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Abstract

Reiterated deterministic homogenization problem for nonlinear pseudo monotone
parabolic type operators is considered beyond the usual periodic setting. We present
a new approach based on the generalized Besicovitch type spaces, which allows to
consider general assumptions on the coefficients of the operators under consideration.
In particular we solve the weakly almost periodic homogenization problem and many
new other problems such as the homogenization in the Fourier-Stieltjes algebra. Our
approach falls within the scope of multiscale convergence method.
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1 Introduction

Let Ω be a bounded open set in RN with Lipschitz boundary and Q = Ω× (0,T ), where
T > 0 is a fixed real number. Let 2 ≤ p < ∞ and p′ = p/(p− 1). We consider the initial-
boundary value problem

∂uε

∂t
−div a

(
x, t,

x
ε1

,
x
ε2

,
t
ε
,uε,Duε

)
+a0

(
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x
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,uε,Duε

)
= f in Q

uε = 0 on ∂Ω× (0,T )
uε(x,0) = 0 in Ω,

(1.1)
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where f ∈ Lp′(0,T ;W−1,p′(Ω)), D and div denote respectively the gradient and divergence
operators in Ω, ε1 and ε2 are two well-separated functions of ε tending to zero with ε (that
is 0 < ε1, ε2, ε2/ε1 → 0 as ε → 0), and the functions (x, t,y,z,τ,µ,λ) 7→ a(x, t,y,z,τ,µ,λ)
and (x, t,y,z,τ,µ,λ) 7→ a0(x, t,y,z,τ,µ,λ) from Q×RN ×RN ×R×R×RN to RN and R,
respectively, satisfy the following assumptions:

For any arbitrary (µ,λ) ∈ R×RN and for any (x, t) ∈ Q, the functions
a0(x, t, ·, ·, ·,µ,λ) and a(x, t, ·, ·, ·,µ,λ) are measurable;

(1.2)

a(x, t,y,z,τ,µ,0) = 0 a.e. in (y,z,τ) ∈ RN ×RN ×R, for all (x, t) ∈ Q
and all µ ∈ R;

(1.3)

There are three constants c0, c1, c2 > 0 and a continuity modulus ν

(i.e., a nondecreasing continuous function on [0,+∞) such that
ν(0) = 0,ν(r) > 0 if r > 0, and ν(r) = 1 if r > 1) such that a.e. in
(y,z,τ) ∈ RN ×RN ×R,
(i) (a(x, t,y,z,τ,µ,λ)−a(x, t,y,z,τ,µ,λ′)) · (λ−λ′)≥ c0 |λ−λ′|p

(ii) a0(x, t,y,z,τ,µ,λ)µ ≥ 0
(iii) |a0(x, t,y,z,τ,µ,λ)|+ |a(x, t,y,z,τ,µ,λ)| ≤ c1(1+ |µ|p−1 + |λ|p−1)
(iv) |a0(x, t,y,z,τ,µ,λ)−a0(x′, t ′,y,z,τ,µ′,λ′)|+

+ |a(x, t,y,z,τ,µ,λ)−a(x′, t ′,y,z,τ,µ′,λ′)|
≤ ν(|x− x′|+ |t− t ′|+ |µ−µ′|)(1+ |µ|p−1 + |λ|p−1 + |µ′|p−1

+ |λ′|p−1)+ c2 (1+ |µ|+ |λ|+ |µ′|+ |λ′|)p−2 |λ−λ′|
for all (x, t),(x′, t ′) ∈ Q and all (µ,λ),(µ′,λ′) ∈ R×RN , where the dot
denotes the usual Euclidean inner product in RN and |·| the associated
norm.

(1.4)

Remark 1.1. The positivity constraint (ii) in (1.4) is stated in order to establish the a priori
estimates. It plays no role in the process of the existence of solutions to (1.1).

Assuming the diffusion term in (1.1) is rigorously defined, problem (1.1) admits (at
least) a solution uε ∈ Lp(0,T ;W 1,p

0 (Ω)) for each fixed ε > 0 as it will be seen in Section
2. It is classically known that under some additional conditions on the functions a and a0,
the above problem possesses a unique solution so that we will assume the uniqueness of uε

for each fixed ε > 0. This therefore furnishes a sequence (uε)ε>0 and our main objective in
this paper is the investigation of the asymptotic behavior, as ε → 0, of uε under a suitable
realistic assumption on the behavior of the function (y,z,τ) 7→ ai(x, t,y,z,τ,µ,λ) (for fixed
x, t,µ,λ; where ai for 1 ≤ i ≤ N denotes the ith component of the function a).

Such a problem is referred to as a reiterated homogenization problem. Problems of
this type were first introduced by Bruggeman [9]. The real first issue in this area is due
to Bensoussan et al. [3] who proved the so-called iterated homogenization result for lin-
ear monotone elliptic operators. For the case of nonlinear elliptic equations, we refer to
[16, 28, 30, 31, 33] for the monotone operators in the periodic setting, to [32] for the mono-
tone operators in the general deterministic framework, and to [10] for the monotone de-
generated operators in the periodic setting. Concerning parabolic operators, the reiterated
homogenization of nonlinear parabolic operators in the periodic setting has been studied in
[25]. In [20], Flodén and Olsson have studied the periodic homogenization of nonlinear
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parabolic monotone equations. It is worth noting that beyond the periodic setting (par-
ticularly in the Besicovitch-almost periodic framework), a thorough analysis of the non-
reiterated homogenization problem for the operators considered here is carried out in [21],
by means of the G-convergence method. It is also important to know that in the stochastic
framework, the homogenization problem for the operators considered in [21] has already
been treated by Pankov [40] using once again the G-convergence method for parabolic oper-
ators; see also [22]. As seen here above, the problem addressed is the general deterministic
(but non stochastic) homogenization problem for variational parabolic equations. How-
ever, there exists an enormous bibliography related to the non periodic homogenization
of non-variational uniformly elliptic or parabolic equations. We mention here the papers
[11, 29, 42, 43] related to the stochastic homogenization of fully nonlinear parabolic equa-
tions.

In what considering here, we study the reiterated homogenization problem for (1.1)
in a general setting characterized by an assumption on ai(x, t, ·, ·, ·,µ,λ) (for fixed x, t,µ,λ)
covering a great set of concrete behaviors such as the periodicity, the almost periodicity,
the weakly almost periodicity, and others. As opposed to what was usually done in the
deterministic homogenization theory (see for instance the papers [32, 36, 37, 38, 45]), we
present here a new approach based on the generalized Besicovitch type spaces (see Sec-
tion 3), which widely opens the scope of application of our main homogenization result,
Theorem 4.5, which reads as

Theorem 1.2. Let 2 ≤ p < ∞. Suppose (4.1) holds and further A = Ay�Az�Aτ where the
algebras Ay and Az are ergodic. For each fixed real number ε > 0, let uε be the (unique)
solution of (1.1). There exists a subsequence of ε, still denoted by ε, such that, as ε → 0,

uε → u0 in Lp(0,T ;W 1,p
0 (Ω))-weak

∂uε

∂t
→ ∂u0

∂t
in Lp′(0,T ;W−1,p′(Ω))-weak

∂uε

∂x j
→ ∂u0

∂x j
+

∂u1

∂y j
+

∂u2

∂z j
in Lp(Q)-weak RΣ (1 ≤ j ≤ N),

where u = (u0,u1,u2) ∈ F1,p
0 solves the variational problemR T

0 〈u′0(t),v0(t)〉dt +
RR

Q×∆(A) b(·, ·,u0,Du) ·Dvdxdtdβ+
+

RR
Q×∆(A) b0(·, ·,u0,Du)v0dxdtdβ =

R T
0 〈 f (t),v0(t)〉dt

for all v = (v0,v1,v2) ∈ F1,p
0 ,

(1.5)

with Dw = Dw0 +∂sŵ1 +∂rŵ2 for w = (w0,w1,w2) ∈ F1,p
0 . Moreover u1 and u2 are unique

and any weak RΣ-limit point in V p of (uε)ε>0 is a solution to problem (1.5).

One may wonder why we chose here functions a and a0 not depending on several mi-
croscopic time variables as is the case for the microscopic spatial variables. The reason
is quite simple: as one can see in the paper [46] of the author, multiplying the number of
temporal scales does not change the form of the homogenized problem stated here above
since it does not influence the number microscopic solutions (represented in (1.5) by u1
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and u2). In the same register we refer the reader to a more recently work [41] in which the
periodic homogenization problem for parabolic operators is considered with m microscopic
temporal scales, m being an arbitrarily fixed positive integer. So the problem (1.5) contains
all the required information as far as the reiterated homogenization is concerned. Our ho-
mogenization approach, the RΣ-convergence method, proceeds with the juxtaposition of the
multiscale convergence method [1, 31] and the algebras with mean value [48]. This is the
so-called deterministic homogenization theory which includes the periodic homogenization
theory as a particular case. It is important to note that restricting to the periodic functions,
by using the periodic unfolding technique (see [15]), our convergence mode is realized to be
equivalent to an ordinary weak convergence for sequences of functions which depend both
on the macroscopic and the microscopic variables. sequences of functions which depends
both on the global and the local variable.

The paper is organized as follows. Section 2 presents some trace results. Section 3
deals with the concept of algebras with mean value and its connection to the generalized
Besicovitch spaces. We also state there some compactness results. Finally in Section 4, we
prove the main homogenization result of the paper and we give some applications of the
said result.

Unless otherwise specified, the vector spaces throughout are assumed to be real vector
spaces, and the scalar functions are assumed to take real values. If X and F denote a lo-
cally compact space and a Banach space, respectively, then we write C (X ;F) and B(X ;F)
for continuous mappings of X into F and bounded uniformly continuous mappings of X
into F , respectively. We shall always assume that B(X ;F) is equipped with the supre-
mum norm ‖u‖

∞
= supx∈X ‖u(x)‖ (‖·‖ denotes the norm in F). For shortness we will write

C (X) = C (X ;R) and B(X) = B(X ;R). Likewise the usual space Lp(X ;F) and Lp
loc(X ;F)

(X provided with a positive Radon measure) will be denoted by Lp(X) and Lp
loc(X), respec-

tively, in the case when F = R. Finally, it will always be assumed that the numerical spaces
Rm (m ≥ 1) and their open sets are each equipped with Lebesgue measure dy = dy1...dym.

2 Some trace results

In order that equation (1.1) makes sense we need to precise the meaning of the func-
tions (x, t) 7→ ai (x, t,x/ε1,x/ε2, t/ε,v(x, t),Dv(x, t))((x, t) ∈ Q) for v ∈ Lp(0,T ;W 1,p(Ω)).
Let (v0,v) ∈ C (Q)× C (Q)N = C (Q)N+1. Then using (1.2) and part (iv) of (1.4), we
easily see that the function ((x, t),(x′, t ′),(y,z,τ)) 7→ ai(x, t,y,z,τ,v0(x′, t ′),v(x′, t ′)), from
Q×Q×RN

y ×RN
z ×Rτ to R, belongs to C (Q×Q;L∞(RN+1

y,τ ×RN
z )), so that the trace function

(x, t,y,z,τ) 7→ ai(x, t,y,z,τ,v0(x, t),
v(x, t)), of Q×RN

y ×RN
z ×Rτ into R, is naturally defined by

ai(x, t,y,z,τ,v0(x, t),v(x, t)) = ai(x, t,y,z,τ,v0(x′, t ′),v(x′, t ′))
∣∣
(x′,t ′)=(x,t) ,

as element of C (Q;L∞(RN+1
y,τ ×RN

z )). Whence, in view of [46, Proposition 3.1] we can
define, for any ε > 0, the function (x, t) 7→ ai(x, t,x/ε1,x/ε2, t/ε,v0(x, t),v(x, t)) on Q, as an
element of L∞(Q), denoted by aε

i (−,v0,v). Let

aε(−,v0,v) = (aε
i (−,v0,v))1≤i≤N .



