$C_{\text {ommunications in }} \mathbf{M}_{\text {athematical }} \boldsymbol{A}_{\text {nalysis }}$

On The Uniqueness Of Meromorphic Functions Sharing Two Sets

Abhijit Banerjee *
Department of Mathematics, West Bengal State University, Barasat, 24 Prganas (North), West Bengal, Kolkata 700126, India

(Communicated by Weiyuan Qiu)

Abstract

In the paper we employ the notion of weighted sharing of sets to deal with the well known question of Gross and obtain a uniqueness result on meromorphic functions sharing two sets which will improve an earlier result of Lahiri [14].

AMS Subject Classification: 30D35.
Keywords: Meromorphic functions, uniqueness, weighted sharing, shared set, Gross' question.

1 Introduction, Main Results and Definitions

In this paper by meromorphic functions we will always mean meromorphic functions in the complex plane. We shall use the standard notations of value distribution theory : $T(r, f), m(r, f), N(r, \infty ; f), \bar{N}(r, \infty ; f), \ldots$ (see [9]). It will be convenient to let E denote any set of positive real numbers of finite linear measure, not necessarily the same at each occurrence. For any non-constant meromorphic function $h(z)$ we denote by $S(r, h)$ any quantity satisfying $S(r, h)=o(T(r, h)) \quad(r \longrightarrow \infty, r \notin E)$. For any constant a, we define $\boldsymbol{\Theta}(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}$.

If for some $a \in \mathbb{C} \cup\{\infty\}, f$ and g have the same set of a-points with same multiplicities then we say that f and g share the value $a \mathrm{CM}$ (counting multiplicities). If we do not take the multiplicities into account, f and g are said to share the value $a \mathrm{IM}$ (ignoring multiplicities).

Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and $E_{f}(S)=\bigcup_{a \in S}\{z: f(z)-a=0\}$, where each zero is counted according to its multiplicity. If we do not count the multiplicity the set $E_{f}(S)=\bigcup_{a \in S}\{z: f(z)-a=0\}$ is denoted by $\bar{E}_{f}(S)$. If $E_{f}(S)=E_{g}(S)$ we say that f and g share the set $S \mathrm{CM}$. On the other hand if $\bar{E}_{f}(S)=\bar{E}_{g}(S)$, we say that f and g share the set S IM.

[^0]F. Gross was the first to consider the uniqueness of meromorphic functions that share sets of distinct elements instead of values and in 1976 he posed the following question in [7]:
Question A Can one find two finite sets $S_{j}(j=1,2)$ such that any two non-constant entire functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$ must be identical?

In [7] Gross wrote If the answer of Question A is affirmative it would be interesting to know how large both sets would have to be?

Now it is natural to ask the following question [18].
Question B Can one find two finite sets $S_{j}(j=1,2)$ such that any two non-constant meromorphic functions f and g satisfying $E_{f}\left(S_{j}\right)=E_{g}\left(S_{j}\right)$ for $j=1,2$ must be identical ?

Nowadays a widely studied topic of the uniqueness theory has been to considering the shared value problems relative to a meromorphic function sharing two sets and at the same time give affirmative answers to Question B under weaker hypothesis. \{see [1]-[6], [8], [10], [14]-[16], [18]-[25]\}.

Dealing with the question of Gross in [5] Fang and Lahiri exhibited a unique range set S with smaller cardinalities than that obtained previously imposing some restrictions on the poles of f and g. They obtained the following result.
Theorem A. [5] Let $S=\left\{z: z^{n}+a z^{n-1}+b=0\right\}$ where $n(\geq 7)$ be an integer and a and b be two nonzero constants such that $z^{n}+a z^{n-1}+b=0$ has no multiple root. If f and g be two non-constant meromorphic functions having no simple poles such that $E_{f}(S)=E_{g}(S)$ and $E_{f}(\{\infty\})=E_{g}(\{\infty\})$ then $f \equiv g$.

In 2001 an idea of gradation of sharing of values and sets known as weighted sharing has been introduced in $\{[12],[13]\}$ which measure how close a shared value is to being shared CM or to being shared IM. Below we are explaining the notion.

