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Abstract

In the paper we employ the notion of weighted sharing of sets to deal with the well
known question of Gross and obtain a uniqueness result on meromorphic functions
sharing two sets which will improve an earlier result of Lahiri [14].
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1 Introduction, Main Results and Definitions

In this paper by meromorphic functions we will always mean meromorphic functions in
the complex plane. We shall use the standard notations of value distribution theory :
T(r,f), m(r,f), N(r,%0;f), N(r,%;f),... (see [9]). It will be convenient to let E de-
note any set of positive real numbers of finite linear measure, not necessarily the same at
each occurrence. For any non-constant meromorphic function 4(z) we denote by S(r, &) any
quantity satisfying S(r,h) = o(T(r,h)) (r — oo,r ¢ E). For any constant a, we define
O(a;f) =1~ limsup el

If for some a € CU{}, f and g have the same set of a-points with same multiplicities
then we say that f and g share the value a CM (counting multiplicities). If we do not take the
multiplicities into account, f and g are said to share the value a IM (ignoring multiplicities).

Let S be a set of distinct elements of CU {eo} and Ef(S) = U,es{z : f(z) —a = 0},
where each zero is counted according to its multiplicity. If we do not count the multiplicity
the set E(S) = Uges{z: f(z) —a =0} is denoted by E ¢(S). If E¢(S) = E4(S) we say that

f and g share the set S CM. On the other hand if E £(S) = E,(S), we say that f and g share
the set S IM.
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F. Gross was the first to consider the uniqueness of meromorphic functions that share
sets of distinct elements instead of values and in 1976 he posed the following question in
[7]:

Question A Can one find two finite sets S; (j = 1,2) such that any two non-constant entire
functions f and g satisfying E¢(Sj) = E,(S;) for j = 1,2 must be identical ?

In [7] Gross wrote If the answer of Question A is affirmative it would be interesting to
know how large both sets would have to be ?

Now it is natural to ask the following question [18].

Question B Can one find two finite sets S; (j = 1,2) such that any two non-constant mero-
morphic functions f and g satisfying E¢(S;) = E,(S;) for j = 1,2 must be identical ?

Nowadays a widely studied topic of the uniqueness theory has been to considering the
shared value problems relative to a meromorphic function sharing two sets and at the same
time give affirmative answers to Question B under weaker hypothesis. {see [1]-[6], [8],
[10], [14]-[16], [18]-[25]}.

Dealing with the question of Gross in [5] Fang and Lahiri exhibited a unique range set
S with smaller cardinalities than that obtained previously imposing some restrictions on the
poles of f and g. They obtained the following result.

Theorem A. [5]Let S = {z:7"+az"~' +b =0} where n(> 7) be an integer and a and b be
two nonzero constants such that 7 +az"~! + b = 0 has no multiple root. If f and g be two
non-constant meromorphic functions having no simple poles such that E¢(S) = E,(S) and

Ef({=}) = E¢({>}) then f = g.

In 2001 an idea of gradation of sharing of values and sets known as weighted sharing
has been introduced in {[12], [13]} which measure how close a shared value is to being
shared CM or to being shared IM. Below we are explaining the notion.

Definition 1.1. [12, 13] Let k be a nonnegative integer or infinity. For a € CU {0} we
denote by Ey(a; f) the set of all a-points of f, where an a-point of multiplicity m is counted
m times if m < k and k+ 1 times if m > k. If Ex(a; f) = Ex(a;g), we say that f, g share
the value a with weight k. We write f, g share (a,k) to mean that f, g share the value a
with weight k. Clearly if f, g share (a,k) then f, g share (a, p) for any integer p, 0 < p < k.
Also we note that f, g share a value a IM or CM if and only if f, g share (a,0) or (a,e)
respectively.

Definition 1.2. [12] Let S be a set of distinct elements of C U {eo} and k be a nonnegative
integer or co. We denote by E(S, k) the set ,c5 Ex(a; f).

With the notion of weighted sharing of sets improving Theorem A, Lahiri [14] proved
the following theorem.

Theorem B. [14] Let S be defined as in Theorem A and n(> 7) be an integer. If for two
non-constant meromorphic functions f and g, ®(co; f) + (05 8) > 1, Ef(S,2) = E,(S,2)
and E¢({oo},00) = E,({oo},0) then f = g.

