∆. For the relativistic Hamiltonian

with positive mass including general pseudodifferential operators, there are preliminary
works by Weder [23], [24] which investigated the spectral properties of those operators.
Some inverse problems have also been investigated by [3], [4], [6] for the case of relativis-
tic Hamiltonians as well as in the case of Dirac equations.

For illustrating the purpose of giving a new proof in spite of the well-established state
of the present scattering theory, we will review some history of scattering theory for the
perturbations of the Hamiltonian H0 = −∆. The proof of the asymptotic completeness for
this case had been treated by stationary method in the early age of the scattering theory.
(E.g., [1], [9], [10], [15], [16], [19] for the short-range case. For other earlier results on
trace class perturbations, etc., see e.g., [8] and references therein.) Around almost the same
time Lax-Phillips [17] developed an abstract time-dependent scattering theory as well as
gave concrete applications of the abstract theory to the acoustic wave equations. A little
bit later Enss [2] gave a time-dependent method for treating the Schrödinger scattering the-
ory. The similarity between the Lax-Phillips theory and Enss method was later noticed in
[13]. In both approaches what is essential is the micro-local decomposition of the iden-
tity as defined in section 2 of [14]. Then it is shown that the incoming part vanishes as
time goes to +∞ by Ruelle [18] argument. The remaining outgoing part is treated by an-
alyzing the propagation properties of the free unperturbed evolution. The proof has been
simplified considerably in the Lax-Phillips-Enss method compared to the former proof by
the stationary approach. There had been known however another time-dependent method
developed by T. Kato [7] (1966) called smooth operator technique. A sufficient condition
for the existence and the asymptotic completeness to hold is given in Theorem 3.9 of [7]
in a time-dependent form1. This condition was later extended and utilized by Sigal-Soffer
[21] in proving the asymptotic completeness of channel wave operators for N-body scat-
tering problem with short-range pair potentials. Their improvement is found in Lemma 3.4
of [21]. The point of their argument is as follows with some simplification for the sake of
illustration restricting the case to the short-range simple two-body perturbations. Suppose
that a bounded operator F defined onH satisfies as a sesquibilinear form

i[H,F] = i(HF −FH) = F2
1 +M1(t) onHc×Hc (1.9)

for some selfadjoint operator F1 and bounded operator M1(t) continuous in t with respect
to operator norm such that ‖M1(t)‖ ∈ L1(R). Then one has for τ > σ and f ∈ Hc

|(eiτHFe−iτH f − eiσHFe−iσH f , f )|=
∣∣∣∣∣∫ τ

σ

d
dt

(eitHFe−itH f , f )dt
∣∣∣∣∣

=

∣∣∣∣∣∫ τ

σ
(eitHi[H,F]e−itH f , f )dt

∣∣∣∣∣
≥

∣∣∣∣∣∫ τ

σ
(eitHF2

1e−itH f , f )dt
∣∣∣∣∣−∫ τ

σ
‖M1(t)‖dt‖ f ‖2.

1A rather complete exposition of the method of smooth operator is found in a recent book [26] in Chapters
0, 1, and 2. Especially an explanation of the technique relevant to the present paper is given in section 5 of
Chapter 0.
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As the left hand side is bounded by a constant times ‖ f ‖2 uniformly with respect to t, one
has the convergence of the following integral for f ∈ Hc∫ τ

σ
‖F1e−itH f ‖2dt ≤ M2

1‖ f ‖
2 (1.10)

for some constant M1 > 0 independent of τ > σ. If one can make a similar assumption with
respect to the unperturbed operator H0 and has

i[H0,F] = F2
0 +M0(t) onH ×H (1.11)

for a selfadjoint operator F0 and some bounded norm continuous operator M0(t) such that
‖M0(t)‖ ∈ L1(R), one then obtains an estimate similar to the above for g ∈ H∫ τ