Definition 1.1. [12, 13] Let k be a nonnegative integer or infinity. For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $E_{k}(a ; f)$ the set of all a-points of f, where an a-point of multiplicity m is counted m times if $m \leq k$ and $k+1$ times if $m>k$. If $E_{k}(a ; f)=E_{k}(a ; g)$, we say that f, g share the value a with weight k. We write f, g share (a, k) to mean that f, g share the value a with weight k. Clearly if f, g share (a, k) then f, g share (a, p) for any integer $p, 0 \leq p<k$. Also we note that f, g share a value a IM or CM if and only if f, g share $(a, 0)$ or (a, ∞) respectively.

Definition 1.2. [12] Let S be a set of distinct elements of $\mathbb{C} \cup\{\infty\}$ and k be a nonnegative integer or ∞. We denote by $E_{f}(S, k)$ the set $\bigcup_{a \in S} E_{k}(a ; f)$.

With the notion of weighted sharing of sets improving Theorem A, Lahiri [14] proved the following theorem.

Theorem B. [14] Let S be defined as in Theorem A and $n(\geq 7)$ be an integer. If for two non-constant meromorphic functions f and $g, \Theta(\infty ; f)+\Theta(\infty ; g)>1, E_{f}(S, 2)=E_{g}(S, 2)$ and $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$ then $f \equiv g$.

Suppose that the polynomial $P(w)$ is defined by

$$
\begin{equation*}
P(w)=a w^{n}-n(n-1) w^{2}+2 n(n-2) b w-(n-1)(n-2) b^{2} \tag{1.1}
\end{equation*}
$$

where $n \geq 3$ is an integer and a and b are two nonzero complex numbers satisfying $a b^{n-2} \neq$ 2. In fact we consider the following rational function

$$
\begin{equation*}
R(w)=\frac{a w^{n}}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)} \tag{1.2}
\end{equation*}
$$

where α_{1} and α_{2} are two distinct roots of

$$
n(n-1) w^{2}-2 n(n-2) b w+(n-1)(n-2) b^{2}=0
$$

We have from (1.2)

$$
\begin{equation*}
R^{\prime}(w)=\frac{(n-2) a w^{n-1}(w-b)^{2}}{n(n-1)\left(w-\alpha_{1}\right)^{2}\left(w-\alpha_{2}\right)^{2}} \tag{1.3}
\end{equation*}
$$

From (1.3) we know that $w=0$ is a root with multiplicity n of the equation $R(w)=0$ and $w=b$ is a root with multiplicity 3 of the equation $R(w)-c=0$, where $c=\frac{a b^{n-2}}{2}$.
Then

$$
\begin{equation*}
R(w)-c=\frac{a(w-b)^{3} Q_{n-3}(w)}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)} \tag{1.4}
\end{equation*}
$$

where $Q_{n-3}(w)$ is a polynomial of degree $n-3$.
Moreover from (1.1) and (1.2) we have

$$
\begin{equation*}
R(w)-1=\frac{P(w)}{n(n-1)\left(w-\alpha_{1}\right)\left(w-\alpha_{2}\right)} \tag{1.5}
\end{equation*}
$$

Noting that $c=\frac{a b^{n-2}}{2} \neq 1$, from (1.3) and (1.5) we have

$$
P(w)=a w^{n}-n(n-1) w^{2}+2 n(n-2) b w-(n-1)(n-2) b^{2}
$$

has only simple zeros.
In the paper our prime concern is to improve Theorem B. In fact we will show that in our result, for the uniqueness of meromorphic function the conditions over the ramification index ceases to matter at the expense of allowing $n \geq 8$. The following theorem is the main result of the paper.

Theorem 1.3. Let $S=\{w \mid P(w)=0\}$, where $P(w)$ is given by (1.1) and $n \geq 7$. Suppose that f and g are two non-constant meromorphic functions satisfying $E_{f}(S, 2)=E_{g}(S, 2)$ and $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$ and $\min \left\{\Theta_{f}, \Theta_{g}\right\}>7+\frac{2}{n-3}-n$ then $f \equiv g$, where $\Theta_{f}=$ $4 \Theta(0 ; f)+4 \Theta(b ; f)+\Theta(\infty ; f)$ and Θ_{g} can be similarly defined.