102 J. L. Woukeng

We have the following

Proposition 2.1. Let 2≤ p < ∞ and p′ = p/(p−1). The transformation (v0,v) 7→ aε
i (−,v0,v),

of C (Q)N+1 into L∞(Q), extends by continuity to a continuous mapping still denoted by
(v0,v) 7→ aε

i (−,v0,v), of Lp(Q)N+1 into Lp′(Q) verifying

aε(−,v0,0) = 0 a.e. in Q (2.1)

(aε(−,v0,v)−aε(−,v0,w)) · (v−w)≥ c0 |v−w|p a.e. in Q (2.2)

aε
0(−,v0,v)v0 ≥ 0 a.e. in Q (2.3)

‖aε
i (−,v0,v)‖Lp′ (Q) ≤ c′1

(
1+‖v0‖p−1

Lp(Q) +‖v‖p−1
Lp(Q)N

)
(2.4)

‖aε
i (−,v0,v)−aε

i (−,v0,w)‖Lp′ (Q)

≤ c2 ‖1+ |v0|+ |v|+ |w|‖p−2
Lp(Q) ‖v−w‖Lp(Q)N

(2.5)

|aε
i (−,v0,v)−aε

i (−,w0,v)|
≤ ν(|v0−w0|)

(
1+ |v0|p−1 + |w0|p−1 + |v|p−1

)
a.e. in Q

(2.6)

for all v0,w0 ∈ Lp(Q) and all v,w ∈ Lp(Q)N , where the positive constant c′1 depends only
on c1 and on Q.

Proof. For all v0,w0 ∈ C (Q) and all v ∈ C (Q)N , we have

|aε
i (−,v0,v)−aε

i (−,w0,v)| ≤ ν(|v0−w0|)(1+ |v0|p−1 + |w0|p−1 + |v|p−1) (2.7)

a.e. in Q. So, let v ∈ C (Q)N be freely fixed. Let ε > 0 be fixed. Define

gε
v : C (Q)→ L∞(Q) by gε

v(v0) = aε
i (−,v0,v) (v0 ∈ C (Q)).

Then |gε
v(v0)−gε

v(w0)| ≤ ν(|v0−w0|)
(

1+ |v0|p−1 + |w0|p−1 + |v|p−1
)

a.e. in Q. Let us

show that gε
v is continuous on C (Q) endowed with the relative topology on Lp(Q). For this

purpose let v0 ∈ C (Q) and let vn ∈ C (Q) be such that vn → v0 in Lp(Q) as n → ∞. Let’s
show that gε

v(vn)→ gε
v(v0) in Lp′(Q) as n → ∞. We have by (2.7),

‖gε
v(vn)−gε

v(v0)‖p′

Lp′ (Q)
≤ c

Z
Q

ν(|vn− v0|)p′ (1+ |vn|p + |v0|p + |v|p)dxdt

where c = 4p′−1. Set wn = vn−v0 and Fn = 1+ |vn|p + |v0|p + |v|p. Then Fn → 1+2 |v0|p +
|v|p in L1(Q) as n → ∞ (recall that vn → v0 in Lp(Q)), and so Fn → 1 + 2 |v0|p + |v|p in
L1(Q)-weak. On the other hand, since vn → v0 in Lp(Q), we know by [8, Thm IV-9, p.58]
that there exist a subsequence of wn (still denoted by wn) and a function u ∈ Lp(Q) such
that

wn → 0 a.e. in Q (hence |wn| → 0 a.e. in Q) as n → ∞

|wn| ≤ u a.e. in Q for all n.

ν being continuous and in particular at 0 with ν(0) = 0, and moreover being increasing, we
deduce that ν(|wn|) is measurable for all n (each wn is measurable and hence |wn| too) and
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(i) ν(|wn|)→ 0 a.e. in Q as n → ∞

(ii) ν(|wn|)p′ ≤ ν(u)p′ a.e. in Q for all n.

ν being a continuity modulus, the function ν(u) ≡ ν ◦ u is measurable and essentially
bounded on Q, i.e., ν(u) ∈ L∞(Q). Thus, the sequence ν(|wn|)p′ is equibounded (see (ii)
above) and converges almost pointwise in Q to 0. Therefore, due to Egorov’s theorem, one
obtains Z

Q
ν(|wn|)p′Fndxdt → 0 as n → ∞.

But the above limit being independent of the subsequence wn, still holds for the whole
sequence wn. We deduce from this that

‖gε
v(vn)−gε

v(v0)‖Lp′ (Q) → 0 as n → ∞.

Now, let v0 ∈ Lp(Q). We define the function Gε
v by setting

Gε
v(v0) = lim

n→∞
gε

v(vn) in Lp′(Q)

where (vn) is a sequence in C (Q) such that vn → v0 in Lp(Q). It is worth noting that, thanks
to what has been done above, this limit is independent of the chosen sequence (vn), and so,
Gε

v is well defined. Moreover,

Gε
v(v0) = gε

v(v0) for all v0 ∈ C (Q), and

|Gε
v(v0)−Gε

v(w0)| ≤ ν(|v0−w0|)
(

1+ |v0|p−1 + |w0|p−1 + |v|p−1
)

a.e. in Q and for all v0,w0 ∈ Lp(Q).
(2.8)

In fact, for (2.8), let v0,w0 ∈ Lp(Q), and let vn,wn ∈ C (Q) be such that vn → v0 in Lp(Q)
and wn → w0 in Lp(Q) as n → ∞. We easily get, as n → ∞,

|Gε
v(vn)−Gε

v(wn)| → |Gε
v(v0)−Gε

v(w0)| in Lp′(Q) (and hence in Lp′(Q)-weak).

Thus, for all ϕ ∈ Lp(Q),Z
Q
|Gε

v(vn)−Gε
v(wn)|ϕdxdt →

Z
Q
|Gε

v(v0)−Gε
v(w0)|ϕdxdt as n → ∞.

On the other hand, for ϕ ∈ Lp(Q) with ϕ ≥ 0 a.e. in Q, we haveZ
Q
|Gε

v(vn)−Gε
v(wn)|ϕdxdt ≤

Z
Q

ν(|vn−wn|)(1+ |vn|p−1 + |wn|p−1 + |v|p−1)ϕdxdt.

Following the same lines of proceeding as we have done it to compute lim
R

Q ν(|wn|)p′Fndxdt
and moreover by using the fact that (1+ |vn|p−1 + |wn|p−1 + |v|p−1)ϕ converges weakly to
(1+ |v0|p−1 + |w0|p−1 + |v|p−1)ϕ in L1(Q), we arrive atR

Q ν(|vn−wn|)
(

1+ |vn|p−1 + |wn|p−1 + |v|p−1
)

ϕdxdt →

→
R

Q ν(|v0−w0|)
(

1+ |v0|p−1 + |w0|p−1 + |v|p−1
)

ϕdxdt.
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ThusZ
Q
|Gε

v(v0)−Gε
v(w0)|ϕdxdt ≤

Z
Q

ν(|v0−w0|)
(

1+ |v0|p−1 + |w0|p−1 + |v|p−1
)

ϕdxdt

for all ϕ ∈ Lp(Q), ϕ ≥ 0 a.e. in Q. Whence (2.8) follows. We deduce from (2.8) that Gε
v is

(uniformly) continuous on Lp(Q). Now, fix freely v0 in Lp(Q) and define

Fε
v0

: C (Q)N → Lp′(Q) by Fε
v0

(v) = Gε
v(v0) (v ∈ C (Q)N).

For v,w ∈ C (Q)N , we have∥∥Fε
v0

(v)−Fε
v0

(w)
∥∥

Lp′ (Q) = ‖Gε
v(v0)−Gε

w(v0)‖Lp′ (Q)

= lim
n→∞

‖Gε
v(vn)−Gε

w(vn)‖Lp′ (Q)

= lim
n→∞

‖gε
v(vn)−gε

w(vn)‖Lp′ (Q) ,

where vn ∈ C (Q) is a sequence such that vn → v0 in Lp(Q). Since vn → v0 in Lp(Q), one
has, as n → ∞,

‖1+ |vn|+ |v|+ |w|‖p−2
Lp(Q) →‖1+ |v0|+ |v|+ |w|‖p−2

Lp(Q) .

Therefore, using the inequality

‖gε
v(vn)−gε

w(vn)‖Lp′ (Q) ≤ c2 ‖1+ |vn|+ |v|+ |w|‖p−2
Lp(Q) ‖v−w‖Lp(Q)N ,

we arrive at∥∥Fε
v0

(v)−Fε
v0

(w)
∥∥

Lp′ (Q) ≤ c2 ‖1+ |v0|+ |v|+ |w|‖p−2
Lp(Q) ‖v−w‖Lp(Q)N

for all v,w ∈ C (Q)N .

Whence, proceeding as in [37, Proposition 2.1], one deduces the existence of a unique
mapping Hε

v0
: Lp(Q)N → Lp′(Q), that extends by continuity Fε

v0
. Therefore we set

aε
i (−,v0,v) = Hε

v0
(v) ((v0,v) ∈ Lp(Q)N+1).

It is an easy task to see that the transformation (v0,v) 7→ aε
i (−,v0,v) thus define is continu-

ous on Lp(Q)N+1. Furthermore properties (2.1)–(2.6) are satisfied.

Let v ∈ Lp(0,T ;W 1,p
0 (Ω)). In Proposition, take (v0,v) = (v,Dv); then one sees that

the function aε
i (−,v,Dv) is well-defined and so, the elliptic part in equation (1.1) is rig-

orously justified. Thus, for each fixed ε > 0, equation (1.1) admits (at least) a solution
uε ∈ Lp(0,T ;W 1,p

0 (Ω)) (see e.g., [27, 2]). Moreover uε lies in

V p = {v ∈ Lp(0,T ;W 1,p
0 (Ω)) : v′ =

dv
dt

∈ Lp′(0,T ;W−1,p′(Ω))}.

Equipped with the norm ‖v‖V p = ‖v‖Lp(0,T ;W 1,p
0 (Ω)) + ‖v′‖Lp′ (0,T ;W−1,p′ (Ω)), V p is a Banach

space which is continuously embedded in C ([0,T ];L2(Ω)), so that the existence of uε(0) is
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justified. Therefore uε belongs to the space V p
0 = {v ∈V p : v(0) = 0}, a Banach space with

the V p-norm.
Now, let (ψ0,Ψ) ∈ C (Q;B(RN

y ×RN
z ×Rτ)N+1). It follows by mere routine that the

function (ζ,θ,η) 7→ ai(x, t, ·, ·, ·,ψ0(x′, t ′,ζ,θ,η),Ψ(x′, t ′,ζ,θ,η)) (for (x, t),(x′, t ′) fixed in
Q) sends continuously RN

ζ
×RN

θ
×Rη into L∞(RN+1

y,τ ×RN
z ) (where RN+1

y,τ ×RN
z ≡RN

y ×RN
z ×

Rτ), and so, belongs to B(RN
ζ
×RN

θ
×Rη;L∞(RN+1

y,τ ×RN
z )) (the space of bounded contin-

uous real functions of RN
ζ
×RN

θ
×Rη into L∞(RN+1

y,τ ×RN
z )). Therefore one can define the

trace (y,z,τ) 7→ ai(x, t,y,z,τ,ψ0(x′, t ′,y,z,τ),Ψ(x′, t ′,
y,z,τ)) in the sense of [36], denoted by ai(x, t, ·, ·, ·,ψ0(x′, t ′, ·, ·, ·),Ψ(x′, t ′, ·, ·, ·)), as element
of L∞(RN+1

y,τ ×RN
z ). Moreover, thanks to [part (iv) of] (1.4), the function ((x, t),(x′, t ′)) 7→

ai(x, t, ·, ·, ·,ψ0(x′, t ′, ·, ·, ·),Ψ(x′, t ′, ·, ·, ·)) sends continuously Q×Q into L∞(RN+1
y,τ ×RN

z ).
Hence the function (x, t) 7→ ai(x, t, ·, ·, ·,ψ0(x, t, ·, ·, ·),Ψ(x,
t, ·, ·, ·)) is well-defined and lies in C (Q;L∞(RN+1

y,τ ×RN
z )). This enables us to define the

function (x, t) 7→ ai(x, t,x/ε1,x/ε2, t/ε,ψ0(x, t,x/ε1,x/ε2, t/ε),Ψ(x, t,x/ε1,
x/ε2, t/ε)) on Q, as element of L∞(Q) denoted by aε

i (−,ψε
0,Ψ

ε) (for fixed ε > 0).