σ
‖F0e−itH0g‖2dt ≤ M2

0‖g‖
2 (1.12)

for some constant M0 > 0 independent of τ > σ. Assume now that one has a factorization

i(HF −FH0) = F∗1F0+M(t)∗ (1.13)

with ‖M(t)‖ ∈ L1(R). Then one gets for f ∈ Hc and g ∈ H

(eiτH0 F∗e−iτH f − eiσH0 F∗e−iσH f ,g)

=

∫ τ

σ
(F1e−itH f ,F0e−itH0g)dt+

∫ τ

σ
(M(t) f ,g)dt. (1.14)

Applying (1.10) and (1.12) to the right hand side one obtains

|(eiτH0 F∗e−iτH f − eiσH0 F∗e−iσH f ,g)|

≤ M0

(∫ τ

σ
‖F1e−itH f ‖2dt

) 1
2

‖g‖+
∫ τ

σ
‖M(t)‖dt‖ f ‖‖g‖, (1.15)

which proves the existence of the limit

lim
t→∞

eitH0 F∗e−itH f (1.16)

for f ∈ Hc. If one can show the existence of a sequence tk →∞ (k→∞) for each f ∈ Hc

such that
‖e−itkH f −F∗e−itkH f ‖ → 0 (as k→∞),

one has the existence of the limit

lim
k→∞

eitkH0e−itkH f (1.17)

for f ∈ Hc and the proof of asymptotic completeness is complete.
We will do this in a more refined manner to include the long-rang potentials so that one

needs to modify the definition of wave operators and introduce time-independent modifier
J following [14]. In the next section 2 we will prepare the known fact about scattering state,
i.e. about the vector in H which belongs to the continuous spectral subspace Hc of H . In
section 3 we will state the definition of time-independent modifier or identification operator
J following [14]. In the final section 4 we will give a refinement of the above argument
adapted to the long-range case with introducing a time-dependent factor J∗Pε(t) instead of
the factor F∗ above and will conclude the description of a new proof.
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2 Scattering State

We denote by EH(B) the spectral measure for H, and use the notationHc(a,b)= EH([a,b])H ⊂
Hc. Under Assumptions 1.1 and 1.2, it is known that the closed linear hull of the set⋃

0<a<b<∞Hc(a,b) equalsHc. Also it is known that the following holds.

Lemma 2.1. For any f ∈Hc(a,b) = EH([a,b])H (0 < a < b <∞) with 〈x〉2 f ∈H = L2(Rn),
there exists a sequence tk→±∞ as k→±∞ such that for any φ ∈C∞0 (R) and R > 0

‖χ{x∈Rn ||x|<R}e−itkH f ‖ → 0, (2.1)

‖(φ(H)−φ(H0))e−itkH f ‖ → 0, (2.2)∥∥∥∥∥∥
(

x
tk
− |Dx|

κ−2Dx

)
e−itkH f

∥∥∥∥∥∥→ 0 (2.3)

as k→±∞, where D = Dx = −i∂x and χB denotes the characteristic function of a set B.

Proof of the lemma is found in section 5 of [14], and we omit it here. We remark
that when H = H0 Lemma 2.1 holds with the sequence tk →∞ replaced by t→∞ for any
f ∈ H = L2(Rn) with 〈x〉2 f ∈ H .

Let a function ρ(λ) ∈C∞(R) satisfy the following.

0 ≤ ρ(λ) ≤ 1,

ρ(λ) =
{

1 (λ ≤ −1)
0 (λ ≥ 0)

ρ′(λ) ≤ 0,

ρ(λ)
1
2 , |ρ′(λ)|

1
2 ∈C∞(R).

Define for λ ∈ R, R, ε > 0, θ > 0

φε(λ < R) = ρ((λ−R)/ε),

φε(λ > R) = 1−φε(λ < R),

φ(λ < θ) = φθ(λ < 2θ)

and choose χ(λ) ∈C∞(R) with 0 ≤ χ(λ) ≤ 1 such that

χ(λ) =
{

1 (λ ∈ [a,b]),
0 (λ ≤ a/2 or ≥ 2b).

