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It is a pleasure to dedicate this paper to Peter Lax, the greatest influence on the re-

search of the second author. His ideas have shaped the subject of hyperbolic partial
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Abstract

We introduce and analyse linear systems of hyperbolic partial differential equations
that model the replacement and hoarding of currency. The goal is to deduce the hoard-

ing behavior from observations of circulating bills. The large time asymptotics of the

models is identified in all cases. The mathematical analysis is novel, partly because of

nonstandard boundary conditions. To identify parameters we suggest the measurement

of the age histogram of notes, the rate of growth, and the retard in wear of notes due
to hoarding. In our models that suffices to identify all but one quantity.
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1 Introduction

More than half of the high denomination bills printed by the US government are held out

of circulation, and largely outside the US. [10] (page v of the preamble) gives the estimate

is 60%. [1] estimates that 80% of $50 bills and 90% of $100 bills are hoarded. Our goal is

to extract as much information as we can from available or obtainable data.
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The government acts by,

• Removing worn bills from circulation.

• Replacing with new bills. Either in the same number or with more.

People act by

• Hoarding bills which they take from circulation.

• Placing hoarded bills back in circulation.

Bills

• Wear out while in circulation and not while hoarded.

In fact, bills will deteriorate slowly when hoarded. This deterioration also applies to

circulating bills. Including this slow degradation to all bills leads to models whose analysis

reduces to ours.

We introduce and analyse a sequence of models of increasing complexity. From the

qualitative behavior of the solutions we extract strategies for identifying parameters. All but

the simplest are systems of hyperbolic partial differential equations. Two are nonstandard

explicitly solvable models. The analysis of the last model which encompasses growth linked

to inflation employs an interesting Perron-Frobenius argument.

2 A model without age structure.

An ordinary differential equation model serves to introduce ideas. Denote by c(t) the num-

ber of bills in circulation at time t, h(t) the number hoarded, and denote,

Z(t) :=
(
c(t),h(t)

)
.

Circulating bills are withdrawn from circulation and hoarded with rate constant a and

hoarded bills reenter circulation with rate constant b. The dynamics is modelled by,

c′ = −ac+bh , h′ = ac−bh , (2.1)

Equivalently,

Z′ = M Z , with, M :=

(
−a b

a −b

)
. (2.2)

Proposition 2.1. • i. The positive quadrant {c ≥ 0 , h ≥ 0} is invariant, that is, a

trajectory beginning in this quadrant stays in the quadrant for all future times.

• ii. For any solution, the quantity c(t)+h(t) is independent of time.

• iii. As t → ∞, solutions tend to the unique equilibrium with the same total number of

bills.

Proof. i. This is so since when h = 0 and c > 0, one has

h′ = ac−bh = ac > 0 ,
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so the trajectory through such a boundary point immediately enters the interior of the quad-

rant. Similarly trajectories through the boundary points h > 0 and c = 0 immediately enter

the quadrant.

ii. Compute

(c+h)′ = (−ac+bh)+(ac−bh) = 0,

to prove the second part.

For nonnegative solutions,

c(t)+h(t) = c(0)+h(0) = N ,

the total number of bills.

iii. There is a unique equilibrium ce,he with N bills given by solving

−ac+bh = 0 , c+h = N ,

to find

ce :=
bN

a+b
, he :=

aN

a+b
.

The displacement from equilibrium

δc := c−ce , δh := h−he ,

is a vector δZ which satisfies (2.2). The sum of the components of δZ satisfies δc+δh = 0.

Therefore

δc
′ = −aδc +bδh = −(a+b)δc .

so,

δc = e−(a+b)t δc(0) , δh = e−(a+b)t δh(0) .

Thus the displacement from equilibrium tends exponentially to zero.

A surprising amount of insight can be gleaned from this model.

At equilibrium ac = bh so the ratio of circulating to hoarded bills is b/a. The expected

ratio of times spent circulating to time hoarded is predicted to be equal to

tcirc

thoard
:=

time circulating

time hoarded
≈

b

a
,

The chronological age is the sum

chronological age = tcirc + thoard .

Solving yields

chronological age =
(

1+
a

b

)
tcirc .