We are now going to explain the following notations as these are used in the paper.
Definition 1.4. [11] For $a \in \mathbb{C} \cup\{\infty\}$ we denote by $N(r, a ; f \mid=1)$ the counting function of simple a-points of f. For a positive integer m we denote by $N(r, a ; f \mid \leq m)(N(r, a ; f \mid \geq m))$ the counting function of those a-points of f whose multiplicities are not greater(less) than m where each a-point is counted according to its multiplicity. $\bar{N}(r, a ; f \mid \leq m)(\bar{N}(r, a ; f \mid \geq m))$ are defined similarly, where in counting the a-points of f we ignore the multiplicities. Also $N(r, a ; f \mid<m), N(r, a ; f \mid>m), \bar{N}(r, a ; f \mid<m)$ and $\bar{N}(r, a ; f \mid>m)$ are defined analogously.

Definition 1.5. Let f and g be two non-constant meromorphic functions such that f and g share $(1,0)$. Let z_{0} be a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We denote by $\bar{N}_{L}(r, 1 ; f)$ the reduced counting function of those 1-points of f and g where $p>q$, by $N_{E}^{1)}(r, 1 ; f)$ the counting function of those 1-points of f and g where $p=q=1$, by $\bar{N}_{E}^{(22}(r, 1 ; f)$ the reduced counting function of those 1-points of f and g where $p=q \geq 2$. In the same way we can define $\bar{N}_{L}(r, 1 ; g), N_{E}^{1)}(r, 1 ; g), \bar{N}_{E}^{(2}(r, 1 ; g)$. In a similar manner we can define $\bar{N}_{L}(r, a ; f)$ and $\bar{N}_{L}(r, a ; g)$ for $a \in \mathbb{C} \cup\{\infty\}$. When f and g share $(1, m), m \geq 1$ then $N_{E}^{1)}(r, 1 ; f)=N(r, 1 ; f \mid=1)$.

Definition 1.6. $[12,13]$ Let f, g share $(a, 0)$. We denote by $\bar{N}_{*}(r, a ; f, g)$ the reduced counting function of those a-points of f whose multiplicities differ from the multiplicities of the corresponding a-points of g. Clearly $\bar{N}_{*}(r, a ; f, g)=\bar{N}_{*}(r, a ; g, f)$ and $\bar{N}_{*}(r, a ; f, g)=$ $\bar{N}_{L}(r, a ; f)+\bar{N}_{L}(r, a ; g)$.

2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and G be two non-constant meromorphic functions defined in \mathbb{C}. Henceforth we shall denote by H the following function.

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-\frac{2 F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-\frac{2 G^{\prime}}{G-1}\right)
$$

Let f and g be two non-constant meromorphic function and

$$
\begin{equation*}
F=R(f), \quad G=R(g), \tag{2.1}
\end{equation*}
$$

where $R(w)$ is given by (1.2). From (1.2) and (2.1) it is clear that

$$
\begin{equation*}
T(r, f)=\frac{1}{n} T(r, F)+S(r, f), \quad T(r, g)=\frac{1}{n} T(r, G)+S(r, g) . \tag{2.2}
\end{equation*}
$$

Lemma 2.1. [2] Let F, G be given by (2.1) and $H \not \equiv 0$. If F, G share $(1, m)$ and f, g share (∞, k). Then

$$
\begin{aligned}
N_{E}^{1)}(r, 1 ; F) \leq & \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}_{*}(r, \infty ; f, g) \\
& +\bar{N}(r, 0 ; g)+\bar{N}(r . b ; g)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)
\end{aligned}
$$

where $\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)$ denotes the reduced counting function corresponding to the zeros of f^{\prime} which are not the zeros of $f(f-b)$ and $F-1, \bar{N}_{0}\left(r, 0 ; g^{\prime}\right)$ is defined similarly.

Lemma 2.2. Let f and g be two non-constant meromorphic functions sharing $(1, m)$, where $0 \leq m<\infty$. Then
$\bar{N}(r, 1 ; f)+\bar{N}(r, 1 ; g)-N_{E}^{1)}(r, 1 ; f)+\left(m-\frac{1}{2}\right) \bar{N}_{*}(r, 1 ; f, g) \leq \frac{1}{2}[N(r, 1 ; f)+N(r, 1 ; g)]$.