We now set

pε(x/t, ξ) = φ(|x/t−∇ξH0(ξ)|2 < ε)χ(H0(ξ))2. (2.4)

We let Pε(t) be the pseudodifferential operator with symbol pε(x/t, ξ).
For f ∈ Hc(a,b) satisfying 〈x〉2 f ∈ H , there is a sequence tk →∞ (k→∞) which sat-

isfies the conditions of Lemma 2.1. In particular from the relation φ(0 < ε) = 1, ∇ξH0(ξ) =
|ξ|κ−2ξ, (2.2), and (2.3) of Lemma 2.1, we have limk→∞(e−itkH f −χ(H0)e−itkH f ) = 0 and

‖e−itkH f −Pε(tk)e−itkH f ‖ → 0 (k→∞) (2.5)
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for f = EH([a,b]) f ∈ Hc(a,b) with 〈x〉2 f ∈ H . As J has a bounded inverse J−1 as we will
remark at the end of section 3, the operators eitH0 J−1Pε(t)e−itH form a uniformly bounded
family with respect to t ∈ R. Therefore to prove the existence of the limit (1.8) for f ∈ Hc,
it suffices to show the existence of the following limit

lim
k→∞

eitkH0 J−1Pε(tk)e−itkH f (2.6)

for f ∈ Hc(a,b) with 〈x〉2 f ∈ H .

3 Identification operator J

The identification operator J in (1.4) and (1.5) is a bounded operator fromH = L2(Rn) into
itself and is defined as follows as in section 4 of [14].

J f (x)= (2π)−n
"

ei(ϕ(x,ξ)−yξ) f (y)dydξ

= (2π)−n/2
∫

eiϕ(x,ξ) f̂ (ξ)dξ. (3.1)

Here the phase function ϕ(x, ξ) is constructed as a solution of an eikonal equation for the
Hamiltonian (1.1) and satisfies the following theorem (Theorem 4.4 of [14]).

Theorem 3.1. Let d2 > d1 > 0 and −1<σ− <σ+ < 1 be fixed. Then there is R= Rd1,d2,σ± > 1
and a real-valued C∞ function ϕ(x, ξ) of (x, ξ) ∈ R2n such that the following holds:

i) For d2 ≥ |ξ| ≥ d1, |x| ≥ R and cos(x, ξ) ≥ σ+ or cos(x, ξ) ≤ σ−

κ−1|∇xϕ(x, ξ)|κ +VL(x) = κ−1|ξ|κ. (3.2)

ii) For any multi-indices α,β there is a constant Cαβ > 0 such that for d2 ≥ |ξ| ≥ d1 and
x ∈ Rn

|∂αx∂
β
ξ(ϕ(x, ξ)− x · ξ)| ≤Cαβ〈x〉1−δ−|α|〈ξ〉1−κ. (3.3)

In particular for |α| , 0, we have for δ0, δ1 ≥ 0 with δ0+δ1 = δ

|∂αx∂
β
ξ(ϕ(x, ξ)− x · ξ)| ≤CαβR−δ0〈x〉1−δ1−|α|〈ξ〉1−κ. (3.4)

iii) Set for f ∈ S

T f (x) = (HJ− JH0) f (x). (3.5)

Then we have

T f (x) =
"

ei(ϕ(x,ξ)−yξ){a(x, ξ)+VS (x)} f (y)dydξ̂. (3.6)

Here

a(x, ξ) = κ−1|∇xϕ(x, ξ)|κ +VL(x)− κ−1|ξ|κ + r(x, ξ), (3.7)
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where

r(x, ξ) = −i
"

ei(x−y)η∇y ·

(∫ 1

0
|∇̃xϕ(x, ξ,y)+ θη|κ−2(∇̃xϕ(x, ξ,y)+ θη)dθ

)
dydη̂,

(3.8)

and

∇̃xϕ(x, ξ,y) =
∫ 1

0
∇xϕ(y+ θ(x− y), ξ)dθ.