Observing the degree of wear of bills yields a measurement of tcirc. Comparing this

with the chronological age of bills in circulation yields a measurment of b/a. This remark

is independent of the model. Comparing chronological age with expected degree of wear

yields a measurement of the ratio of circulating to hoarded bills.

The relatively slower decay of hoarded bills is also mirrored by the fact that low de-

nomination bills wear much faster than large denomination bills. The average lifetimes of

various denominations is (see [7]),
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Denomination 1 5 10 20 50 100

Average Lifetime (months) 20 16 18.3 24.3 55.4 88.8

The absolute values of a and b are concerned with rates. Doubling a and b is equivalent

to having clocks which go twice as fast. The values of a and b cannot be inferred from

the equilibrium behavior. On the other hand disturbances relax to equilibrium at the rate

e−(a+b)t . It would be interesting to find a strategy for measuring this relaxation time. Similar

problems reappear in the more elaborate models.

3 An age structured model without replacement.

The next model keeps track of the amount of time a bill has spent circulating in the economy.

During this time, bills are subject to wear and tear. Time spent hoarded is time spent

protected from wear.

Denote by c(t, s)ds the number of bills in circulation at time t which have circulated for

time in the interval [s, s + ds]. A typical bill in the group represented by c(t, s)ds is older

than s. It has spent s years of its life circulatiing and the rest hoarded. The number of bills

at time t which have circulated for time a ≤ s ≤ b is equal to

Z b

a
c(t, s)ds .

Similarly, h(t, s)ds denotes the number of bills hoarded at time t which have circulated

for time in the interval [s, s + ds]. The total number of bills circulating (resp. hoarded) at

time t are equal to

C(t) :=

Z ∞

0
c(t, s) ds , H(t) :=

Z ∞

0
h(t, s) ds . (3.1)

The total number of bills at time t is the sum of those circulating and hoarded so is equal to

Z ∞

0
c(t, s)+h(t, s) ds

We compute the equations which would be satisfied by c,h if bills circulating stay cir-

culating and bills hoarded stay hoarded. Then h(t, s) does not change with time. However

the bills c(t, s)ds at time t +∆t will have been circulating for an additional ∆t seconds

c(t +∆t, s+∆t) = c(t, s) . (3.2)

Thus, when circulating bills and hoarded bills never change their status, the dynamics is

given by

∂tc + ∂sc = 0 , ∂th = 0 . (3.3)

The first equation asserts that c is constant on lines of slope 1. If (3.3) is supplemented by

initial data, (c0(s),h0(s)), the solution is uniquely determined by the formulas

c(t, s) = c0(s− t) , h(t, s) = h0(s) .
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In particular if the data are nonnegative, the solution is nonnegative.

From §2, add the laws that hoarded bills enter circulation with rate b and circulating

bills are hoarded with rate a. The resulting dynamics is

∂tc+∂sc = −ac+bh , ∂th = ac−bh . (3.4)

Equivalently

∂tZ +

(
1 0

0 0

)
∂sZ = M Z . (3.5)

To complete the description we suppose that no new bills are injected into circulation.

This is expressed as the boundary condition

c(t,0) = 0 , for all t ∈ R . (3.6)

Proposition 3.1. • i. Solutions with nonnegative initial data remain nonnegative for

all t ≥ 0.

• ii. Equilibrium solutions depend on neither s nor t. The only equilibrium with a finite

number of bills is c = h = 0.

• iii. The total number of circulating and hoarded bills, C(t) and H(t), satisfy the

ordinary differential equation of section 1. In particular, the total number of bills is

conserved and as t → ∞,

C(t) →
bN

a+b
, and H(t) →

aN

a+b
.

• iv. For any A > 0, the number of bills which have circulated for no more than A units

of time is a nonincreasing function of time.