Proof. Let z_{0} be a 1- point of f of multiplicity p and a 1-point of g of multiplicity q. Since f, g share $(1, m)$, we note that the 1-points of f and g up to multiplicity m are same. When $p=q=1, z_{0}$ is counted once, both in left and right hand side of the above inequality but when $2 \leq p=q \leq m, z_{0}$ is counted 2 times in the left hand side of the above inequality whereas it is counted p times in the right hand side of the same. If $p=m+1$ then the possible values of q are as follows. (i) $q=m+1$, (ii) $q \geq m+2$. When $p=m+2$ then q can take the following possible values (i) $q=m+1$, (ii) $q=m+2$, (iii) $q \geq m+3$. Similar explanations hold if we interchange p and q. Clearly when $p=q \geq m+1, z_{0}$ is counted 2 times in the left hand side and $p \geq m+1$ times in the right hand side of the above inequality. When $p>q \geq m+1$, in view of Definition 1.6 we know z_{0} is counted $m+\frac{3}{2}$ times in the left hand side and $\frac{p+q}{2} \geq m+\frac{3}{2}$ times in the right hand side of the above inequality. When $q>p$ we can explain similarly. Hence the lemma follows.

Lemma 2.3. [17] Let f be a non-constant meromorphic function and $P(f)=a_{0}+a_{1} f+$ $a_{2} f^{2}+\ldots+a_{n} f^{n}$, where $a_{0}, a_{1}, a_{2} \ldots, a_{n}$ are constants and $a_{n} \neq 0$. Then $T(r, P(f))=$ $n T(r, f)+O(1)$.
Lemma 2.4. Let F, G be given by (2.1) where $n \geq 6$ is an integer and $H \not \equiv 0$. If F, G share $(1, m)$ and f, g share (∞, k), where $0 \leq m<\infty$. Then

$$
\begin{aligned}
& \left\{\frac{n}{2}+1\right\}\{T(r, f)+T(r, g)\} \\
\leq & 2[\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; f)+N(r, b ; g)]+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g) \\
& +\bar{N}_{*}(r, \infty ; f, g)-\left(m-\frac{3}{2}\right) \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{aligned}
$$

Proof. By the second fundamental theorem we get

$$
\begin{array}{ll}
& (n+1) T(r, f)+(n+1) T(r, g) \tag{2.3}\\
\leq & \bar{N}(r, 1 ; F)+\bar{N}(r, 0 ; f)+\bar{N}(r, b ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; G)+\bar{N}(r, 0 ; g) \\
& +\bar{N}(r, b ; g)+\bar{N}(r, \infty ; g)-N_{0}\left(r, 0 ; f^{\prime}\right)-N_{0}\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g)
\end{array}
$$

Using Lemmas 2.1, 2.2 and 2.3 we see that

$$
\begin{align*}
& \bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G) \tag{2.4}\\
\leq & \frac{1}{2}[N(r, 1 ; F)+N(r, 1 ; G)]+N_{E}^{1)}(r, 1 ; F)-\left(m-\frac{1}{2}\right) \bar{N}_{*}(r, 1 ; F, G) \\
\leq & \frac{n}{2}\{T(r, f)+T(r, g)\}+\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; f)+\bar{N}(r, b ; g)+\bar{N}_{*}(r, \infty ; f, g) \\
& -\left(m-\frac{3}{2}\right) \bar{N}_{*}(r, 1 ; F, G)+\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; g^{\prime}\right)+S(r, f)+S(r, g)
\end{align*}
$$

Using (2.4) in (2.3) the lemma follows.
Lemma 2.5. Let F, G be given by (2.1) and $H \not \equiv 0$. If F, G share $(1, m)$ and f, g share (∞, k), where $0 \leq m<\infty, 0 \leq k<\infty$, then

$$
\begin{aligned}
& {[(n-2) k+n-3)] \bar{N}(r, \infty ; f \mid \geq k+1)=[(n-2) k+n-3)] \bar{N}(r, \infty ; g \mid \geq k+1) } \\
\leq & \bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g)
\end{aligned}
$$

Proof. The proof of the lemma can be found in Lemma 2.16 [2].