The symbol a(x, ξ) satisfies for d2 ≥ |ξ| ≥ d1, |x| ≥ R and any α,β

|∂αx∂
β
ξa(x, ξ)| ≤

{
Cαβ〈x〉−1−δ−|α|〈ξ〉1−κ, cos(x, ξ) ∈ [−1,σ−]∪ [σ+,1],
Cαβ〈x〉−δ−|α|, cos(x, ξ) ∈ [σ−,σ+].

(3.9)

We remark that the factor 〈ξ〉1−κ in the bounds above is effective just in each region
d1 ≤ |ξ| ≤ d2 and the constant Cαβ depends on d1 and d2.

As stated above, J is defined for f ∈ S

J f (x) =
"

ei(ϕ(x,ξ)−yξ) f (y)dydξ̂.

Since the regions d2 ≥ |ξ| ≥ d1 of definition for the phase function ϕ(x, ξ) are enlarged if
we wait enough until late or early time t near +∞ or −∞, they in total cover the whole
region Rn × (Rn \ {0}). Thus J is regarded to have been defined on the whole Hilbert space
H = L2(Rn). When it is thought to be constructed in such a way, this J is known (Theorem
3.3 in [11]) to have a bounded inverse J−1. Thus we can define W1(t) and W2(t) as follows:

W1(t) = eitH Je−itH0 , W2(t) = eitH0 J−1e−itH .

From ii) of Theorem 3.1 and the factor χ(H0)2 in Pε(t), we have that the operator (J−1−

J∗)Pε(t) is compact. From (2.1) of Lemma 2.1, we have w-limk→±∞ e−itkH f = 0. Thus to
prove the existence of the limit (2.6) it suffices to prove the existence of the limit.

lim
k→∞

eitkH0 J∗Pε(tk)e−itkH f ( f ∈ Hc(a,b) with 〈x〉2 f ∈ H). (3.10)

4 A proof of the asymptotic completeness

To prove the asymptotic completeness we have seen that it is sufficient to prove the existence
of the limit (3.10) for f ∈ Hc(a,b) with 〈x〉2 f ∈ H where 0 < a < b <∞ are fixed. We will
prove a little bit strongly that the limit

lim
t→∞

eitH0 J∗Pε(t)e−itH f (4.1)

exists, owing to the introduction of the factor Pε(t) in (2.6).
As we will fix ε > 0 sufficiently small below, we will write Pε(t) just as P(t). The

necessary and sufficient condition for the limit (4.1) to exist is that when τ > σ→∞

‖eiτH0 J∗P(τ)e−iτH f − eiσH0 J∗P(σ)e−iσH f ‖ → 0. (4.2)
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The norm is equal to the following by the fundamental theorem of calculus.∥∥∥∥∥∫ τ

σ

d
dt

(eitH0 J∗P(t)e−itH f )dt
∥∥∥∥∥ . (4.3)

The integrand is equal to

d
dt

(eitH0 J∗P(t)e−itH f )= eitH0
{
−iT ∗P(t)+ iJ∗(VS P(t)−P(t)VS )

+iJ∗[VL,P(t)]+ J∗(i[H0,P(t)]+∂tP(t))
}
e−itH f . (4.4)

The term −iT ∗P(t)+ iJ∗(VS P(t)−P(t)VS )+ iJ∗[VL,P(t)] on the right hand side is a compact
operator and decays in the order O(t−1−δ) with respect to t as t→∞ by Theorem 3.1, iii)
and the assumptions on VS and VL, and hence is integrable with respect to t ≥ 1.

The remaining term i[H0,P(t)]+∂tP(t) is treated by the following lemma2.

Lemma 4.1. Let Pε(t) (t ≥ 1) be the pseudodifferential operator with symbol pε(x/t, ξ)
defined by (2.4). Then there are operator valued functions S (t) and R(t) (t ≥ 1) continuous
in uniform operator topology such that the following holds.

i[H0,Pε(t)]+∂tPε(t) =
1
t

S (t)+R(t). (4.5)

Here S (t) is a nonnegative selfadjoint operator and R(t) satisfies the following estimate for
some constant C > 0 independent of t ≥ 1.