Proof. i. This is easier than the analogous part of Proposition 5.1 so is omitted here.

ii. Adding the two equations (3.4) yields

∂t(c+h)+∂sc = 0 (3.7)

Integrating ds shows that

∂t

Z ∞

0
c(t, s)+h(t, s)ds =

Z ∞

0
ct(t, s)+ht(t, s)ds

=

Z ∞

0
cs(t,x)ds = −c(t,0) = 0 . (3.8)

This expresses the conservation of the total number of bills.

iii. A more general case showing that C,H satisfy the equations of section 1 is treated

in section 5.3 so is omitted here.

iv. The number of bills which have circulated for no more than A years is given by

Y (t) :=

Z A

0
c(t, s)+h(t, s) ds.
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Differentiating in time and using the dynamical equations yields

∂tY =
Z A

0
ct(t, s)+ht(t, s) ds = −

Z A

0
∂sc(t, s)ds

The fundamental theorem of calculus shows that

Yt = c(0,A)−c(t,A) = −c(t,A) ≤ 0 ,

proving that Y is nonincreasing.

The mixed initial boudary value problem can be explicitly solved using Fourier analysis

as follows. First extend c(t, s) and h(t, s) to s < 0 so that

c(t, s) = h(t, s) = 0 for s < 0 .

The resulting function h may be discontinuous across s = 0 but in the dynamics, h is not

differentiated in the s direction. On the other hand, the boundary condition (4.1) guarantees

that the extended function c is continuous across s = 0. It follows that the extended functions

satisfy (3.4) for all t ≥ 0 and −∞ < s < ∞.

Introduce the Fourier transform representations

Z(t, s) =
1

(2π)1/2

Z ∞

−∞
Ẑ(t,σ) eisσ dσ = F

−1 Ẑ ,

Ẑ(t, s) =
1

(2π)1/2

Z ∞

−∞
Z(t,σ) e−isσ dσ = F Z .

The boundary value problem translates to the following dynamic equation for the trans-

form,

∂t Ẑ(t,σ) =

(
−a− iσ b

a −b

)
Z(t,σ) := M(σ) Ẑ(t,σ) . (3.9)

For each σ this is a linear constant coefficient system of ordinary differential equations in

time which can be explicitly solved. This yields the solution formula

F
−1 exp

(
t M(σ)

)
F Z(0) .

where F denotes the Fourier transform. The map from initial data to solution at time t is

given by a Fourier multiplier. We next analyse this to determine the behavior as t → ∞.

Proposition 3.2. For every real nonzero σ, the eigenvalues of M(σ) in (3.9) have strictly

negative real part.

Proof. To see this start with the fact that the eigenvalues are the roots of fσ where,

fσ(λ) := det
[
M(σ)−λI

]
=

(
λ+(a+ iσ)

)(
λ+b

)
− ab := gσ(λ)−ab .

Both fσ and gσ are quadratic polynomials in λ. gσ has the roots λ1 = −b and λ2 =−a− iσ,

with strictly negative real part.
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On the circles |z−λ j|= ε << 1, one has for large σ, |gσ| ≥ |σ|ε. Choosing ε = 2|ab/σ|,

it follows by Rouché’s Theorem that fσ has a root inside each circle. Thus, the roots are

−a− iσ+O(1/|σ|) and −b+O(1/|σ|). Thus for large σ the roots lie in the left half plane.

If there were a a root in the closed right halfplane with σ > 0 (resp. σ < 0), then there

would have to be a σ ∈]σ,∞[ (resp. σ ∈]−∞,σ[) for which a root crosses the imaginary

axis. For this σ there is a purely imaginary root. Therefore, it suffices to show that there

can be no purely imaginary root for σ 6= 0.

Inserting λ = iζ with ζ ∈ R yields the equation

−ζ2 +(a+ iσ+b)iζ+(b(a+ iσ)−ab) = 0 .

Taking the real part yields

−ζ2 −σζ = 0 , =⇒ ζ = 0 , or ζ = −σ . (3.10)

On the other hand taking the imaginary part yields

(a+b)ζ+σb = 0 , =⇒ ζ =
−σb

a+b
. (3.11)

Since the last conditions in (3.10) and (3.11) are mutually exclusive, there is no purely

imaginary root λ = iζ. This completes the proof that the eigenvalues have negative real

part.