Lemma 2.6. Let f, g be two non-constant meromorphic functions sharing $(\infty, 0)$ and suppose α_{1} and α_{2} are two distinct roots of the equation $n(n-1) w^{2}-2 n(n-2) b w+(n-$ 1) $(n-2) b^{2}=0$. Then

$$
\frac{f^{n}}{\left(f-\alpha_{1}\right)\left(f-\alpha_{2}\right)} \frac{g^{n}}{\left(g-\alpha_{1}\right)\left(g-\alpha_{2}\right)} \not \equiv \frac{n^{2}(n-1)^{2}}{a^{2}},
$$

where $n(\geq 3)$ is an integer.

Proof. We omit the proof since the proof can be found out in the proof of Theorem 3 [8].

Lemma 2.7. Let F, G be given by (2.1), where $n \geq 6$ is an integer. If $F \equiv G$, then $f \equiv g$.

Proof. We omit the proof since the proof can be found out in [8].

Lemma 2.8. Let F, G be given by (2.1). Also let S be given as in Theorem 1.3, where $n \geq 3$ is an integer. If $E_{f}(S, 0)=E_{g}(S, 0)$ then $S(r, f)=S(r, g)$.

Proof. Since $E_{f}(S, 0)=E_{g}(S, 0)$, it follows that F and G share $(1,0)$. We denote the distinct elements of S by $w_{j}, j=1,2, \ldots n$. Since F, G share $(1,0)$ from the second fundamental theorem we have
$(n-2) T(r, g) \leq \sum_{j=1}^{n} \bar{N}\left(r, w_{j} ; g\right)+S(r, g)=\sum_{j=1}^{n} \bar{N}\left(r, w_{j} ; f\right)+S(r, g) \leq n T(r, f)+S(r, g)$.

Similarly we can deduce $(n-2) T(r, f) \leq n T(r, g)+S(r, f)$. The last inequalities imply $T(r, f)=O(T(r, g))$ and $T(r, g)=O(T(r, f))$ and so we have $S(r, f)=S(r, g)$.

3 Proof of the main theorem

Proof of Theorem 1.3. Let F, G be given by (2.1). Since $E_{f}(S, 2)=E_{g}(S, 2)$ it follows that F, G share $(1,2)$. Also since $E_{f}(\{\infty\}, \infty)=E_{g}(\{\infty\}, \infty)$ we see that $\bar{N}_{*}(r, \infty ; f, g) \equiv 0$. If possible let us suppose that $H \not \equiv 0$. Since $n \geq 7$ using Lemma 2.4 for $m=2$ and $k=\infty$,

Lemma 2.5 for $k=0$ we obtain for $\varepsilon(>0)$

$$
\begin{aligned}
& \left(\frac{n}{2}+1\right)\{T(r, f)+T(r, g)\} \\
\leq & 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; f)+\bar{N}(r, b ; g)\}+\bar{N}(r, \infty ; f) \\
& +\bar{N}(r, \infty ; g)+\bar{N}_{*}(r, \infty ; f, g)-\frac{1}{2} \bar{N}_{*}(r, 1 ; F, G)+S(r, f)+S(r, g) \\
\leq & 2\{\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)+\bar{N}(r, b ; f)+\bar{N}(r, b ; g)\}+\frac{1}{2}\{\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)\} \\
& +\frac{1}{n-3}\{\bar{N}(r, 0 ; f)+\bar{N}(r, 0 ; g)\}+S(r, f)+S(r, g) \\
\leq & \left(\frac{9}{2}-2 \Theta(0 ; f)-2 \Theta(b ; f)-\frac{1}{2} \Theta(\infty ; f)+\frac{1}{n-3}+\varepsilon\right) T(r, f) \\
& +\left(\frac{9}{2}-2 \Theta(0 ; g)-2 \Theta(b ; g)-\frac{1}{2} \Theta(\infty ; f)-\frac{1}{n-3}+\varepsilon\right) T(r, g) \\
& +S(r, f)+S(r, g)
\end{aligned}
$$

That is

$$
\begin{align*}
& \left(\frac{n}{2}-\frac{7}{2}-\frac{1}{n-3}+2 \Theta(0 ; f)+2 \Theta(b ; f)+\frac{1}{2} \Theta(\infty ; f)-\varepsilon\right) T(r, f) \tag{3.1}\\
& +\left(\frac{n}{2}-\frac{7}{2}-\frac{1}{n-3}+2 \Theta(0 ; g)+2 \Theta(b ; g)+\frac{1}{2} \Theta(\infty ; g)-\varepsilon\right) T(r, g) \\
& \leq S(r, f)+S(r, g) .
\end{align*}
$$