S (t) ≥ 0, ‖R(t)‖ ≤Ct−2. (4.6)

Proof It suffices to show the lemma for ε = 1. I.e. we assume that the symbol p(x/t, ξ) of
Pε(t) is of the following form.

p(x/t, ξ) = φ(|x/t−∇ξH0(ξ)|2 < 1)χ(H0(ξ))2 =: pt(x, ξ). (4.7)

We note that the symbol pt(x, ξ) satisfies for any multi-index α, β

sup
x,ξ∈Rn

|∂αx∂
β
ξ pt(x, ξ)| ≤Cαβt−|α|, (4.8)

where constant Cαβ > 0 is independent of t ≥ 1. By a direct computation we have the
following.

(i[H0, pt(X,D)]+∂t pt(X,D)) f (x)

= (2π)−n/2
∫

eix·ξ
{
∇ξH0(ξ) · ∇x pt(x, ξ)+∂t pt(x, ξ)+ rt(x, ξ)

}
f̂ (ξ)dξ, (4.9)

where rt(x, ξ) satisfies

|∂αx∂
β
ξrt(x, ξ)| ≤Cαβt−2−|α|. (4.10)

2The following lemma is an extension of Lemma 4.2 in [12].
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In fact we compute for f ∈ S as follows.

i[H0, pt(X,D)] f (x)= i
"

ei(x−y)ξH0(ξ)
"

ei(y−z)ηpt(y,η) f (z)dzdη̂dydξ̂

−i
"

ei(x−y)ξpt(x, ξ)H0(ξ) f (y)dydξ̂

= i
"

ei(x−z)ξH0(ξ)
["

ei(y−z)(η−ξ) pt(y,η)dydη̂− pt(x, ξ)
]

f (z)dzdξ̂.

Noting that

"
ei(y−z)(η−ξ) pt(y,η)dydη̂ =

"
eiyηpt(z+ y, ξ+η)dydη̂

=

"
eiyηpt(z+ y, ξ)dydη̂+

"
eiyηη ·

∫ 1

0
∇ξpγ(z+ y, ξ+ θη)dθdydη̂

= pt(z, ξ)+
n∑

j=1

"
eiyηη j

∫ 1

0
∂ξ j pt(z+ y, ξ+ θη)dθdydη̂,

we have

i[H0, pt(X,D)] f (x)= i
"

ei(x−z)ξH0(ξ)[pt(z, ξ)− pt(x, ξ)] f (z)dzdξ̂

+i
"

ei(x−z)ξH0(ξ)
n∑

j=1

"
eiyηη j

∫ 1

0
∇ξ j pt(z+ y, ξ+ θη)dθdydη̂ f (z)dzdξ̂.

By integration by parts we have the following.

i[H0, pt(X,D)] f (x)

= i
"

ei(x−z)ξH0(ξ)(z− x) ·
∫ 1

0
∇x pt(x+ θ(z− x), ξ)dθ f (z)dzdξ̂

−

"
ei(x−z)ξH0(ξ)

"
eiyη

∫ 1

0

n∑
j=1

∇y j∇ξ j pt(z+ y, ξ+ θη)dθdydη̂ f (z)dzdξ̂

= i
∫

(−Dξ)(ei(x−z)ξ) ·
[
H0(ξ)

∫ 1

0
∇x pt(x+ θ(z− x), ξ)dθ

]
f (z)dzdξ̂

−

"
ei(x−z)ξH0(ξ)

"
eiyη

∫ 1

0

n∑
j=1

∇y j∇ξ j pt(z+ y, ξ+ θη)dθdydη̂ f (z)dzdξ̂.
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Further integration by parts gives

i[H0, pt(X,D)] f (x)

=

"
ei(x−z)ξ

n∑
j=1

∇ξ j

(
H0(ξ)

∫ 1

0
∇x j pt(x+ θ(z− x), ξ)dθ

)
f (z)dzdξ̂

−

"
ei(x−z)ξH0(ξ)