Suppose that the polynomial P(w) is defined by

P(w) =aw" —n(n—1)w* 4+ 2n(n—2)bw — (n—1)(n—2)b* (1.1)
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where n > 3 is an integer and a and b are two nonzero complex numbers satisfying ab”" 2 #
2. In fact we consider the following rational function

aw"

RO = T Do w—aa)’ (1.2

where o and o, are two distinct roots of
n(n—1)w? —2n(n—2)bw+ (n—1)(n—2)b* = 0.
We have from (1.2)

oL (n=2)aw" ! (w—b)?
RO = D w2 o)

(1.3)

From (1.3) we know that w = 0 is a root with multiplicity n of the equation R(w) = 0 and

_ . . . . . . o o hn—Z
w = b is a root with multiplicity 3 of the equation R(w) — ¢ = 0, where ¢ = “5—.

Then

a(w—b)* Q, 3(w)

Rw)—c= 3 (1.4)
(w) nn—1)(w—oq)(w—oap)
where Q,,_3(w) is a polynomial of degree n — 3.
Moreover from (1.1) and (1.2) we have
P
Rw)—1= () (1.5)

nn—1)(w—oq)(w—op)’
Noting that ¢ = # # 1, from (1.3) and (1.5) we have
P(w) = aw" —n(n—1)w? +2n(n—2)bw — (n—1)(n—2)b*

has only simple zeros.

In the paper our prime concern is to improve Theorem B. In fact we will show that in
our result, for the uniqueness of meromorphic function the conditions over the ramification
index ceases to matter at the expense of allowing n > 8. The following theorem is the main
result of the paper.

Theorem 1.3. Let S = {w | P(w) = 0}, where P(w) is given by (1.1) and n > 7. Suppose
that f and g are two non-constant meromorphic functions satisfying Er(S,2) = E4(S,2)
and Ey({eo},0) = Eo({o},0) and min{®y,@,} > 7+ -2 —n then f = g, where @y =
40(0;f)+40(b; f) +0O(eo; f) and O, can be similarly defined.

We are now going to explain the following notations as these are used in the paper.

Definition 1.4. [11] For a € CU{eo} we denote by N(r,a; f |= 1) the counting function of
simple a-points of f. For a positive integer m we denote by N(r,a; f |< m)(N(r,a; f |> m))
the counting function of those a-points of f whose multiplicities are not greater(less) than m
where each a-point is counted according to its multiplicity. N(r,a; f |< m) (N(r,a; f |> m))
are defined similarly, where in counting the a-points of f we ignore the multiplicities. Also
N(r,a;f |<m), N(ra; f|>m), N(r,a; f |<m) and N(r,a; f |> m) are defined analogously.
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Definition 1.5. Let f and g be two non-constant meromorphic functions such that f and g
share (1,0). Let zo be a 1-point of f with multiplicity p, a 1-point of g with multiplicity g.
We denote by Ny (r,1; f) the reduced counting function of those 1-points of f and g where
p > g, by Ng)(r, 1; f) the counting function of those 1-points of f and g where p =¢ =1,

by N,(Ez(r, 1; f) the reduced counting function of those 1-points of f and g where p =g > 2.

In the same way we can define N (r, 1;g), Né) (r,1;g), Ng(r, 1;g). In a similar manner we

can define Ny (r,a; f) and Ny (r,a;g) for a € CU{eo}. When f and g share (1,m), m > 1
then N;)(r, LA)=NrLf|=1).

Definition 1.6. [12, 13] Let f, g share (a,0). We denote by N..(r,a; f,g) the reduced count-
ing function of those a-points of f whose multiplicities differ from the multiplicities of
the corresponding a-points of g. Clearly N.(r,a; f,g) = N«(r,a;g,f) and N.(r,a; f,g) =
Ni(r,a; f)+Np(r,a;g).

2 Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F and G
be two non-constant meromorphic functions defined in C. Henceforth we shall denote by
H the following function.