Without the loss of generality, we may suppose that there exists a set I with infinite linear measure such that

$$
T(r, g) \leq T(r, f), \quad r \in I
$$

From (3.1) and Lemma 2.8 we have

$$
\left[\frac{1}{2}\left(\Theta_{f}+\Theta_{g}\right)-7-\frac{2}{n-3}+n-2 \varepsilon\right] T(r, g) \leq S(r, g), \quad r \in I \backslash E
$$

which leads to a contradiction for $\varepsilon>0$. Hence $H \equiv 0$. Then

$$
\begin{equation*}
F \equiv \frac{A G+B}{C G+D} \tag{3.2}
\end{equation*}
$$

where A, B, C, D are constants such that $A D-B C \neq 0$. Also

$$
T(r, F)=T(r, G)+O(1)
$$

and hence from Lemma 2.3 we have

$$
\begin{equation*}
T(r, f)=T(r, g)+O(1) \tag{3.3}
\end{equation*}
$$

From (1.4) we note that $\bar{N}(r, c ; F) \leq \bar{N}(r, b ; f)+(n-3) T(r, f) \leq(n-2) T(r, f)+S(r, f)$. Similarly $\bar{N}(r, c ; G) \leq(n-2) T(r, g)+S(r, g)$. From (3.2) and the condition f and g share
$(\infty, 0)$ it follows that ∞ is Picard exceptional value of f and g. So in view of (1.2) and (2.1) we observe that $\bar{N}(r, \infty ; F)=\bar{N}\left(r, \alpha_{1} ; f\right)+\bar{N}\left(r, \alpha_{2} ; f\right)$ and $\bar{N}(r, \infty ; G)=\bar{N}\left(r, \alpha_{1} ; g\right)+$ $\bar{N}\left(r, \alpha_{2} ; g\right)$. We now consider the following cases.
Case I. Let $A C \neq 0$. Suppose $B \neq 0$. From (3.2) we get

$$
\begin{equation*}
\bar{N}\left(r,-\frac{B}{A} ; G\right)=\bar{N}(r, 0 ; F) . \tag{3.4}
\end{equation*}
$$

In view of (3.3), (3.4), Lemma 2.3 and the second fundamental theorem we get

$$
\begin{aligned}
n T(r, g) & \leq \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+\bar{N}\left(r,-\frac{B}{A} ; G\right)+S(r, G) \\
& \leq \bar{N}(r, 0 ; g)+\bar{N}\left(r, \alpha_{1} ; g\right)+\bar{N}\left(r, \alpha_{2} ; g\right)+\bar{N}(r, 0 ; f)+S(r, g) \\
& \leq 3 T(r, g)+T(r, f)+S(r, g) \leq 4 T(r, g)+S(r, g),
\end{aligned}
$$

which is a contradiction for $n \geq 7$.
So we must have $B=0$ and in this case (3.2) changes to

$$
\begin{equation*}
F \equiv \frac{\frac{A}{C} G}{G+\frac{D}{C}} . \tag{3.5}
\end{equation*}
$$

From (3.5) we see that

$$
\begin{equation*}
\bar{N}(r, \infty ; F)=\bar{N}\left(r,-\frac{D}{C} ; G\right) . \tag{3.6}
\end{equation*}
$$

Now in view of (3.6), Lemma 2.3 and the second fundamental theorem we obtain

$$
\begin{aligned}
n T(r, g) & \leq \bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+\bar{N}\left(r,-\frac{D}{C} ; G\right)+S(r, G) \\
& \leq \bar{N}(r, 0 ; g)+2 T(r, g)+2 T(r, f)+S(r, g) \leq 5 T(r, g)+S(r, g)
\end{aligned}
$$

which implies a contradiction for $n \geq 7$.
Case II. Let $A \neq 0$ and $C=0$. Then $F=\alpha G+\beta$, where $\alpha=\frac{A}{D}$ and $\beta=\frac{B}{D}$.
If F has no 1-point, by the second fundamental theorem and Lemma 2.3 we get