"
eiyη

∫ 1

0

n∑
j=1

∇y j∇ξ j pt(z+ y, ξ+ θη)dθdydη̂ f (z)dzdξ̂

=

"
ei(x−z)ξ∇ξH0(ξ) ·

∫ 1

0
∇x pt(x+ θ(z− x), ξ)dθ f (z)dzdξ̂

+

"
ei(x−z)ξH0(ξ)

∫ 1

0

n∑
j=1

∇ξ j∇x j pt(x+ θ(z− x), ξ)dθ f (z)dzdξ̂

−

"
ei(x−z)ξH0(ξ)

"
eiyη

∫ 1

0

n∑
j=1

∇ξ j∇y j pt(z+ y, ξ+ θη)dθdydη̂ f (z)dzdξ̂.

Noting that∫ 1

0
∇x pt(x+ θ(z− x), ξ)dθ = ∇x pt(x, ξ)+

∫ 1

0

∫ 1

0

d
dρ

(∇x pt(x+ρθ(z− x), ξ))dρdθ,∫ 1

0

n∑
j=1

∇ξ j∇x j pt(x+ θ(z− x), ξ)dθ

=

n∑
j=1

∇ξ j∇x j pt(x, ξ)+
∫ 1

0

∫ 1

0

d
dρ

 n∑
j=1

∇ξ j∇x j pt(x+ρθ(z− x), ξ)

dρdθ

and "
eiyη

∫ 1

0

n∑
j=1

∇ξ j∇y j pt(z+ y, ξ+ θη)dθdydη̂

=

n∑
j=1

∇ξ j∇x j pt(z, ξ)+
"

eiyη
∫ 1

0

∫ 1

0

d
dρ

 n∑
j=1

∇ξ j∇x j pt(z+ρy, ξ+ θη)

dρdθdydη̂,

we have

i[H0, pt(X,D)] f (x)=
"

ei(x−z)ξ∇ξH0(ξ) · ∇x pt(x, ξ) f (z)dzdξ̂

+

"
ei(x−z)ξH0(ξ)

n∑
j=1

(
∇ξ j∇x j pt(x, ξ)−∇ξ j∇x j pt(z, ξ)

)
f (z)dzdξ̂

+r1
t (X,D) f (x),

where r1
t (x, ξ) satisfies (4.10). Hence we have

(i[H0, pt(X,D)]+∂t pt(X,D)) f (x)

=

"
ei(x−z)ξ(∇ξH0(ξ) · ∇x pt(x, ξ)+∂t pt(x, ξ)) f (z)dzdξ̂+ rt(X,D) f (x)
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for some function rt(x, ξ) which satisfies (4.10), which proves (4.9). The symbol of the first
term is equal to

∇ξH0(ξ) · ∇x pt(x, ξ)+∂t pt(x, ξ) = −
2
t
φ′(|x/t−∇ξH0(ξ)|2 < 1)|x/t−∇ξH0(ξ)|2χ(H0(ξ))2

=:
1
t

ut(x, ξ) ≥ 0.

Thus we have proved the following.

(i[H0,P(t)]+∂tP(t)) f (x)= (i[H0, pt(X,D)]+∂t pt(X,D)) f (x)

=
1
t

ut(X,D) f (x)+L(t) f (x),

where L(t) satisfies
‖L(t)‖ ≤Ct−2 (t ≥ 1).

As ut(x, ξ) ≥ 0 the function
qt(x, ξ) =

√
ut(x, ξ).

is a C∞ function of x, ξ ∈ Rn by our assumption |ρ′(λ)|
1
2 ∈C∞(R) in section 2, and satisfies

sup
x,ξ∈Rn

|∂αx∂
β
ξqt(x, ξ)| ≤Cαβt−|α|

for some constants Cαβ > 0 for any multi-index α,β. Letting

Q(t) f (x) = qt(X′,D) f (x) =
"

ei(x−y)ξqt(y, ξ) f (y)dydξ̂, (4.11)

we set
S (t) = Q(t)∗Q(t) ≥ 0.