1"

F 2F G 2G

"

H=(——-——)—(— — .
(5 7)o =7
Let f and g be two non-constant meromorphic function and
F=R(f), G=R(g), @.1)

where R(w) is given by (1.2). From (1.2) and (2.1) it is clear that
1 1
T(rvf):;T(r7F>+S(raf)7 T(V,g)ZET(F,G)—FS(V,g) (22)

Lemma 2.1. [2] Let F, G be given by (2.1) and H # 0. If F, G share (1,m) and f, g share
(00,k). Then

NY (RF) < No(r 1F)+NL(r,1:G) + N(1,0; £) + N (1, b f) + Na (1,00 £, )
+N(}",O;g) +N(Fb,g) +N0(r70;f,) +N0(V,0;g/),

where Ny(r,0; f') denotes the reduced counting function corresponding to the zeros of f/
which are not the zeros of f(f —b) and F — 1, No(r, O;gl) is defined similarly.

Lemma 2.2. Let f and g be two non-constant meromorphic functions sharing (1,m), where
0<m< oo Then

N(r 1) +N(r, 1;8) = N (r, 15 ) + <m— ;) N.(r1;f,8) < % IN(r, 1 f) +N(r,1:8)].
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Proof. Let zp be a 1- point of f of multiplicity p and a 1-point of g of multiplicity g. Since
f» g share (1,m), we note that the 1-points of f and g up to multiplicity m are same. When
p =¢q =1, 79 is counted once, both in left and right hand side of the above inequality but
when 2 < p =g < m, zp is counted 2 times in the left hand side of the above inequality
whereas it is counted p times in the right hand side of the same. If p = m + 1 then the
possible values of g are as follows. (i) g =m+1, (ii)) ¢ > m+2. When p =m+ 2 then ¢
can take the following possible values (i) g =m+1, (ii) ¢ = m+ 2, (iii)) ¢ > m+ 3. Similar
explanations hold if we interchange p and g. Clearly when p = ¢ > m+ 1, zg is counted 2
times in the left hand side and p > m+ 1 times in the right hand side of the above inequality.
When p > g > m+ 1, in view of Definition 1.6 we know zq is counted m + % times in the
left hand side and ’%q >m-+ % times in the right hand side of the above inequality. When
q > p we can explain similarly. Hence the lemma follows. O

Lemma 2.3. [17] Let f be a non-constant meromorphic function and P(f) = ap+ a1 f +
arf*+ ...+ a.f", where ag,ai,a;...,a, are constants and a, # 0. Then T(r,P(f)) =
W (r.f)+O(1)

Lemma 2.4. Let F, G be given by (2.1) where n > 6 is an integer and H £ 0. If F, G share
(1,m) and f, g share (oo,k), where 0 < m < oo. Then

n
(1T +T(he)}
< 2[N(r0;f) +N(r,058) +N(1,b; f) + N(r,b;g) | + N(r,o0; f) + N(r,o0;8)
_ 3\
+N*(r7°°;fag) - (m_ 2> N*(ral;FaG)+S(raf) —|—S(I’,g)
Proof. By the second fundamental theorem we get

(n+1D)T(r,f)+(n+1)T(r,g) (2.3)
< N(nLF)+N(r0;f) +N(r,b; f) + N(r,00; f) + N(r,1;G) + N(r,0; ¢)
+N(r,b;g) +N(r,00,8) — No(1,0; f ) — No(r, 058 ) + S(r, ) +5(r, ).

Using Lemmas 2.1, 2.2 and 2.3 we see that

N(r, 1;F)+N(r, 1;G) 2.4)
< % IN(5 13F) +N(r, 1;G)] 4+ NY (1 1:F) — <m— ;) N.(r1:F,G)
< g{T(r,f) +T(r,8)} +N(r,0;f) +N(r,0;8) + N(r,b; f) + N(r,b;8) + N (1,0 f, 8)
—~ (m— z) N.(r, 1;F,G) +No(r,0; £ ) + No(r,0: ) + S(r, f) + S(r, ).
Using (2.4) in (2.3) the lemma follows. 0

Lemma 2.5. Let F, G be given by (2.1) and H #0. If F, G share (1,m) and f, g share
(00,k), where 0 < m < o0, 0 < k < oo, then
[(n—2)k+n—=3)| N(r,eo f |> k+1) = [(n—2)k+n—3)|N(r,e0;g |~ k+1)
S N(r,O,f)+N(r,0,g)+ﬁ*(r,1,F,G)+S(r,f)+S(r,g)
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Proof. The proof of the lemma can be found in Lemma 2.16 [2]. OJ

Lemma 2.6. Let f, g be two non-constant meromorphic functions sharing (o0,0) and sup-
pose 0 and Oy are two distinct roots of the equation n(n — 1)w? — 2n(n —2)bw + (n —
1)(n—2)b* =0. Then

A g L =1
Foa)(f—o) (g—o)(g—0a) 7 @@

where n (> 3) is an integer.