3 Algebras with mean value

3.1 Algebras with mean value

We begin by stating the concept of algebras with mean value. This concept was first in-
troduced by Zhikov and Krivenko [48] as the main tool useful to tackle nonperiodic deter-
ministic homogenization problems. It is a generalization of the concept of almost periodic
functions, so that one can easily introduce the generalized Besicovitch spaces associated to
an algebra with mean value as we will see it in the sequel. In the same direction, we men-
tion the work [34] in which the concept of homogenization algebras is introduced, the main
difference between those concepts being the separability hypothesis imposed on the latter
concept. It is important to note that in [39] the latter concept has just been released from the
separability assumption. Thus our approach here follows closely the one in [39]. Before we
can state the concept of algebras with mean value, we need to give some preliminaries.

Let m be a positive integer. Let H = (Hε)ε>0 be the following action of R∗
+ (the multi-

plicative group of positive real numbers) on the numerical space Rm defined by

Hε(x) =
x
ε1

(x ∈ Rm) (3.1)

where ε1 is a positive function of ε tending to 0 with ε. For a given ε > 0, let

uε(x) = u(Hε(x)) (x ∈ Rm)

for u∈ L1
loc(Rm

y ) (as usual, Rm
y denotes the numerical space Rm of variables y = (y1, ...,ym)).

In view of (H)3, uε lies in L1
loc(Rm

x ). More generally, if u lies in Lp
loc(R

m) (resp. Lp(Rm)),
1 ≤ p < +∞, then so also is uε.

A function u ∈ B(Rm
y ) (the C*-algebra of bounded uniformly continuous functions on

Rm
y ) is said to have a mean value for H , if there exists a real number M(u) such that uε →

M(u) in L∞(Rm
x )-weak ∗ as ε→ 0. The real number M(u) is called the mean value of u (for
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H ). It is evident that this defines a mapping M which is a positive linear form (on the space
of functions u ∈ B(Rm

y ) with mean value) attaining the value 1 on the constant function 1
and verifying the inequality |M(u)| ≤ ‖u‖

∞
≡ supy∈Rm |u(y)| for all such u’s. The mapping

M is called the mean value on Rm for H ; see [35] for further details. It is also a fact, as the
characteristic function of all relatively compact set in Rm lies in L1(Rm), that

M(u) = lim
R→+∞

1
|BR|

Z
BR

u(y)dy (3.2)

where BR stands for the bounded open ball in Rm with radius R, and |BR| denotes its
Lebesgue measure. Expression (3.2) also holds for u ∈ L1

loc(Rm) provided that the above
limit makes sense.

This being so, by an algebra with mean value on Rm for H (algebra wmv, in short) is
meant any Banach subalgebra A of B(Rm

y ) which is translation invariant (u(·+ a) ∈ A for
any u ∈ A and each a ∈ Rm), contains the constants and whose each element possesses a
mean value for H .

Let A be an algebra wmv on Rm
y . It is known that A (endowed with the sup norm topol-

ogy) is a commutative C*-algebra with identity. We denote by ∆(A) the spectrum of A and
by G the Gelfand transformation on A. We recall that ∆(A) (a subset of the topological
dual A′ of A) is the set of all nonzero multiplicative linear functionals on A, and G is the
mapping of A into C (∆(A)) such that G(u)(s) = 〈s,u〉 (s ∈ ∆(A)), where 〈,〉 denotes the
duality pairing between A′ and A. We endow ∆(A) with the relative weak∗ topology on
A′. Then using the well-known theorem of Stone (see e.g., [26]) one can easily show that
the spectrum ∆(A) is a compact topological space, and the Gelfand transformation G is an
isometric isomorphism identifying A with C (∆(A)) (the continuous functions on ∆(A)) as
C*-algebras. Next, since each element of A possesses a mean value, this yields an applica-
tion u 7→M(u) (denoted by M and called the mean value) which is a nonnegative continuous
linear functional on A with M(1) = 1, and so provides us with a linear nonnegative func-
tional ψ 7→ M1(ψ) = M(G−1(ψ)) defined on C (∆(A)) = G(A), which is clearly bounded.
Therefore, by the Riesz-Markov theorem, M1(ψ) is representable by integration with re-
spect to some Radon measure β (of total mass 1) in ∆(A), called the M-measure for A [34].
It is evident that we have

M(u) =
Z

∆(A)
G(u)dβ for u ∈ A.

To enhance the comprehension of the notion of the spectrum of an algebra wmv, let us
give one well-known example: if A is the periodic algebra wmv Cper(Y ) (Y = (0,1)m) of
Y -periodic continuous real-valued functions on Rm, then ∆(A) can be identified with the
m-dimensional torus Tm = (R/Z)m.

Next, the partial derivative of index i (1 ≤ i ≤ m) on ∆(A) is defined to be the mapping
∂i = G ◦ ∂/∂yi ◦G−1 (usual composition) of D1(∆(A)) = {ϕ ∈ C (∆(A)) : G−1(ϕ) ∈ A1}
into C (∆(A)), where A1 = {ψ ∈ C 1(Rm) : ψ,Dyiψ ∈ A (1 ≤ i ≤ m)} with Dyiψ = ∂ψ/∂yi.
Higher order derivatives are defined analogously. At the present time, let A∞ be the space
of ψ ∈ C ∞(Rm

y ) such that Dα
y ψ = ∂|α|ψ

∂yα1
1 ···∂yαm

m
∈ A for every α = (α1, ...,αm) ∈ Nm, and let

D(∆(A)) = {ϕ ∈ C (∆(A)) : G−1(ϕ) ∈ A∞}. Endowed with a suitable locally convex topol-
ogy (see [34]), A∞ (resp. D(∆(A))) is a Fréchet space and further, G viewed as defined on
A∞ is a topological isomorphism of A∞ onto D(∆(A)).
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Analogously to the space D ′(Rm), we now define the space of distributions on ∆(A)
to be the space of all continuous linear form on D(∆(A)). We denote it by D ′(∆(A)) and
we endow it with the strong dual topology. It is an easy exercise to see that since A∞

is dense in A (see [47, Proposition 2.3]), the space Lp(∆(A)) (1 ≤ p ≤ ∞) is a subspace of
D ′(∆(A)) (with continuous embedding), so that one may define the Sobolev spaces on ∆(A)
as follows.

W 1,p(∆(A)) = {u ∈ Lp(∆(A)) : ∂iu ∈ Lp(∆(A)) (1 ≤ i ≤ m)} (1 ≤ p < ∞)

where the derivative ∂iu is taken in the distribution sense on ∆(A). We equip W 1,p(∆(A))
with the norm

||u||W 1,p(∆(A)) =
[
||u||pLp(∆(A)) +∑

m
i=1 ||∂iu||pLp(∆(A))

] 1
p (

u ∈W 1,p(∆(A))
)
,

1 ≤ p < ∞,

which makes it a Banach space. To that space are attached some other spaces such as
W 1,p(∆(A))/C = {u∈W 1,p(∆(A)) :

R
∆(A) udβ = 0} and its separated completion W 1,p

# (∆(A));
we refer to [36] for a documented presentation of these spaces.

However, the notion of a product algebra wmv needs a few further details. Suppose
m = m1 + ...+mn (n ≥ 2), where mi (1 ≤ i ≤ n) are positive integers. Thus

Rm = Rm1 ×· · ·×Rmn .

For each integer i (1 ≤ i ≤ n), let Hi = (H i
ε)ε>0 be an action of R∗

+ on Rmi defined in a
same way as the action H in (3.1). For fixed ε > 0, let Hε = H1

ε ×· · ·×Hn
ε (direct product),

i.e.,
Hε(x) = (H1

ε (pr1(x)), ...,Hn
ε (prn(x))) (x ∈ Rm)

where pri denotes the natural projection of Rm onto Rmi . There is no difficulty in checking
that the family H = (Hε)ε>0 thus defined is an action of R∗

+ on Rm. This is referred to as
the product of the actions Hi (1≤ i≤ n), and is denoted by H ′ = ∏

n
i=1 Hi = H1×· · ·×Hn.

Now, if Ai is an algebra wmv on Rmi for Hi, then we define the product algebra wmv
A1� ...�An as the closure in B(Rm) of the tensor product A1⊗ ...⊗An = {∑finite ui1 ⊗ ...⊗
uin : ui j ∈A j}. This defines an algebra wmv on Rm for H ′. However we need to characterize
such products. To this end, let Ay and Az be two algebras wmv on RN

y and Rm
z respectively,

N and m being two positive integers. Let A = Ay�Az be their product, which is an algebra
wmv on RN+m

y,z . We have the following result whose proof can be found in [39].

Theorem 3.1. Let Ay, Az and A be as above. For f ∈ B(RN+m
y,z ), we define fy ∈ B(Rm

z ) and
f z ∈ B(RN

y ) by
fy(z) = f z(y) = f (y,z) for (y,z) ∈ RN

y ×Rm
z

and put
B f = { f z : z ∈ Rm}, C f = { fy : y ∈ RN}.

Then B f ⊂ Ay and C f ⊂ Az for every f ∈ A. Also for f ∈ A both B f and C f are relatively
compact in Ay and in Az respectively (in the sup norm topology).
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Let AP(Rm) denote the space of all Bohr almost periodic functions on Rm [5, 6], that is
the algebra of functions in B(Rm) that are uniformly approximated by finite linear combi-
nations of functions in the set {cos(k · z),sin(k · z) : k ∈ Rm}. It is well-known that AP(Rm)
is an algebra wmv on Rm. As a first consequence of the preceding proposition we have the
following

Proposition 3.2. Let Ay = AP(RN
y ) and Az = AP(Rm

z ) be two almost periodic algebras wmv.
Then A ≡ Ay�Az = AP(RN

y ×Rm
z ).

Proof. The result is a consequence of the following fact: A function f ∈ AP(RN
y ×Rm

z ) is
in A if and only if either C f or B f is relatively compact (in the sup norm topology).

One can also easily show that Cper(Y )�Cper(Z) = Cper(Y ×Z) where Y = (0,1)N and
Z = (0,1)m. This follows from the identification Cper(Y ) = C (TN) where TN is the N-
torus in RN . Similarly we have Cper(Y )�AP(Rm

z )�Cper(T ) = Cper(Y ×T ;AP(Rm
z )) where

T = (0,1). Other examples of product algebras wmv can be given.

3.2 The generalized Besicovitch spaces

We can define the generalized Besicovitch spaces associated to an algebra wmv. The no-
tations are those of the preceding subsection. Let A be an algebra wmv on Rm (integer
m ≥ 1). Let 1 ≤ p < ∞. If u ∈ A, then |u|p ∈ A with G(|u|p) = |G(u)|p. Hence the limit
limR→+∞

1
|BR|

R
BR
|u(y)|p dy exists and we have

lim
R→+∞

1
|BR|

Z
BR

|u(y)|p dy = M(|u|p) =
Z

∆(A)
|G(u)|p dβ.

Hence, for u ∈ A, put
‖u‖p = (M(|u|p))1/p

.

This defines a seminorm on A with which A is not complete. We denote by Bp
A the comple-

tion of A with respect to ‖·‖p. Bp
A is a Fréchet space, and an argument due to Besicovitch

[5] states that Bp
A is a complete subspace of Lp

loc(R
m
y ). We have the following properties that

can be achieved using the theory of the completion; see e.g. [7, Chap. II].

Proposition 3.3. The following hold true:

(i) A is dense in Bp
A;

(ii) If F is a Banach space then any continuous linear mapping l from A to F extends by
continuity to a unique continuous linear mapping L, of Bp

A into F.

Now, let 1 ≤ p ≤ q < ∞. Obviously we have Bq
A ⊂ Bp

A, so that one may naturally define
the space B∞

A as follows:

B∞
A =

{
f ∈

\
1≤p<∞

Bp
A : sup

1≤p<∞

‖ f‖p < ∞

}
.

We endow B∞
A with the seminorm [ f ]

∞
= sup1≤p<∞ ‖ f‖p, which makes it a Fréchet space.