$$
n T(r, f) \leq \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+S(r, f) \leq 3 T(r, f)+S(r, f),
$$

which implies a contradiction for $n \geq 7$.
If F and G have some 1-points then $\alpha+\beta=1$ and so

$$
\begin{equation*}
F \equiv \alpha G+1-\alpha . \tag{3.7}
\end{equation*}
$$

Suppose $\alpha \neq 1$. If $1-\alpha \neq c$ then in view of (3.3), Lemma 2.3 and the second fundamental theorem we get

$$
\begin{aligned}
2 n T(r, f) & \leq \bar{N}(r, 0 ; F)+\bar{N}(r, c ; F)+\bar{N}(r, 1-\alpha ; F)+\bar{N}(r, \infty ; F)+S(r, F) \\
& \leq(n+1) T(r, f)+\bar{N}(r, 0 ; G)+S(r, f) \leq(n+2) T(r, f)+S(r, f),
\end{aligned}
$$

which implies a contradiction for $n \geq 7$. If $1-\alpha=c$, then we have from (3.7)

$$
F \equiv(1-c) G+c .
$$

Since $c \neq 1$, by the second fundamental theorem we can obtain using (3.3) and Lemma 2.3 that

$$
\begin{aligned}
2 n T(r, g) & \leq \bar{N}(r, 0 ; G)+\bar{N}(r, c ; G)+\bar{N}\left(r, \frac{c}{c-1} ; G\right)+\bar{N}(r, \infty ; G)+S(r, G) \\
& \leq(n+1) T(r, g)+\bar{N}(r, 0 ; F)+S(r, g) \leq(n+2) T(r, g)+S(r, g)
\end{aligned}
$$

which implies a contradiction since $n \geq 7$.
So $\alpha=1$ and hence $F \equiv G$. So by Lemma 2.7 we get $f \equiv g$.
Case III. Let $A=0$ and $C \neq 0$. Then $F \equiv \frac{1}{\gamma G+\delta}$, where $\gamma=\frac{C}{B}$ and $\delta=\frac{D}{B}$.
If F has no 1-point then as in Case II we can deduce a contradiction.
If F and G have some 1-points then $\gamma+\delta=1$ and so

$$
\begin{equation*}
F \equiv \frac{1}{\gamma G+1-\gamma} . \tag{3.8}
\end{equation*}
$$

Suppose $\gamma \neq 1$ If $\frac{1}{1-\gamma} \neq c$, then by the second fundamental theorem and Lemma 2.3 we get

$$
\begin{aligned}
2 n T(r, f) & \leq \bar{N}(r, 0 ; F)+\bar{N}\left(r, \frac{1}{1-\gamma} ; F\right)+\bar{N}(r, c ; F)+\bar{N}(r, \infty ; F)+S(r, f) \\
& \leq(n+3) T(r, f)+\bar{N}(r, 0 ; G)+S(r, f) \leq(n+4) T(r, f)+S(r, f)
\end{aligned}
$$

which gives a contradiction for $n \geq 7$. If $\frac{1}{1-\gamma}=c$, from (3.8) we have

$$
\begin{equation*}
F \equiv \frac{c}{(c-1) G+1} . \tag{3.9}
\end{equation*}
$$

If $c \neq \frac{1}{1-c}$ the second fundamental theorem with the help of (3.3), (3.9) and Lemma 2.3 yields

$$
\begin{aligned}
2 n T(r, g) & \leq \bar{N}(r, 0 ; G)+\bar{N}(r, c ; G)+\bar{N}\left(r, \frac{1}{1-c} ; G\right)+\bar{N}(r, \infty ; G)+S(r, G) \\
& \leq(n+1) T(r, g)+\bar{N}(r, \infty ; F)+S(r, g) \leq(n+3) T(r, g)+S(r, g)
\end{aligned}
$$

which implies a contradiction since $n \geq 7$. On the other hand if $c=\frac{1}{1-c}$ then from (3.9) we have

$$
G \equiv \frac{c(F-c)}{F} .
$$

So from the second fundamental theorem it follows that

$$
\begin{aligned}
n T(r, f) & \leq \bar{N}(r, 0 ; F)+\bar{N}(r, c ; F)+\bar{N}(r, \infty ; F)+S(r, F) \\
& \leq 3 T(r, f)+\bar{N}(r, 0 ; G)+S(r, f) \leq 4 T(r, f)+S(r, f)
\end{aligned}
$$

which implies a contradiction since $n \geq 7$. So we must have $\gamma=1$ then $F G \equiv 1$, which is impossible by Lemma 2.6. This completes the proof of the theorem.