Proposition 3.3. i. For possibly complex solutions of (3.4),

Z ∞

−∞

∣∣Re c(t, s)
∣∣+

∣∣Imc(t, s)
∣∣+

∣∣Re h(t, s)
∣∣+

∣∣Imh(t, s)
∣∣ ds

is a nondecreasing function of t.

ii. For any 1 ≤ p < ∞ and t ≥ 0,

(Z ∞

−∞

∣∣Re c(t, s)
∣∣p

+
∣∣Imc(t, s)

∣∣p
+

∣∣Reh(t, s)
∣∣p

+
∣∣Imh(t, s)

∣∣p
ds

)1/p

≤

2
(Z ∞

−∞

∣∣Re c(0, s)
∣∣p

+
∣∣Imc(0, s)

∣∣p
+

∣∣Re h(0, s)
∣∣p

+
∣∣Imh(0, s)

∣∣p
ds

)1/p

.

iii. For real σ and t ≥ 0, ∥∥exp t M(σ)
∥∥ ≤ 2 . (3.12)

Proof. Define nonegative initial functions

c0
1(s) := max{Rec(0, s),0} , c0

2(s) := −min{Re c(0, s),0} ,

c0
3(s) := max{Imc(0, s),0} , c0

4(s) := −min{Imc(0, s),0} ,

with analogous h0
1(s). Define nonnegative solutions (ci(t, s),hi(t, s)) of (3.4) with initial

data equal to (c0
i (s),h0

i (s)). Then

c = c1 −c2 + ic3 − ic4 , h = h1−h2 + ih3 − ih4 .
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Therefore
Z ∞

−∞

∣∣Rec
∣∣+

∣∣Imc
∣∣+

∣∣Re h
∣∣+

∣∣Imh
∣∣ ds ≤

Z

∑(ci +hi)ds .

The conservation of bills implies that

Z ∞

−∞
ci(t, s) + hi(t, s) ds =

Z ∞

−∞
c0

i (s) + h0
i (s) ds .

From the definition,

Z

∑(c0
i +h0

i )ds =
Z ∞

−∞

∣∣Rec(0, s)
∣∣+

∣∣Imc(0, s)
∣∣+

∣∣Re h(0, s)
∣∣+

∣∣Imh(0, s)
∣∣ ds.

Combining the last three displayed equations proves i.

The expression

p(c,h) :=
∣∣Re c

∣∣+
∣∣Imc

∣∣+
∣∣Re h

∣∣+
∣∣Imh

∣∣

defines a norm on complex two vectors (c,h). To compare with the Euclidean norm begin

with

p(c,h)2 =
(∣∣Re c

∣∣+
∣∣Imc

∣∣+
∣∣Re h

∣∣+
∣∣Imh

∣∣
)2

≥
∣∣Rec

∣∣2
+

∣∣Imc
∣∣2

+
∣∣Reh

∣∣2
+

∣∣Imh
∣∣2

= ‖(c,h)‖2 .

For the opposite comparison, the Cauchy-Schwarz inequality yields

p(c,h) =
∣∣Rec

∣∣+
∣∣Imc

∣∣+
∣∣Reh

∣∣+
∣∣Imh

∣∣ ≤
(∣∣Rec

∣∣2
+

∣∣Imc
∣∣2

+
∣∣Reh

∣∣2
+

∣∣Imh
∣∣2

)1/2(
12 +12 +12 +12

)1/2

= 2‖c,h‖ .

Therefore, using i yields,

Z ∞

−∞
‖Z(t, s)‖ ds ≤

Z ∞

−∞
p(Z(t, s))‖ ds

≤
Z ∞

−∞
p(Z(0, s))‖ ds ≤ 2

Z ∞

−∞
‖Z(0, s)‖ ds .

This is the case p = 1 of ii. A standard duality and interpolation argument shows that

Fourier multipliers that satisfy the case p = 1 satisfy the estimate for all p ∈ [0,∞[.

Finally, the estimate ii for p = 2 immediately implies iii..

Theorem 3.4. Bills wear out. Precisely, if Z(0, s) vanishes for s < 0 and
R ∞
−∞ |Ẑ(0,σ)|dσ <

∞, then for any age A > 0,

lim
t→∞

max
0≤s≤A

|Z(t, s)| = 0 .
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Proof. For any challenge number ε > 0 choose µ > 0 so small that

Z

|σ|<µ
|Ẑ(0,σ)| dσ +

Z

|σ|>1/µ
|Ẑ(0,σ)| dσ < ε/4 .