Proof. We omit the proof since the proof can be found out in the proof of Theorem 3
[8]. O

Lemma 2.7. Let F, G be given by (2.1), where n > 6 is an integer. If F = G, then f = g.

Proof. We omit the proof since the proof can be found out in [8]. O

Lemma 2.8. Let F, G be given by (2.1). Also let S be given as in Theorem 1.3, where n > 3
is an integer. If E¢(S,0) = E¢(S,0) then S(r, f) = S(1, ).

Proof. Since Ef(S,0) = E,(S,0), it follows that F' and G share (1,0). We denote the distinct
elements of S by w;, j =1,2,...n. Since F, G share (1,0) from the second fundamental
theorem we have

n

n
(n—2)T N(r,wj;g)+S(r,g) = N(r,wj; f)+S(r,g) <nT(r,f)+S(r,g).
j j
j=1 j=1

Similarly we can deduce (n—2)T(r,f) < nT(r,g)+ S(r,f). The last inequalities imply
T(r,f)=0(T(r,g)) and T(r,g) = O(T(r,f)) and so we have S(r, f) = S(r,g). O

3 Proof of the main theorem

Proof of Theorem 1.3. Let F, G be given by (2.1). Since Ef(S,2) = E,(S,2) it follows that
F, G share (1,2). Also since Ef({co},00) = E,({e0},o0) we see that N,(r,e0; f,g) = 0. If
possible let us suppose that H # 0. Since n > 7 using Lemma 2.4 form =2 and k = o ,
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Lemma 2.5 for k = 0 we obtain for £(> 0)
(5+1) (1) +T(re)}
2{N(r,0: ) +N(r,0:8) +N(r,b: f) + N(r,b:8) } + N(r,o0: f)

_ _ 1—
+N(r,oo;g)—|—N*(r,oo;f,g)— EN*(rvI’FvG)+S(r7f)+S(r7g)

IN

IN

2{N(r,0: )+ N(r,0:¢) + N(r,b: f) + N(r,b:8) } + % {N(r,0o:f) + N(r,e18) }

+$ {N(r,O;f) —i—N(r,O;g)} +S(r,f) +8(r,g)

IN

n—

(5 -2000:1)-2001) - J0t=i 1)+ 5 e ) TG

2
+S(r, f)+S(r,g).

+(5 200920050 - 300 1)~ 15 ¢ ) ()

n—3

That is

n 7 1

1
(2 — 5 +20(0:/) +20(b: ) + 5001 ) —8) T(r.f) 3.1

n 7 1 1
+ <2_ 2_n_3Jrz@(o,g)jum(b,g)+2®(°<>,g)—€> T(r,g)

<S(rnf)+S(rg).

Without the loss of generality, we may suppose that there exists a set / with infinite linear
measure such that
T(rag)ST(raf)v rel.

From (3.1) and Lemma 2.8 we have

1 2
§(®f+®g)—7— 3+n—2£ T(r,g) <S(rg), rel\E,

n—

which leads to a contradiction for € > 0. Hence H = 0. Then

= ?gj:g, (3.2)
where A, B, C, D are constants such that AD — BC # 0. Also
T(r,F)=T(r,G)+0(1),
and hence from Lemma 2.3 we have
T(r,f)=T(rg) +0(1). 3.3)

From (1.4) we note that N(r,c;F) < N(r,b; f) + (n—3)T(r, f) < (n—2)T(r, f) + S(r, f).
Similarly N(r,c¢;G) < (n—2)T(r,g) + S(r,g). From (3.2) and the condition f and g share
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(e0,0) it follows that oo is Picard exceptional value of f and g. So in view of (1.2) and
(2.1) we observe that N(r,0; F) = N(r,a; f) + N(r,00; f) and N(r,0;G) = N(r,a1;8) +
N(r,02;g). We now consider the following cases.