Next, thanks to the preceding proposition, the following properties are worth noting:
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(1) The Gelfand transformation G : A→ C (∆(A)) extends by continuity to a unique con-
tinuous linear mapping, still denoted by G , of Bp

A into Lp(∆(A)). Furthermore if
u ∈ Bp

A∩L∞(Rm
y ) then G(u) ∈ L∞(∆(A)) and ‖G(u)‖L∞(∆(A)) ≤ ‖u‖L∞(Rm

y ).

(2) The mean value M viewed as defined on A, extends by continuity to a positive contin-
uous linear form (still denoted by M) on Bp

A satisfying M(u) =
R

∆(A) G(u)dβ (u∈ Bp
A).

Furthermore, M(τau) = M(u) for each u∈Bp
A and all a∈Rm, where τau(y) = u(y−a)

for almost all y ∈ Rm.

(3) Let 1 ≤ p,q,r < ∞ be such that 1
p + 1

q = 1
r ≤ 1. The usual multiplication A×A → A;

(u,v) 7→ uv, extends by continuity to a bilinear form Bp
A×Bq

A → Br
A with

‖uv‖r ≤ ‖u‖p ‖v‖q for (u,v) ∈ Bp
A×Bq

A.

The following result will be of great interest in the work.

Proposition 3.4. Let A be a algebra wmv on Rm. Then A∞ is dense in Bp
A.

Proof. Indeed by [47, Proposition 2.3] A∞ is dense in A. The result follows therefore by
[part (i) of] Proposition 3.3.

Now, let u∈Bp
A (1≤ p < ∞); then |u|p ∈B1

A (this is easily seen) and so, by part (2) above
one has M(|u|p) =

R
∆(A) |G(u)|p dβ = ‖G(u)‖p

Lp(∆(A)). Thus for u ∈ Bp
A we have ‖u‖p =

(M(|u|p))1/p, and ‖u‖p = 0 if and only if G(u) = 0. Unfortunately, the mapping G (defined
on Bp

A) is not in general injective. So let N = KerG (the kernel of G) and let

B p
A = Bp

A/N .

Endowed with the norm ∥∥u+N
∥∥

B p
A

= ‖u‖p (u ∈ Bp
A),

B p
A is a Banach space with the following property.

Theorem 3.5. The mapping G : Bp
A → Lp(∆(A)) induces an isometric isomorphism G1 of

B p
A onto Lp(∆(A)).

Proof. This result has already been proved in [39]. However for the sake of convenience,
we give a sketch of the proof here. Since G is an isometry (indeed ‖G(u)‖Lp(∆(A)) = ‖u‖p

for u ∈ B p
A ) it suffices to show that G is surjective. Firstly we have that G(Bp

A) is dense
in Lp(∆(A)). Now, let v ∈ Lp(∆(A)); then there exists a sequence (un)n ⊂ Bp

A such that
G(un) → v in Lp(∆(A)) as n → ∞. Since ‖un−un′‖p = ‖G(un)−G(un′)‖Lp(∆(A)) → 0 as
n,n′→∞, the sequence (un)n is a Cauchy sequence in Bp

A which therefore converge to some
function u ∈ Bp

A, hence G(un) → G(u) in Lp(∆(A)) as n → ∞. We deduce that v = G(u).
This shows that G is surjective. Therefore, by the first isomorphism theorem, the mapping
G1 : B p

A = Bp
A/N → Lp(∆(A)) defined by

G1(u+N ) = G(u) for u ∈ Bp
A
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is an algebraic isomorphism. But G1 is a topological isometric isomorphism since∥∥G1(u+N )
∥∥

Lp(∆(A)) = ‖u‖p =
∥∥u+N

∥∥
B p

A
for u ∈ Bp

A.

This completes the proof.

As a first consequence of the preceding theorem one can also define the mean value of
u+N (for each u ∈ Bp

A) as follows:

M1(u+N ) = M(u), so that M1(u+N ) = lim
R→+∞

1
|BR|

Z
BR

u(y)dy.

One crucial result that can be derived from the preceding theorem is the following

Corollary 3.6. The following hold true:

(i) The spaces B p
A are reflexive for 1 < p < ∞;

(ii) The topological dual of the space B p
A (1≤ p < ∞) is the space B p′

A (p′ = p/(p−1)),
the duality being given by〈

u+N ,v+N
〉

B p′
A ,B p

A
= M(uv) =

R
∆(A) G1(u+N )G1(v+N )dβ

for u ∈ Bp′
A and v ∈ Bp

A.

This result is easily proven by using the properties of Lp-spaces and the above isometric
isomorphism.

Remark 3.7. The space B p
A is the separated completion of Bp

A and the canonical mapping
of Bp

A into B p
A is just the canonical surjection of Bp

A onto B p
A ; see once more [7] for the

theory of completion.

Another definition which will be of great interest in the sequel is

Definition 3.8. An algebra wmv A on Rm is ergodic if for every u∈B1
A such that ‖u−u(·+a)‖1 =

0 for every a ∈ Rm we have ‖u−M(u)‖1 = 0.

An equivalent property stated by Casado and Gayte [12] is given in the following propo-
sition.

Proposition 3.9 ([12]). An algebra wmv A on Rm is ergodic if and only if

lim
R→+∞

∥∥∥∥ 1
|BR|

Z
BR

u(·+ y)dy−M(u)
∥∥∥∥

p
= 0 for all u ∈ Bp

A, 1 ≤ p < ∞. (3.3)

The following result provides us with a few examples of ergodic algebras (see next
section for its application).

Lemma 3.10. Let A be an algebra wmv on Rm with the following property:

lim
R→+∞

1
|BR|

Z
BR

u(x+ y)dx = M(u) uniformly with respect to y. (3.4)

Then A is ergodic.
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Proof. As A is dense in Bp
A, it suffices to check (3.3) for u ∈ A. Let η > 0 be freely fixed.

For such u’s, according to (3.4) there exists some R0 > 0 such that∣∣∣∣ 1
|BR|

Z
BR

u(x+ y)dx−M(u)
∣∣∣∣≤ η for R > R0

and all y ∈ Rm. This leads at once at

My

(∣∣∣∣ 1
|BR|

Z
BR

u(x+ y)dx−M(u)
∣∣∣∣p)≤ η

p for R > R0.

The ergodicity of A follows thereby.

In order to simplify the presentation of the paper we will from now on, use the same
letter u (if there is no danger of confusion) to denote the equivalence class of an element
u∈ Bp

A. The symbol ρ will denote the canonical mapping of Bp
A onto B p

A = Bp
A/N . Our goal

here is to define another space attached to B p
A . Let u ∈ Lp(∆(A)), and let 1 ≤ i ≤ m. We

know that ∂iu ∈ D ′(∆(A)) exists and is defined by

〈∂iu,ϕ〉=−〈u,∂iϕ〉 for any ϕ ∈ D(∆(A)).

If we assume further that ∂iu ∈ Lp(∆(A)), then there exists a unique ui ∈ B p
A such that

∂iu = G1(ui). This leads to the following definition.

Definition 3.11. By a formal derivative of index 1 ≤ i ≤ m, of a function u ∈ B p
A is meant

the unique element ∂u/∂yi of B p
A (if there exists) such that

G1

(
∂u/∂yi

)
= ∂iG1(u). (3.5)

Remark 3.12. For u ∈ B1,p
A (that is the space of u ∈ Bp

A such that Dyu ∈ (Bp
A)m) we have

G1

(
ρ

(
∂u
∂yi

))
= G

(
∂u
∂yi

)
= ∂iG (u) = ∂iG1 (ρ(u)) = (by definition)G1

(
∂

∂yi
(ρ(u))

)
,

hence

ρ

(
∂u
∂yi

)
=

∂

∂yi
(ρ(u)),

or equivalently,

ρ◦ ∂

∂yi
=

∂

∂yi
◦ρ on B1,p

A . (3.6)

Now, set (for 1 ≤ p < ∞)

B1,p
A =

{
u ∈ B p

A :
∂u
∂yi

∈ B p
A , for 1 ≤ i ≤ m

}
.
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We endow B1,p
A with the norm

‖u‖B1,p
A

=

‖u‖p
p +

m

∑
i=1

∥∥∥∥∥ ∂u
∂yi

∥∥∥∥∥
p

p

1/p

(u ∈ B1,p
A )

which makes it a Banach space with the property that the restriction of G1 to B1,p
A is an

isometric isomorphism of B1,p
A onto W 1,p(∆(A)). However we will be mostly concerned

with the subspace B1,p
A /C of B1,p

A consisting of functions u ∈B1,p
A with M1(u)≡M(u) = 0.

Equipped with the seminorm

‖u‖B1,p
A /C =

∥∥Dyu
∥∥

p :=

 m

∑
i=1

∥∥∥∥∥ ∂u
∂yi

∥∥∥∥∥
p

p

1/p

(u ∈ B1,p
A /C)

where Dy = (∂/∂yi)1≤i≤m, B1,p
A /R is a locally convex topological space which is in general

not separate and not complete. We denote by B1,p
#A the separated completion of B1,p

A /C with
respect to ‖·‖B1,p

A /C, and by J1 the canonical mapping of B1,p
A /R into B1,p

#A . By the theory

of completion of the uniform spaces [7] it is a fact that the mapping ∂/∂yi : B1,p
A /R → B p

A
extends by continuity to a unique continuous linear mapping still denoted by ∂/∂yi : B1,p

#A →
B p

A and satisfying

∂

∂yi
◦ J1 =

∂

∂yi
and ‖u‖B1,p

#A
=
∥∥Dyu

∥∥
p (u ∈ B1,p

#A ) (3.7)

where Dy = (∂/∂yi)1≤i≤m. Since G1 is an isometric isomorphism of B1,p
A onto W 1,p(∆(A))

we have by (3.5) that the restriction of G1 to B1,p
A /R sends isometrically and isomorphically

B1,p
A /R onto W 1,p(∆(A))/R. So by [7, Chap. II] there exists a unique isometric isomor-

phism G1 : B1,p
#A →W 1,p

# (∆(A)) such that

G1 ◦ J1 = J ◦G1 (3.8)

and

∂i ◦G1 = G1 ◦
∂

∂yi
(1 ≤ i ≤ m). (3.9)

We recall that J is the canonical mapping of W 1,p(∆(A))/R into its separated comple-
tion W 1,p

# (∆(A)) while J1 is the canonical mapping of B1,p
A /R into B1,p

#A . Furthermore,
as J1(B1,p

A /R) is dense in B1,p
#A (this is classical) and since A∞ is dense in A, it follows that

(J1 ◦ρ)(A∞/R) is dense in B1,p
#A , where A∞/R = {u ∈ A∞ : M(u) = 0}.

3.3 The RΣ-convergence

We rewrite here the definition of the multiscale convergence method. Thanks to the equality
G1(B p

A) = Lp(∆(A)) we will merely work on the Besicovitch spaces B p
A . To this end, let ε1

and ε2 be two well-separated scales as at the beginning of Section 1, and let Ay (resp. Az, Aτ)
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be an algebra wmv on RN (resp. RN , R) for the action H = (Hε)ε>0 (resp. H ′ = (H
′
ε)ε>0,

H0 = (H0
ε )ε>0) of R∗

+ on RN (resp. RN , R) given by Hε(x) = x/ε1 (resp. H ′
ε(x) = x/ε2,

H0
ε (t) = t/ε), and finally let A = Ay�Az�Aτ be their product which is an algebra wmv on

RN ×RN ×R for the product action H ∗ = H ×H ′×H0 of R∗ on R2N+1 = RN ×RN ×R
given by H ∗ = (H∗

ε )ε>0 with

H∗(x,x′, t) =
(

x
ε1

,
x′

ε2
,

t
ε

)
for x,x′ ∈ RN , t ∈ R (ε > 0).

We will denote by the same letter M, the mean value on RN for H and for H ′, on R for H 0,
and on R2N+1 for H ∗ as well. The same letter G will denote the Gelfand transformation
on Ay, Az, Aτ and A, as well. Points in ∆(Ay) (resp. ∆(Az), ∆(Aτ)) are denoted by s (resp.
r,s0). The compact space ∆(Ay) (resp. ∆(Az), ∆(Aτ)) is equipped with the M-measure βy

(resp. βz, βτ), for Ay (resp. Az, Aτ). We recall that ∆(A) = ∆(Ay)×∆(Az)×∆(Aτ) (Cartesian
product) and hence the M-measure for A, with which ∆(A) is equipped, is just the product
measure β = βy⊗βz⊗βτ.