References

[1] A. Banerjee, Uniqueness of meromorphic functions that share two sets, Southeast Asian Bull. Math., 31 (2007), pp 7-17.
[2] A. Banerjee, On Uniqueness Of Meromorphic Functions That Share Two Sets, Georgian Math. J., 15 (1) 2008, pp 21-38.
[3] A. Banerjee and S. Mukherjee, Uniqueness of Meromorphic functions Sharing Two or Three Sets, Hokkaido Math. J. 37(3) (2008), pp 507-530.
[4] M.Fang and H.Guo, On meromorphic functions sharing two values, Analysis 17 (1997), pp 355-366.
[5] M.Fang and I. Lahiri, Unique range set for certain meromorphic functions, Indian J. Math., 45 (2) (2003), pp 141-150.
[6] M.Fang and W. Xu, A note on a problem of Gross,(Chinese) Chin. Ann. Math., 18(A) 5 (1997), 563-568; English transl. : Chinese J. Contempt. Math. 18(1997), (4), pp 395402.
[7] F.Gross, Factorization of meromorphic functions and some open problems, Proc. Conf. Univ. Kentucky, Leixngton, Ky(1976); Lecture Notes in Math., 599(1977), pp 5169, Springer(Berlin).
[8] Q.Han and H.X.Yi, Some further results on meromorphic functions that share two sets, Ann. Polon. Math. 93(1) (2008), pp 17-31.
[9] W.K.Hayman, Meromorphic Functions, The Clarendon Press, Oxford (1964).
[10] I.Lahiri, The range set of meromorphic derivatives, Northeast J. Math. 14 (1998), pp 353-360.
[11] I.Lahiri, Value distribution of certain differential polynomials, Int. J. Math. Math. Sci., 28 (2) (2001), pp 83-91.
[12] I.Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J., 161 (2001), pp 193-206.
[13] I.Lahiri, Weighted value sharing and uniqueness of meromorphic functions, Complex Var. Theory Appl., 46 (2001), pp 241-253.
[14] I.Lahiri, On a question of Hong Xun Yi, Arch. Math. (Brno), 38, (2002), pp 119-128.
[15] P.Li and C.C.Yang, On the unique range sets for meromorphic functions, Proc. Amer. Math. Soc., 124 (1996), pp 177-185.
[16] P.Li and C.C.Yang, Some further results on the unique range sets for meromorphic functions, Kodai Math. J., 18 (1995), pp 437-450.
[17] C.C.Yang, On deficiencies of differential polynomials II, Math. Z. 125 (1972), pp 107112.
[18] W.C.Lin and H.X.Yi, Some further results on meromorphic functions that share two sets, Kyungpook Math. J., 43 (2003), pp 73-85.
[19] H.X.Yi, Uniqueness of meromorphic functions and a question of Gross, Science in China, (A) 37 (1994), pp 802-813.
[20] H.X.Yi, Unicity theorem for meromorphic functions or entire functions II, Bull. Austral. Math. Soc., 52 (1995), pp 215-224.
[21] H.X.Yi, On a question of Gross concerning uniqueness of entire functions, Bull. Austral. Math. Soc., 57 (1998), pp 343-349.
[22] H.X.Yi, Meromorphic functions that share two sets, Acta Mat. Sinica, 45(2002), pp 75-82. (in Chinese) .
[23] H.X.Yi, Uniqueness theorems for meromorphic functions II, Indian J. Pure Appl. Math. 28 (1997), pp 509-519.
[24] H.X.Yi and W.C.Lin, Uniqueness of meromorphic functions and a question of Gross, Kyungpook Math. J, 46 (2006), pp 437-444.
[25] H.X.Yi and W.R.Lü̈ Meromorphic functions that share two sets II, Acta Math. Sci. Ser.B Engl. Ed., 24 (1) (2004), pp 83-90.

[^0]: *E-mail address: abanerjee_kal@yahoo.co.in