Then we have

S (t) f (x) = st(X,D) f (x) =
"

ei(x−y)ξ st(x, ξ) f (y)dydξ̂,

where
st(x, ξ) =

"
e−iyηqt(x, ξ+η)qt(x+ y, ξ+η)dydη̂.

The symbol st(x, ξ) is expanded as follows.

st(x, ξ) = qt(x, ξ)2+ s1
t (x, ξ) = ut(x, ξ)+ s1

t (x, ξ),

where s1
t (x, ξ) satisfies

|∂αx∂
β
ξ s

1
t (x, ξ)| ≤Cαβt−1−|α|,

which yields
‖s1

t (X,D)‖ ≤Ct−1 (t ≥ 1).

Summing up we have proved that

i[H0,P(t)]+∂tP(t) =
1
t

S (t)+R(t),
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where S (t) and R(t) = −1
t s1

t (X,D)+L(t) satisfy (4.6). �

To see the convergence (4.2) we note that the norm in (4.2) is equal to the following for
τ > σ > 1.

sup
‖g‖=1
|(eiτH0 J∗P(τ)e−τH f − eiσH0 J∗P(σ)e−iσH f ,g)|. (4.12)

Calculating the inner product of this formula with using the fundamental theorem of calcu-
lus as in (4.3) and (4.4) and applying Lemma 4.1, we have

(eiτH0 J∗P(τ)e−iτH f − eiσH0 J∗P(σ)e−iσH f ,g)

=

∫ τ

σ

1
t

(Q(t)e−itH f ,Q(t)Je−itH0g)dt+
∫ τ

σ
(M(t) f ,g)dt, (4.13)

where Q(t) is defined by (4.11) and M(t) satisfies

‖M(t)‖ ≤C(1+ |t|)−1−δ

for some constant C > 0.
By a similar computation we have

(eiτH0 J∗P(τ)Je−iτH0g− eiσH0 J∗P(σ)Je−iσH0g,g)

=

∫ τ

σ

1
t
‖Q(t)Je−itH0g‖2dt+

∫ τ

σ
(M0(t)g,g)dt

and

(eiτHP(τ)e−iτH f − eiσHP(σ)e−iσH f , f )

=

∫ τ

σ

1
t
‖Q(t)e−itH f ‖2dt+

∫ τ

σ
(M1(t) f , f )dt,

where M j(t) satisfies for some constant C j > 0 ( j = 0,1)

‖M j(t)‖ ≤C j(1+ |t|)−1−δ.

The left hand sides of these two inequalities are bounded by C′0‖g‖
2, C′1‖ f ‖

2 respectively
for some constants C′j > 0 ( j = 0,1). Therefore we can find constants M0,M1 > 0 such that
the following holds for any τ > σ > 1.∫ τ

σ

1
t
‖Q(t)Je−itH0g‖2dt ≤ M2

0‖g‖
2, (4.14)∫ τ

σ

1
t
‖Q(t)e−itH f ‖2dt ≤ M2

1‖ f ‖
2. (4.15)

From (4.13), (4.14), (4.15) we obtain with using Schwarz inequality

|(eiτH0 J∗P(τ)e−iτH f − eiσH0 J∗P(σ)e−iσH f ,g)|

≤ M0

(∫ τ

σ

1
t
‖Q(t)e−itH f ‖2dt

) 1
2

‖g‖+C(1+ |σ|)−δ‖ f ‖‖g‖.
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Therefore together with (4.12) we have that the norm in (4.2) is estimated as follows.

‖eiτH0 J∗P(τ)e−iτH f − eiσH0 J∗P(σ)e−iσH f ‖

≤ M0

(∫ τ

σ

1
t
‖Q(t)e−itH f ‖2dt

) 1
2

+C(1+ |σ|)−δ‖ f ‖.

The inequality (4.15) yields that the right hand side converges to 0 as τ > σ→∞. This
proves (4.2) and the proof of the asymptotic completeness is complete.
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