The letter E will throughout denote exclusively a family of positive real numbers admit-
ting 0 as an accumulation point. In the particular case where E = (εn)n∈N with 0 < εn ≤ 1
and εn → 0 as n → ∞, we will refer to E as a fundamental sequence.

Definition 3.13. A sequence (uε)ε>0 ⊂ Lp(Q) (1 ≤ p < ∞) is said to weakly RΣ-converge
in Lp(Q) to some u0 ∈ u0 ∈ Lp(Q;B p

A) if as ε → 0, we haveZ
Q

uε(x, t)v
(

x, t,
x
ε1

,
x
ε2

,
t
ε

)
dxdt →

ZZ
Q×∆(A)

û0(x, t,s,r,s0)v̂(x, t,s,r,s0)dxdtdβ (3.10)

for every v ∈ Lp′(Q;A) (1/p′ = 1−1/p), where û0 = G1 ◦u0 and v̂ = G1 ◦ (ρ◦ v) = G ◦ v.
We express this by uε → u0 in Lp(Q)-weak RΣ.

The above convergence result (3.10) strongly rely on the following convergence prop-
erty (see [47, Proposition 2.4] for the proof): For each ψ in A we have, as ε → 0,

ψ
ε → M(ψ) in L∞(RN

x )-weak ∗,

where ψε is defined in an obvious way by ψε(x) = ψ(x/ε1,x/ε2, t/ε) for x ∈ RN and t ∈ R,
and M is the mean value on R2N+1 = RN ×RN ×R for the product action H ∗. The letter
”R” stands for reiteratively. The above definition is more accurate than the previous one in
[32]; this is due to the equality G1(B p

A) = Lp(∆(A)). Indeed one immediately sees that the
right-hand side of (3.10) is equal to

R
Q M(u0(x, t, ·, ·, ·)v(x, t, ·, ·, ·))dxdt. In particular when

A = Cper(Y )�Cper(Z)�Cper(T ) one is led at once to the convergence resultZ
Q

uε(x, t)v
(

x, t,
x
ε1

,
x
ε2

,
t
ε

)
dxdt →

Z
Q

Z
Y

Z
Z

Z
T

u0(x, t,y,z,τ)v(x, t,y,z,τ)dτdzdydxdt

where u0 ∈ Lp(Q×Y ×Z×T ), which is the original definition of the multiscale conver-
gence [1]. Moreover the uniqueness of the limit u0 is ensured, and it is also a fact that the
weak RΣ-convergence in Lp implies the weak convergence in Lp.

The following result is the point of departure of all compactness results involved in the
framework of Σ-convergence, see [39] for the proof.
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Proposition 3.14. Let (uε)ε∈E be a bounded sequence in Lp(Q) (1 < p < ∞), E being
a fundamental sequence. Then there exist a subsequence E ′ from E and a function u in
Lp(Q;B p

A) such that the sequence (uε)ε∈E ′ weakly RΣ-converges in Lp(Q) to u.

Next, for 1 < p < ∞, set

V p = {v ∈ Lp(0,T ;W 1,p
0 (Ω)) : v′ = ∂v/∂t ∈ Lp′(0,T ;W−1,p′(Ω))},

a Banach space with the norm ‖v‖V p = ‖v‖Lp(0,T ;W 1,p
0 (Ω)) + ‖v′‖Lp′ (0,T ;W−1,p′ (Ω)) (v ∈ V p).

We have that V p (for p ≥ 2) is, continuously embedded in the space C ([0,T ];L2(Ω)) and
compactly embedded in the space L2(Q). With all that in mind, we have the following
important compactness result whose proof can be found in [39].

Theorem 3.15. Let 1 < p < ∞. Let Ω be an open subset in RN . Let A = Ay �Az �Aτ

where Ay and Az are ergodic algebras on RN . Finally, let (uε)ε∈E be a bounded se-
quence in V p. There exist a subsequence E ′ from E and a triple u = (u0,u1,u2) ∈ V p ×
Lp(Q;B p

Aτ
(Rτ;B1,p

#Ay
))×Lp(Q;B p

Ay�Aτ
(RN+1

y,τ ;B1,p
#Az

)) such that, as E ′ 3 ε → 0,

uε → u0 in V p-weak

and
∂uε

∂x j
→ ∂u0

∂x j
+

∂u1

∂y j
+

∂u2

∂z j
in Lp(Q)-weak RΣ (1 ≤ j ≤ N).

We give below a few examples of algebras wmv which satisfy hypotheses of Theorem
3.15.

3.3.1 Example 3.1. Periodic setting

Let Ay = Cper(Y ) (Y = (0,1)N) be the algebra of Y -periodic continuous functions on RN
y .

It is classically known that Ay is an ergodic algebra so that Theorem 3.15 applies with
A = Cper(Y )�Cper(Y )�Aτ for any algebra wmv Aτ on Rτ.

3.3.2 Example 3.2. Almost periodic setting

Let AP(RN) be the algebra of Bohr continuous almost periodic functions RN . We recall
that a function u ∈ B(RN) is in AP(RN) if the set of translates {τau : a ∈ RN} is relatively
compact in B(RN). An argument due to Bohr [6] specifies that u ∈ AP(RN) if and only
if u may be uniformly approximated by finite linear combinations of functions in the set
{cos(k · y),sin(k · y) : k ∈ RN}.

It is also a classical result that Ay is an ergodic algebra; see e.g. [18]. Therefore Theorem
3.15 applies with Ay = AP(RN

y ), Az = AP(RN
z ) and Aτ any algebra wmv on Rτ.

3.3.3 Example 3.3. The convergence at infinity setting

Let B∞(RN) denote the space of all continuous functions on RN that converge at infinity,
that is of all u ∈ B(RN) such that lim|y|→∞ u(y) ∈ R. It is an easy exercise to see that
B∞(RN) is an ergodic algebra [18]. Moreover the mean value of a function u ∈ B∞(RN) is
given by M(u) = lim|y|→∞ u(y). Therefore we have the conclusion of Theorem 3.15 with
Ay = B∞(RN) = Az and for any Aτ as in the preceding subsection.
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3.3.4 Example 3.4. The weakly almost periodic setting

We begin with the notion of weakly almost periodicity due to Eberlein [18].

Definition 3.16. A bounded continuous function u on RN is weakly almost periodic if the
set of translates {τau : a ∈ RN} is relatively weakly compact in for the sup norm topology.

We denote by WAP(RN
y ) the set of all weakly almost periodic functions on RN

y ; WAP(RN
y )

is a vector space over R. Endowed with the norm sup topology, WAP(RN
y ) is a Banach al-

gebra with the usual multiplication.
The space WAP(RN

y ) is sometimes called the space of Eberlein’s functions. As exam-
ples of Eberlein’s functions we have the continuous Bohr almost periodic functions, the
continuous functions vanishing at infinity, the positive definite functions (hence Fourier-
Stieltjes transforms); see [18] for more details.

The following properties are worth mentioning (see [18] for details):

(P1) WAP(RN
y ) is a translation invariant C ∗-subalgebra of B(RN

y ).

(P2) A weakly almost periodic function is uniformly continuous and bounded.

(P3) A weakly almost periodic function possesses a mean value with

M(u) = lim
R→+∞

1
|BR|

Z
BR

u(y+a)dy,

the convergence being uniform in a ∈ RN .

(P4) If u,v ∈ WAP(RN
y ) the convolution defined by the mean value w(y) = (u∗̂v)(y) =

Mz(u(y−z)v(z)) = Mz(u(z)v(y−z)) is an usual Bohr almost periodic function, where
Mz stands for the mean value with respect to z.

(P5) ([19, Theorem 1]) Every u ∈WAP(RN
y ) admits the unique decomposition u = v+w,

v being a Bohr almost periodic function and w a continuous function of quadratic
mean value zero: M(|w|2) = 0.

Property (P5) above, knowing as a decomposition theorem, is crucial in the definition
of the weak almost periodic algebra. Indeed let W0(RN

y ) denote the subset of WAP(RN
y )

consisting of elements with quadratic mean value zero. One easily observes that the set
of bounded continuous functions on RN of quadratic mean value zero is a complete vector
subspace of the algebra of bounded continuous functions on RN . Hence W0(RN

y ) is a com-
plete vector subspace of WAP(RN

y ). Property (P5) states as follows: WAP(RN
y ) is a direct

sum of the two spaces AP(RN
y ) and W0(RN

y ):

WAP(RN
y ) = AP(RN

y )⊕W0(RN
y ).

Another representation of the space W0(RN
y ) is given by de Leeuw and Glicksberg [17]:

W0(RN
y ) = {u ∈WAP(RN

y ) : M(|u|) = 0}.

Proposition 3.17. The vector space A = AP(RN
y )⊕W0(RN

y ) is an ergodic algebra.
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Proof. The ergodicity of A is a consequence of Lemma 3.10 and of property (P3). The
remainder is a mere consequence of properties (P1) and (P2) above.

We have the same conclusion as in the preceding examples with Ay = WAP(RN) =
Az = Ayi . Also, since any algebra wmv of all the preceding examples is a subalgebra
of WAP(RN), the conclusion of Theorem 3.15 follows if we take instead of WAP(RN),
any of the algebras of the above examples. In particular, Theorem 3.15 holds with A =
WAPR (RN

y )�AP(RN
z )�Aτ, Aτ any algebra wmv on R.

The following result will allow us to see that weakly almost periodic algebra wmv is
not an homogenization algebra.

Theorem 3.18. The algebra W0(Rm) is not separable.

For the proof of this theorem we need the following lemma.

Lemma 3.19. Let G and H be two Banach spaces, and let ϕ be a surjective continuous
linear mapping of G onto H. If G is separable then so also is H.

Proof. Let (an)n≥1 be a countable dense set in G, and let c be a positive constant such that
‖ϕ(g)‖H ≤ c‖g‖G for all g ∈ G, where ‖·‖G and ‖·‖H denote respectively the norms in G
and in H. Set B = (ϕ(an))n≥1 ⊂H, and let us show that B is dense in H. For that, let h ∈H
and let η > 0 be freely fixed; let finally g ∈ G be such that h = ϕ(g). There exists some
n0 ≥ 1 such that ‖g−an0‖G < η/c, hence ‖h−ϕ(an0)‖H ≤ c‖g−an0‖G < η. Thus B is a
countable dense subset of H, and the proof is completed.

One can now prove Theorem 3.18.

Proof of Theorem 3.18. Set G = W0(Rm), H = W0(Rm)/C0(Rm) (C0(Rm) denotes the alge-
bra of all continuous functions on Rm that vanish at infinity) and ϕ the natural (canonical)
homomorphism of G onto H. Assume G is separable (with the sup norm topology), then
according to the above lemma, H is separable. But we know by [13, Theorem 4.6] that the
quotient space H contains a linear isometric copy of `∞ and hence is not separable. This
contradicts our assumption, and hence G is not separable.

Since W0(Rm) ⊂ WAP(Rm) we conclude by Theorem 3.18 that the ergodic algebra
WAP(Rm) is not separable (with respect to the sup norm topology). It is well-known
that the algebra AP(Rm) induces homogenization algebras in the sense of [34]; it suf-
fices to consider those functions in AP(Rm) with spectrum contained in a countable sub-
group R of Rm (that we denoted below by APR (Rm)), that is the space of those functions
in AP(RN

y ) that can be uniformly approximated by finite linear combinations in the set
{cos(k · y),sin(k · y) : k ∈ R }. However this is not the case for WAP(Rm) since for every
countable subgroup R of Rm the algebra APR (Rm) +W0(Rm) is never separable. So we
have in hands an example of algebra wmv which contrary to the algebra AP(Rm), induces
no homogenization algebra, says WAP(Rm). This is therefore sufficient to show that the
concept of homogenization algebra cannot handle weakly almost periodic homogenization
problems. This is a significant contribution to the theory.