Case I. Let AC # 0. Suppose B # 0. From (3.2) we get

_ B —
N(r,—A;G> =N(r,0;F). (3.4
In view of (3.3), (3.4), Lemma 2.3 and the second fundamental theorem we get

_ — — B
nT(r,g) < N(r,0;G)+N(r,0;G)+N <r,— A;G> +S(r,G)

N(r,0;8) +N(r,a;8) +N(r,00:8) +N(r,0; f) + S(r,8)

<
< 3T(ng)+T(rnf)+S(rg) <4T(rg)+S(rg),

which is a contradiction for n > 7.
So we must have B = 0 and in this case (3.2) changes to

A
_ ‘¢
=
G+2

3.5)
From (3.5) we see that
_ — D
N(r,oo;F)—N<r,—C;G>. (3.6)
Now in view of (3.6), Lemma 2.3 and the second fundamental theorem we obtain

_ _ — D
nT(r,g) < N(r,0;G)+N(r,;G)+N (r, C;G) +S8(r,G)

< N(r,0:8)+2T(r,g) +2T (r, f) +S(r,8) <5T(r,8) +S(r,g),

which implies a contradiction for n > 7.
CaseII. Let A 20 and C = 0. Then F = aG + B, where o0 = % and = %.
If F has no 1-point, by the second fundamental theorem and Lemma 2.3 we get

nT (r.f) < N(r0:F) +N(r,eo:F) +5(r, f) <3T(r, f) + S(r. f),

which implies a contradiction for n > 7.
If F and G have some 1-points then ot + 3 = 1 and so

F=u0aG+1—a. 3.7)

Suppose o £ 1. If 1 — a0 # ¢ then in view of (3.3), Lemma 2.3 and the second funda-
mental theorem we get

2nT (r, f) N(r,0;F)+N (r,c;F)+N(r,]1 —a; F) + N(r,0; F) + S(r, F)
(n+

(r,c;
DT (r, f)+N(r0;G)+S(r, f) < (n+2)T (r, f) +S(r, f),

<
<
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which implies a contradiction for n > 7. If 1 — o = ¢, then we have from (3.7)
F=(1-c¢)G+c.

Since ¢ # 1, by the second fundamental theorem we can obtain using (3.3) and Lemma 2.3
that

2nT(r,g) < N(r,O;G)+N(r,c;G)+N<r, Cl;G>+N(r,oo;G)+S(r,G)

< (DT (ng) +N(r0:F) +8(r,8) < (n+2)T (r,8) +5(r8),

which implies a contradiction since n > 7.
So oo =1 and hence F = G. So by Lemma 2.7 we get f = g.

Case III. Let A=0and C #0. Then F = ﬁ, where y=£ and § = 2.
If F has no 1-point then as in Case Il we can deduce a contradiction.
If F and G have some 1-points then Y+ = 1 and so

1

F=———.
YG+1—v

(3.8)

Suppose y# 1 If ﬁ # ¢, then by the second fundamental theorem and Lemma 2.3 we get

2nT(r,f) < N(r,0;F)+N(r, 11\(;F) +N(r,c;F) +N(r,00; F) + S(r, f)

< (n+3)T(rf)+Nr0;G)+S(r,f) < (n+4)T(r, f)+S(r,f),

which gives a contradiction for n > 7. If ﬁ = ¢, from (3.8) we have

c

F=—1-—.
(c—=1)G+1

(3.9

If ¢ # ﬁ the second fundamental theorem with the help of (3.3), (3.9) and Lemma 2.3
yields

_ — — 1
2nT(r,g) < N(r,O;G)—FN(r,c;G)—FN<r71

;G) +N(r,;G) +S(r,G)
< (n+1)T(r,8) +N(r,00F)+8(rg) < (n+3)T(r,8) +S(r,8),

which implies a contradiction since n > 7. On the other hand if ¢ = ﬁ then from (3.9) we

have
c(F —c¢)

F
So from the second fundamental theorem it follows that

G=

nT(r,f) < N(r0;F)+N(r,c;F)+N(r,o;F)+S(r,F)
< 3T(r,f) +N(r,0,G) +S(r, f) <AT (1, f) +S(1, f),

which implies a contradiction since n > 7. So we must have Y= 1 then F'G = 1, which is
impossible by Lemma 2.6. This completes the proof of the theorem. O
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