Now, let C0(RN
y ) denote the space of all continuous functions on RN

y that vanish at
infinity. It is well known that Ay = AP(RN

y )+C0(RN
y ) is a proper subalgebra of the algebra
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of weakly almost periodic functions on RN
y . Ay is an algebra wmv called the algebra of

perturbed almost periodic functions. It generates the homogenization algebras as follows.
Considering some countable subgroup R of RN

y we define APR (RN
y ) as above; it is known

that APR (RN
y ) is an homogenization algebra. If we set Ay,R = APR (RN

y )+ C0(RN
y ), then,

as C0(RN
y ) is a separable subalgebra of B(RN

y ), we define by this a further homogenization
algebra [34]. So Ay generates homogenization algebras. Besides, as seen by Theorem 3.18,
even though R is a countable subgroup of RN

y , APR (RN
y )+W0(RN

y ) is never separable, so
that Ay above is probably the bigger subalgebra of WAP(RN

y ) that generates homogenization
algebras.

The authors of accepted papers are requested to use this template to prepare the final
version of their manuscripts, which should be no longer than 10 pages in standard two-
column format.

4 Homogenization problem for (1.1)

4.1 Setting of the abstract problem and preliminary results

The notations are those of the preceding sections. Let A = Ay � Az � Aτ be an algebra
wmv and let p′ = p/(p− 1) with 2 ≤ p < ∞. It is easy to see that Property (3.10) (in
Definition 3.13) still holds for v ∈ C (Q;Bp′,∞

A ) instead of v ∈ Lp′(Q;A) mutatis mutandis,
where Bp′,∞

A = Bp′
A ∩ L∞(RN

y ×RN
z ×Rτ) and p′ = p/(p− 1). Furthermore, if we provide

the space Bp′,∞
A with the L∞(RN

y ×RN
z ×Rτ)-norm, it can be shown that, for u ∈ Bp′,∞

A , we
have G(u) ∈ L∞(∆(A)) and ‖G(u)‖L∞(∆(A)) ≤ ‖u‖L∞(R2N+1

y,z,τ ), G being the canonical mapping

of Bp′
A into Lp′(∆(A)).
This being so, the main purpose of this section is to investigate the asymptotic analysis,

as ε → 0, of uε (the solution of (1.1)) under the hypothesis

ai(x, t, ·, ·, ·,µ,λ) ∈ Bp′
A for any (x, t) ∈ Q and all (µ,λ) ∈ R×RN ,

0 ≤ i ≤ N
(4.1)

where p′ = p/(p−1) with 2 ≤ p < ∞.
The following result is the cornerstone of the homogenization process. It allows us to

go from a concrete hypothesis to the abstract one which is fundamental in the proof of the
main result of the paper.

Proposition 4.1. Assume (4.1) holds true. Then, for every (ψ0,Ψ)∈A×(A)N = (A)N+1 and
every (x, t) ∈ Q, the function (y,z,τ) 7→ ai(x, t,y,z,τ,ψ0(y,z,τ),Ψ(y,
z,τ)) denoted below by ai(x, t, ·, ·, ·,ψ0,Ψ), lies in Bp′

A .

Proof. Let K ⊂R×RN be a compact set such that (ψ0(y,z,τ),Ψ(y,z,τ))∈K for all (y,z,τ)∈
RN×RN×R. By viewing ai as a function (x, t,µ,λ) 7→ ai(x, t, ·, ·, ·,µ,λ) of Q×R×RN into
Bp′

A , we have that ai belongs to C (Q×R×RN ;Bp′
A ) (combine (4.1) with [part (iv) of] (1.4)).

Still denoting by ai the restriction of this function to Q×K, it immediately follows that
ai ∈ C (Q×K;Bp′

A ). Hence using the density of C (Q×K)⊗Bp′
A in C (Q×K;Bp′

A ), one may
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consider a sequence (qn)n≥1 in C (Q×K)⊗Bp′
A such that

sup
(x,t)∈Q

sup
(µ,λ)∈K

‖qn(x, t, ·, ·, ·,µ,λ)−ai(x, t, ·, ·, ·,µ,λ)‖p′ → 0

as n → ∞.

As
‖qn(x, t, ·, ·, ·,ψ0,Ψ)−ai(x, t, ·, ·, ·,ψ0,Ψ)‖p′,∞ ≤

sup
(x,t)∈Q

sup
(µ,λ)∈K

‖qn(x, t, ·, ·, ·,µ,λ)−ai(x, t, ·, ·, ·,µ,λ)‖p′

we have qn(x, t, ·, ·, ·,ψ0,Ψ)→ ai(x, t, ·, ·, ·,ψ0,Ψ) in Bp′
A as n → ∞. Thus, the proposition is

shown if we can verify that each qn(x, t, ·, ·, ·,ψ0,Ψ) lies in Bp′
A . However this will follow in

an obvious way once we have checked that for any function q : Q×RN
y ×RN

z ×Rτ×K →R
of the form

q(x, t,y,z,τ,µ,λ) = χ(x, t,µ,λ)Φ(y,z,τ) (y,z,λ ∈ RN , µ,τ ∈ R, (x, t) ∈ Q)
with χ ∈ C (Q×K) and Φ ∈ Bp′

A ,

we have q(x, t, ·, ·, ·,ψ0,Ψ) ∈ Bp′
A . But given q as above, we know by the Stone-Weierstrass

theorem that there is a sequence ( fn)n≥1 of polynomials in (x, t,µ,λ) ∈ Q×K such that
fn → χ in C (Q×K) as n → ∞, hence fn(x, t,ψ0,Ψ) → χ(x, t,ψ0,Ψ) in B(RN

y ×RN
z ×Rτ)

as n → ∞. Therefore, it follows that χ(x, t,ψ0,Ψ) lies in A, since the same is true for each
fn(x, t,ψ0,Ψ) (recall that A is an algebra). We conclude that

q(x, t, ·, ·, ·,ψ0,Ψ) = χ(x, t,ψ0,Ψ)Φ ∈ Bp′
A

as the product of an element of A by an element of Bp′
A . This concludes the proof.

Now, assume (4.1) holds. Let (ϕ,Ψ) ∈ (A)N+1; then by Proposition 4.1 we have
ai(x, t, ·, ·, ·,ϕ,Ψ) ∈ Bp′

A ∩L∞(RN
y ×RN

z ×Rτ) = Bp′,∞
A .

Proposition 4.2. Let 2 ≤ p < ∞ and let 0 ≤ i ≤ N. Suppose (4.1) holds. For any (ψ0,Ψ) ∈
C (Q;(A)N+1) we have

aε
i (−,ψε

0,Ψ
ε)→ ai(−,ψ0,Ψ) in Lp′(Q)-weak RΣ as ε → 0. (4.2)

Let a(−,ψ0,Ψ) = (ai(−,ψ0,Ψ))1≤i≤N . The mapping (ψ0,Ψ) 7→ (a0(−,ψ0,Ψ),
a(−,ψ0,Ψ)) of C (Q;(A)N+1) into Lp′(Q;Bp′

A )N+1 extends by continuity to a unique map-
ping still denoted by (a0,a), of Lp(Q;(Bp

A)N+1) into Lp′(Q;Bp′
A )N+1 such that

(a(−,u,v)−a(−,u,w)) · (v−w)≥ c1 |v−w|p a.e. in Q×RN
y ×RN

z ×Rτ

‖ai(−,u,v)‖
Lp′ (Q;Bp′

A )
≤ c′′2

(
1+‖u‖p−1

Lp(Q;Bp
A) +‖v‖p−1

Lp(Q;(Bp
A)N)

)
‖ai(−,u,v)−ai(−,u,w)‖

Lp′ (Q;Bp′
A )

≤ c0 ‖1+ |u|+ |v|+ |w|‖p−2
Lp(Q;Bp

A) ‖v−w‖Lp(Q;(Bp
A)N)

(4.3)
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|ai(x, t,y,z,τ,u,w)−ai(x′, t ′,y,z,τ,v,w)| ≤
≤ ν(|x− x′|+ |t− t ′|+ |u− v|)

(
1+ |u|p−1 + |v|p−1 + |w|p−1

)
a.e. in Q×RN

y ×RN
z ×Rτ

for all u,v ∈ Lp(Q;Bp
A), v,w ∈ Lp(Q;(Bp

A)N) and all (x, t),(x′, t ′) ∈ Q, where the constant
c′′2 depends only on c2 and on Q.

Proof. We see that the function ai(−,ψ0,Ψ) lies in C (Q;Bp′,∞
A ). Since Property (3.10)

(in Definition 3.13) still holds for f ∈ C (Q;Bp′,∞
A ) the convergence result (4.2) follows at

once. On the other hand, by the definition of the function ai(−,ψ0,Ψ) (for (ψ0,Ψ) ∈
C (Q;(A)N+1)) it is immediate that this function verifies properties of the same type as in
Proposition 2.1 (see for instance properties (2.2)-(2.6) therein). Therefore arguing as in the
proof of the latter proposition we get the remainder of Proposition 4.2.

The preceding proposition has several corollaries as seen below. To see this, for (ψ0,Ψ)∈
Lp(Q;(Bp

A)N+1) we set bi(·, ·, ψ̂0,Ψ̂) = G(ai(−,ψ0,Ψ)) (0 ≤ i ≤ N), which defines a map-
ping from Lp(Q;(Bp

A)N+1) to Lp′(Q×∆(A))N+1, where ψ̂0 = G ◦ψ0 (a similar definition
for Ψ̂), G being the canonical mapping of Bp′

A into Lp′(∆(A)).

Corollary 4.3. Let (uε)ε∈E be a sequence in Lp(Q) such that uε → u0 in Lp(Q) (strong) as
E 3 ε → 0, where u0 ∈ Lp(Q). Let Ψ ∈ C (Q;(A)N), and finally let 0 ≤ i ≤ N. Then, as
E 3 ε → 0,

aε
i (−,uε,Ψ

ε)→ ai(−,u0,Ψ). in Lp′(Q)-weak RΣ.

Proof. Let f ∈ Lp(Q;A), and let (ψ j) j be a sequence in C ∞
0 (Q) such that ψ j → u0 in Lp(Q)

as j → ∞. We haveR
Q aε

i (−,uε,Ψ
ε) f εdxdt−

RR
Q×∆(A) bi(·, ·,u0,Ψ̂) f̂ dxdtdβ

=
R

Q [aε
i (−,uε,Ψ

ε)−aε
i (−,u0,Ψ

ε)] f εdxdt+
+

R
Q [aε

i (−,u0,Ψ
ε)−aε

i (−,ψ j,Ψ
ε)] f εdxdt+

+
R

Q aε
i (−,ψ j,Ψ

ε) f εdxdt−
RR

Q×∆(A) bi(·, ·,u0,Ψ̂) f̂ dxdtdβ

= Aε +Bε, j +Cε, j

where:
Aε =

R
Q [aε

i (−,uε,Ψ
ε)−aε

i (−,u0,Ψ
ε)] f εdxdt,

Bε, j =
R

Q [aε
i (−,u0,Ψ

ε)−aε
i (−,ψ j,Ψ

ε)] f εdxdt,
Cε, j =

R
Q aε

i (−,ψ j,Ψ
ε) f εdxdt−

RR
Q×∆(A) bi(·, ·,u0,Ψ̂) f̂ dxdtdβ

We proceed in three steps.
Step 1. We first evaluate limE3ε→0 Aε. We have

|Aε| ≤
Z

Q
ν(|uε−u0|)

(
1+ |uε|p−1 + |u0|p−1 + |Ψε|p−1

)
| f ε|dxdt.

Let Fε =
(

1+ |uε|p−1 + |u0|p−1 + |Ψε|p−1
)
| f ε|. We have, on one hand, Fε ∈ L1(Q) and

(Fε)ε∈E weakly converges in L1(Q) as E 3 ε → 0 (this is easily seen). On the other hand,
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since vε ≡ uε−u0 → 0 in Lp(Q) as E 3 ε → 0, we know by [8, Thm IV-9, p.58] that there
exist a subsequence E ′ from E and a function g ∈ Lp(Q) such that

vε → 0 (hence |vε| → 0) a.e. in Q as E ′ 3 ε → 0
|vε| ≤ g a.e. in Q for all ε ∈ E ′.

We conclude as in [the first part of] the proof of Proposition 2.1 that Aε → 0 as E 3 ε → 0.
Step 2. As Cε, j is concerned. The function (x, t) 7→ ai(x, t, ·, ·, ·,ψ j(x, t),Ψ(x, t, ·, ·, ·)) be-
longs to C (Q;Bp′,∞

A ). Thus, using Proposition 4.2, we are led at once at

Cε, j →
ZZ

Q×∆(A)

(
bi(·, ·,ψ j,Ψ̂)−bi(·, ·,u0,Ψ̂)

)
f̂ dxdtdβ ≡ Ĉ j as E 3 ε → 0.

But ∣∣∣Ĉ j

∣∣∣≤ ZZ
Q×∆(A)

ν
(∣∣ψ j −u0

∣∣)(1+
∣∣ψ j
∣∣p−1 + |u0|p−1 +

∣∣∣Ψ̂∣∣∣p−1
)∣∣∣ f̂ ∣∣∣dxdtdβ.

Therefore, proceeding as we have done it in Step 1 above, we obtain Ĉ j → 0 as j → ∞.
Step 3. For the term Bε, j, the same analysis conducted in Steps 1) and 2) yields

lim
E3ε→0

lim
j→∞

Bε, j = 0.

Finally, since

limE3ε→0

(R
Q aε

i (−,uε,Ψ
ε) f εdxdt−

RR
Q×∆(A) bi(·, ·,u0,Ψ̂) f̂ dxdtdβ

)
= limE3ε→0 Aε + limE3ε→0 lim j→∞ Bε, j + limE3ε→0 lim j→∞Cε, j = 0,

the result follows.

Thanks to Corollary 4.3 and to Proposition 4.2, we have the following important corol-
lary whose proof follows the same outlines of [36, Corollary 4.1] (see also [46]), and is
therefore left to the reader.

Corollary 4.4. Let 0 ≤ i ≤ N.

Φε = ψ0 + ε1ψ
ε
1 + ε2ψ

ε
2, (4.4)

i.e., Φε(x, t) = ψ0 (x, t) + ε1ψ1 (x, t,x/ε1, t/ε) + ε2ψ2 (x, t,x/ε1,x/ε2, t/ε) for (x, t) ∈ Q,
where ψ0 ∈ D(Q) = C ∞

0 (Q), ψ1 ∈ D(Q)⊗A∞
y ⊗A∞

τ and ψ2 ∈ D(Q)⊗A∞. Then as ε → 0,

(i) aε
i (−,Φε,DΦε)→ ai(−,ψ0,Dψ0 +Dyψ1 +Dzψ2) in Lp′(Q)-weak RΣ.

Assume in addition that (uε)ε∈E is a sequence in Lp(Q) such that uε → u0 in Lp(Q) as
E 3 ε → 0 where u0 ∈ Lp(Q). Then, when E 3 ε → 0, one has

(ii) aε
i (−,uε,DΦε)→ ai(−,u0,Dψ0 +∂sψ̂1 +∂rψ̂2) in Lp′(Q)-weak RΣ.

Moreover, if (vε)ε∈E is a sequence in Lp(Q) such that vε → v0 in Lp(Q)-weak RΣ as E 3
ε → 0 (where v0 ∈ Lp(Q;B p

A)), then, as E 3 ε → 0,

(iii)
Z

Q
aε

i (−,uε,DΦε)vεdxdt →
ZZ

Q×∆(A)
bi(·, ·,u0,Dψ0 +∂sψ̂1 +∂rψ̂2)v̂0dxdtdβ.
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4.2 Homogenization result

The basic notation and hypotheses are as in the preceding sections. Let A = Ay �Az �Aτ

be an algebra wmv, where Ay and Az are ergodic algebras. For 2 ≤ p < ∞ we put F1,p
0 =

V p
0 ×Lp(Q;B p

Aτ
(Rτ;B1,p

#Ay
))×Lp(Q;B p

Ay�Aτ
(RN+1

y,τ ;B1,p
#Az

)). We endow F1,p
0 with the norm

‖u‖F1,p
0

=
N

∑
i=1

[
‖Dxiu0‖Lp(Ω) +

∥∥Dyiu1
∥∥

Lp(Ω;B p
Ay�Aτ

) +
∥∥Dziu2

∥∥
Lp(Ω;B p

A )

]
u = (u0,u1,u2) ∈ F1,p

0 .

F1,p
0 is a Banach space which admitting F∞

0 = D(Q)×(D(Q)⊗[ρτ(A∞
τ )⊗(Jy

1 ◦ρy)(A∞
y /R)])×

(D(Q)⊗ [ρy(A∞
y )⊗ρτ(A∞

τ )⊗ (Jz
1 ◦ρz)(A∞

z /R)]) as a dense subspace. For u = (u0,u1,u2) ∈
V we put Diu = ∂u0/∂xi +∂iû1 +∂iû2 (1≤ i≤N) and Du = Du0 +∂sû1 +∂rû2 =(Diu)1≤i≤N ,
where ∂iû1 = G1(∂u1/∂yi) and ∂iû2 = G1(∂u2/∂zi).

We are now in a position to state and prove the main result of the paper.

Theorem 4.5. Let 2 ≤ p < ∞. Suppose (4.1) holds and further A = Ay�Az�Aτ where the
algebras Ay and Az are ergodic algebras. For each fixed real number ε > 0, let uε be the
(unique) solution of (1.1). There exists a subsequence of ε, still denoted by ε, such that, as
ε → 0,

uε → u0 in Lp(0,T ;W 1,p
0 (Ω))-weak (4.5)

∂uε

∂t
→ ∂u0

∂t
in Lp′(0,T ;W−1,p′(Ω))-weak (4.6)

∂uε

∂x j
→ ∂u0

∂x j
+

∂u1

∂y j
+

∂u2

∂z j
in Lp(Q)-weak RΣ (1 ≤ j ≤ N), (4.7)

where u = (u0,u1,u2) ∈ F1,p
0 solves the variational problemR T

0 〈u′0(t),v0(t)〉dt +
RR

Q×∆(A) b(·, ·,u0,Du) ·Dvdxdtdβ+
+

RR
Q×∆(A) b0(·, ·,u0,Du)v0dxdtdβ =

R T
0 〈 f (t),v0(t)〉dt

for all v = (v0,v1,v2) ∈ F1,p
0 .

(4.8)

Moreover u1 and u2 are unique and any weak Σ-limit point in V p of (uε)ε>0 is a solution to
problem (4.8).

Proof. We first show that (uε)ε>0 is bounded in V p
0 . Let v ∈V p; we haveR T

0 〈u′ε(t),v(t)〉dt +
R

Q aε(−,uε,Duε) ·Dvdxdt +
R

Q aε
0(−,uε,Duε)vdxdt

=
R T

0 〈 f (t),v(t)〉dt.
(4.9)

Taking in particular v = uε in (4.9) and using inequality
R

Q aε
0(−,uε,Duε)uεdxdt ≥ 0 (this

comes from (2.3)) and the fact that
R T

0 〈u′ε(t),uε(t)〉dt = 1
2 ‖uε(T )‖2

L2(Ω) ≥ 0, and finally
thanks to property (2.1), we get

sup
ε>0

‖uε‖Lp(0,T ;W 1,p
0 (Ω)) < ∞.
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and hence
sup
ε>0

{
‖aε

0(−,uε,Duε)‖Lp′ (Q) +‖aε(−,uε,Duε)‖Lp′ (Q)N

}
< ∞. (4.10)

It follows that

sup
ε>0

∥∥∥∥∂uε

∂t

∥∥∥∥
Lp′ (0,T ;W−1,p′ (Ω))

< ∞

and hence (uε)ε>0 is bounded in V p, and so, in V p
0 .

Let E be a fundamental sequence. Because of Theorem 3.15, there exist a subsequence
E ′ from E and a triplet u = (u0,u1,u2) ∈ F1,p

0 such that (4.5)-(4.7) hold when E ′ 3 ε →
0. Next, we show that u is solution to the variational equation (4.8). To this end Φ =
(ψ0,(J

y
1 ◦ρy)(ψ1),(Jz

1 ◦ρz)(ψ2))∈ F∞
0 with ψ0 ∈D(Q), ψ1 ∈D(Q)⊗ [(A∞

y /R)⊗A∞
τ ], ψ2 ∈

D(Q)⊗ [A∞
y ⊗ (A∞

z /R)⊗A∞
τ ], where A∞

y /R = {ψ ∈ A∞
y : M(ψ) = 0} and similar definition

for A∞
z /R. Let Φε = ψ0 + ε1ψε

1 + ε2ψε
2 be defined as in (4.4). We have Φε ∈ D(Q) and

0 ≤
R T

0 〈 f (t)−u′ε(t),uε(t)−Φε(·, t)〉dt−
R

Q aε(−,uε,DΦε) ·D(uε−Φε)dxdt
−

R
Q aε

0(−,uε,Duε)(uε−Φε)dxdt

or equivalently, owing to equality
R T

0 〈u′ε(t),uε(t)〉dt = 1
2 ‖uε(T )‖2

L2(Ω),

1
2 ‖uε(T )‖2

L2(Ω) ≤
R T

0 〈 f (t),uε(t)−Φε(·, t)〉dt +
R T

0 〈u′ε(t),Φε(·, t)〉dt−
−

R
Q aε(-,uε,DΦε) ·D(uε−Φε)dxdt−

R
Q aε

0(-,uε,Duε)(uε−Φε)dxdt.
(4.11)

Since the sequence (aε
0(−,uε,Duε))ε>0 is bounded in Lp′(Q) (see (4.10)), there exist (see

Proposition 3.14) a subsequence from E ′, still denoted by E ′, and a function χ∈ Lp′(Q;B p′
A )

such that , as E ′ 3 ε → 0,

aε
0(−,uε,Duε)→ χ in Lp′(Q)-weak RΣ. (4.12)

Therefore proceeding as in the proof of [37, Theorem 3.1] we obtain by mere routine

0 ≤
R T

0 〈 f (t)−u′0(t),u0(t)−ψ0(·, t)〉dt−
RR

Q×∆(A) b(·, ·,u0,DΦ) ·D(u−Φ)dxdtdβ

−
RR

Q×∆(A) χ(u0−ψ0)dxdtdβ.
(4.13)

By a density argument, (4.13) still holds for Φ ∈ F1,p
0 . Hence taking in (4.13) the particular

functions Φ = u−λv with λ > 0 and v∈ F1,p
0 we also obtain by mere routine, the following

equation: R T
0 〈u′0(t),v0(t)〉dt +

RR
Q×∆(A) b(·, ·,u0,Du) ·Dvdxdtdβ

+
RR

Q×∆(A) χv0dxdtdβ =
R T

0 〈 f (t),v0(t)〉dt
for all v = (v0,v1,v2) ∈ F1,p

0 .

(4.14)

To obtain (4.8), it therefore remains to show that χ = a0(−,u0,Du) where Du = Du0 +
Dyu1 + Dzu2. For this purpose, let η > 0 be arbitrarily fixed, and let B′#(u2,η) (resp.
B′#(u1,η), B′0(u0,η)) denote the closed ball of Lp(Q;B p

Ay�Aτ
(RN+1

y,τ ;

B1,p
#Az

)) (resp. Lp(Q;B p
Aτ

(Rτ;B1,p
#Ay

)), Lp(0,T ;W 1,p
0 (Ω))) centered at u2 (resp. u1, u0) and of

radius η (resp. η, η). The spaces Lp(0,T ;W 1,p
0 (Ω)), Lp(Q;B p

Ay�Aτ
(RN+1

y,τ ;
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B1,p
#Az

)) and Lp(Q;B p
Aτ

(Rτ;B1,p
#Ay

)) are reflexive since the same is true for W 1,p
0 (Ω), B1,p

#Ay
(and

hence for B p
Aτ

(Rτ;B1,p
#Ay

) = Hy,τ) and B1,p
#Az

(and hence for B p
Ay�Aτ

(RN+1
y,τ ;

B1,p
#Az

) = Hy,z,τ). Thus the above balls are weakly compact. So, let

h(v0,v1,v2) = ‖1+ |u0|+ |Du0 +∂sv1 +∂rv2|+ |Dv0 +∂sv1 +∂rv2|‖p−2
Lp(Q;B p

A )

for (v0,v1,v2) ∈ F1,p
0 , and

d = sup
v2∈B′#(u2,η)

sup
v1∈B′#(u1,η)

sup
v0∈B′0(u0,η)

h(v0,v1,v2)

and finally set
k = c2d +1. (4.15)

(4.15) defines a positive real number depending on u and on η, and verifying k > 1. Using
a density argument, we choose ψ0 ∈D(Q), ψ1 ∈D(Q)⊗ [(A∞

y /R)⊗A∞
τ ] and ψ2 ∈D(Q)⊗

[A∞
y ⊗ (A∞

z /R)⊗A∞
τ ] such that

‖u0−ψ0‖Lp(0,T ;W 1,p
0 (Ω)) < η

4k ,∥∥u1− (Jy
1 ◦ρy)(ψ1)

∥∥
Lp(Q;Hy,τ)

< η

4k ,

‖u2− (Jz
1 ◦ρz)(ψ2)‖Lp(Q;Hy,z,τ) < η

4k .

(4.16)

Clearly ψ0 ∈ B′0(u0,η), (Jy
1 ◦ρy)(ψ1) ∈ B′#(u1,η) and (Jz

1 ◦ρz)(ψ2) ∈ B′#(u2,η). Set Φ =
(ψ0,(J

y
1 ◦ρy)(ψ1),(Jz

1 ◦ρz)(ψ2)) ∈ F∞
0 and define Φε as in (4.4). Then we have

‖b0(·, ·,u0,Du)− χ̂‖Lp′ (Q×∆(A)) ≤
≤ ‖b0(·, ·,u0,Du)−b0(·, ·,u0,Du0 +∂su1 +∂rψ̂2)‖Lp′ (Q×∆(A))

+‖b0(·, ·,u0,Du0 +∂su1 +∂rψ̂2)−b0(·, ·,u0,Du0 +∂sψ̂1 +∂rψ̂2)‖Lp′ (Q×∆(A))
+‖b0(·, ·,u0,Du0 +∂sψ̂1 +∂rψ̂2)−b0(·, ·,u0,DΦ)‖Lp′ (Q×∆(A))

+‖b0(·, ·,u0,DΦ)− χ̂‖Lp′ (Q×∆(A)) ,

and, thanks to (4.15)-(4.16),

‖b0(·, ·,u0,Du)− χ̂‖Lp′ (Q×∆(A)) ≤
3η

4
+‖b0(·, ·,u0,DΦ)− χ̂‖Lp′ (Q×∆(A)) .

On the other hand, using (4.12) and [part (ii) of] Corollary 4.3 (note that uε → u0 in Lp(Q)
as E ′ 3 ε → 0 since V p is compactly embedded in Lp(Q); this is a classical result), we get

‖b0(·, ·,u0,DΦ)− χ̂‖Lp′ (Q×∆(A)) ≤ liminf
E ′3ε→0

‖aε
0(−,uε,DΦε)−aε

0(−,uε,Duε)‖Lp′ (Q) .

But ∥∥aε
0(−,uε,DΦε)−aε

0(−,uε,Duε)
∥∥

Lp′ (Q)

≤ c2 ‖1+ |uε|+ |Duε|+ |DΦε|‖p−2
Lp(Q) ‖Duε−DΦε‖Lp(Q)N .

By inequality |DΦε| ≤ |Duε−DΦε|+ |Duε|, we are led at once at

‖1+ |uε|+ |Duε|+ |DΦε|‖p−2
Lp(Q)

≤
(
‖1+ |uε|+2 |Duε|‖Lp(Q) +‖Duε−DΦε‖Lp(Q)N

)p−2

≤
(

c+‖Duε−DΦε‖Lp(Q)N

)p−2
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where c > 0 is a constant independent of ε, the last inequality been obtained thanks to the
fact that (uε)ε>0 is bounded in Lp(0,T ;W 1,p

0 (Ω)). Thus,

‖b0(·, ·,u0,DΦ)− χ̂‖Lp′ (Q×∆(A))

≤ liminf
E ′3ε→0

(
c+‖Duε−DΦε‖Lp(Q)N

)p−2
‖Duε−DΦε‖Lp(Q)N .

But due to (2.2),

c0 ‖Duε−DΦε‖p
Lp(Q)N

≤
R

Q (aε(−,uε,Duε)−aε(−,uε,DΦε)) · (Duε−DΦε)dxdt.

Following the same line of reasoning as we have done it to obtain (4.14), we are led to

Bε ≡
R

Q (aε(−,uε,Duε)−aε(−,uε,DΦε)) · (Duε−DΦε)dxdt
→

RR
Q×∆(A) (b(·, ·,u0,Du)−b(·, ·,u0,DΦ)) ·D(u−Φ)dxdtdβ ≡ B

when E ′ 3 ε → 0. Thus we deduce the existence of ε0 > 0 such that we have Bε ≤ B+η/4
whenever E ′ 3 ε ≤ ε0. Mere computations lead us to

B ≤ k
(

3
k

)2(
η

4

)2

since B ≤ k‖D(u−Φ)‖2
Lp(Q×∆(A)) and ‖D(u−Φ)‖Lp(Q×∆(A)) ≤

3η

4k . We therefore obtain

Bε ≤ k
(3

k

)2 (η

4

)2 + η

4 provided E ′ 3 ε ≤ ε0. Whence

‖Duε−DΦε‖Lp(Q)N ≤

[
1
c0

(
k
(

3
k

)2(
η

4

)2
+

η

4

)] 1
p

for E ′ 3 ε ≤ ε0.

Set K(η) =
[

1
c0

(
9
(

η

4

)2 + η

4

)] 1
p
; then we have

[
1
c0

(
k
(3

k

)2 (η

4

)2 + η

4

)] 1
p ≤ K(η) since k >

1, and further

‖b0(·, ·,u0,Du)− χ̂‖Lp′ (Q×∆(A)) ≤
3η

4
+K(η) [c+K(η)]p−2 .

Note that K(η) is independent of k. The above inequality holds for all η > 0. Since K(η)→
0 when η → 0, letting η → 0 yields χ̂ = b0(·, ·,u0,Du), that is, χ = a0(−,u0,Du).

The uniqueness of u1 and u2 is obtained by a mere routine (see the proof of [45, Theo-
rem 3.5]), from which the proof is complete.

4.3 Some applications of Theorem 4.5

One can work out some homogenization problems related to problem (1.1)-(4.1). In partic-
ular one can solve:

(P)1 The periodic homogenization problem stated as follows: For each fixed 0 ≤ i ≤
N and any (x, t,µ,λ) ∈ Q×R×RN , the function (y,z,τ) 7→ ai(x, t,y,z,τ,µ,λ) is Y -
periodic in y ∈ RN , Z-periodic in z ∈ RN and T -periodic in τ ∈ R, where Y = Z =
(0,1)N and T = (0,1). Here we get the homogenization of (1.1) with A = Cper(Y )�
Cper(Z)�Cper(T ). Theorem 4.5 in this case reads as
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Theorem 4.6. Let 2 ≤ p < ∞. For each fixed ε > 0, let uε be the unique solution to (1.1).
Then, there exists a subsequence of ε not relabeled such that, as ε → 0,

uε → u0 in Lp(0,T ;W 1,p
0 (Ω))-weak

∂uε

∂t
→ ∂u0

∂t
in Lp′(0,T ;W−1,p′(Ω))-weak

∂uε

∂xi
→ ∂u0

∂xi
+

∂u1

∂yi
+

∂u2

∂zi
in Lp(Q)-weak RΣ (1 ≤ i ≤ N)

where the vector function u = (u0,u1,u2) solves the variational equation
u = (u0,u1,u2) ∈ F1,p

0 = V p
0 ×Lp(Q×T ;W 1,p

# (Y ))×Lp(Q×Y ×T ;W 1,p
# (Z)) :R T

0 〈u′0(t),v0(t)〉dt +
RR

Q×Y×Z×T a(x, t,y,z,τ,u0,Du) ·Dvdxdtdydzdτ

+
RR

Q×Y×Z×T a0(x, t,y,z,τ,u0,Du)v0dxdtdydzdτ =
R T

0 〈 f (t),v0(t)〉dt
for all v = (v0,v1,v2) ∈ F1,p

0
(4.17)

with Dv = Dv0 + Dyv1 + Dzv2 for v = (v0,v1,v2) ∈ F1,p
0 , W 1,p

# (Y ) = {u ∈ W 1,p
per (Y ;R) :R

Y u(y)dy = 0} and a similar definition for W 1,p
# (Z), W 1,p

per (Y ;R) being the space of Y -
periodic functions in W 1,p

loc (RN ;R). Moreover u1 and u2 are unique and any weak Σ-limit
point in V p of (uε)ε>0 is a solution to problem (4.17).

One can also solve the following homogenization problems for (1.1):

(P)2 The almost periodic homogenization problem stated as follows:

ai(x, t, ·, ·, ·,µ,λ) ∈ Bp′
AP(RN

y ×RN
z ×Rτ) for any (x, t,µ,λ) ∈ Q×RN+1, 0 ≤ i ≤ N

which yields the homogenization of (1.1) with A = AP(RN
y )�AP(RN

z )�AP(Rτ) =
AP(RN

y ×RN
z ×Rτ).

(P)3 The weakly almost periodic homogenization problem I:

ai(x, t, ·, ·, ·,µ,λ) ∈ Bp′
WAP(RN

z ;Bp′
AP(RN+1

y,τ )) for any (x, t,µ,λ) ∈ Q×RN+1,

0 ≤ i ≤ N

which leads to the homogenization of (1.1) with A = AP(RN
y )�WAP(RN

z )�AP(Rτ).

(P)4 The weakly almost periodic homogenization problem II:

ai(x, t, ·, ·, ·,µ,λ) ∈ Bp′
AP(RN

y ;Bp′
WAP(RN

z ;Bp′
WAP(Rτ))) for any (x, t,µ,λ) ∈

Q×RN+1, 0 ≤ i ≤ N

which yields the homogenization of (1.1) with A = AP(RN
y )�WAP(RN

z )�WAP(Rτ).

(P)5 The fully weakly almost periodic homogenization problem III:

ai(x, t, ·, ·, ·,µ,λ) ∈ Bp′
WAP(RN

y ;Bp′
WAP(RN

z ;Bp′
WAP(Rτ))) for any (x, t,µ,λ) ∈

Q×RN+1, 0 ≤ i ≤ N.

Here the suitable algebra wmv is A = WAP(RN
y )�WAP(RN

z )�WAP(Rτ).
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(P)6 The homogenization problem in the Fourier-Stieltjes algebra. We first need to
define the Fourier-Stieltjes algebra FS(RN) on RN .

Definition 4.7. The Fourier-Stieltjes algebra on RN is defined as the closure in
B(RN) of the space

FS∗(RN) =
{

f : RN → R, f (x) =
Z

RN
exp(ix · y)dν(y) for some ν ∈ M∗(RN)

}
where M∗(RN) denotes the space of complex valued measures ν with finite total vari-
ation: |ν|(RN) < ∞. We denote it by FS(RN).

Since by [18] any function in FS∗(RN) is a weakly almost periodic continuous func-
tion, we have that FS(RN) ⊂ WAP(RN). Moreover thanks to [14, Theorem 4.5]
FS(RN) is a proper subalgebra of WAP(RN).

As FS(RN) is an ergodic algebra which is translation invariant (this is easily seen:
indeed FS∗(RN) is translation invariant) we see that hypotheses of Theorem 3.15 are
satisfied with any algebra A = FS(RN

y )�FS(RN
z )�Aτ, Aτ being any algebra wmv on

Rτ.

With all this in mind, one can solve the homogenization problem for (1.1) under the
assumption that

ai(x, t, ·, ·, ·,µ,λ) ∈ Bp′
FS(Rτ;Bp′

FS(RN
y ;Bp′

FS(RN
z ))) for any (x, t,µ,λ) ∈ Q×RN+1,

0 ≤ i ≤ N.
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