Part iii of the preceding proposition shows that for all t > 0 and s,

∣∣∣
Z

|σ|<µ
eitσ Ẑ(t,σ)| dσ

∣∣∣+
∣∣∣

Z

|σ|>1/µ
eitσ Ẑ(t,σ)| dσ

∣∣∣ < ε/2 .

Proposition 3.2 shows that as t → ∞,

max
µ<|σ<1/µ

‖exp(tM(σ)‖ → 0 .

Therefore

max
0≤s≤A

∣∣∣
Z

µ<|σ|<1/µ
exp

(
tM(σ)

)
eitσ Ẑ(0,σ) dσ

∣∣∣ → 0

as t → ∞. This completes the proof.

4 A model with bill replacement after S years of wear.

To combat aging, worn bills are removed from circulation and replaced with new ones. It is

the wear on bills not their age which determines whether they are removed from circulation

([7]). The cohort of bills is rejuvenated. We study a model which like that in the preceding

section is exactly solvable by Fourier analysis. It uses number of years in circulation as a

measure of wear and replaces bills that have circulated for S units of time with new bills.

This model has the advantage of being exactly solvable. More realistic models are discussed

later.

Bills in circulation have circulated for 0 ≤ s ≤ S years so the unknowns c(t, s), h(t, s)

are defined on this s interval. The circulating bills which arrive at circulation age S are

replaced by new ones. This is expressed by the boundary condition,

c(t,0) = c(t,S) . (4.1)

The model is the system of partial differential equations (3.4) for 0 ≤ s ≤ S supplemented

by the boundary condition (4.1). The initial data c0(s),h0(s) must satisfy (4.1).

There is an important subclass of solutions of this boundary value problem which are

functions of t alone. The densities c,h do not depend on s. They have uniform age distri-

bution. Each value of s is as likely as any other. Note that the boundary condition (4.1) is

satisfied by such solutions.

In §2, we showed that such solutions tend to the unique equilibrium with the correct

total number of bills. We next show that in the general case the solution tends to a uniform

equilibrium age distribution with the correct total number of bills. The results of the first

section then give the large time behavior.

Proposition 4.1. The first three assertions of Proposition 3.1 hold for the solutions of the

model (3.4) -(4.1).
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The proof follows exactly the lines of the earlier result and is omitted.

The boundary value problem is solved by the method of reflection. Extend c,h to the

line Rs as periodic functions of period S. The resulting function is a solution of (3.4) on

the whole s line. To reach this conclusion the boundary condition (4.1) is crucial. If it were

not satisfied the periodic extension of c(t, s) would have jump discontinuities at the points

s = nS and the c equation from (3.4) would not be satisfied at those points.

The S periodic version of (3.4) is solved explicitly by Fourier expansion,

Z(t, s) =
∞

∑
n=−∞

Zn(t)ei2πns/S . (4.2)

Equation (3.5) holds if and only if the Fourier coefficients, Zn(t) satisfy the ordinary differ-

ential equations

Z′
n +

2πni

S

(
1 0

0 0

)
Zn = M Z , (4.3)

equivalently,

Z′
n =

(
−a− iσ b

a −b

)
Zn := M(σ)Zn , σ :=

2πni

S
. (4.4)

Proposition 4.2. The only equilibrium solutions of the boundary value problem (3.4), (4.1)

are functions which do not depend on s and are equilibria of the ordinary differential equa-

tions (2.1).

Proof. This is so since an equilibrium does not depend on t so in (4.2) only the n = 0 term

can occur. For this term, (4.4) reduces to (3.5).

The eigenvalue information in Proposition 3.2 shows that for n 6= 0, the solutions Zn(t)

of (4.4) tend to zero as t → ∞. Therefore as t → ∞

Z(t, s) → Z0(t)

a solution which is independent of s. Asymptotically the solution has uniform distribution

of ages.

Writing Z0(t) =
(
c0(t),h0(t)

)
, in §1 we showed that Z0, which satisfies (2.2), tends

as t → ∞ to an equilibrium of (2.1). By the conservation of bills, it must be the unique

equilibrium with the same total number of bills as the initial data. Combining these two

conclusions yields the following result.

Theorem 4.3. As t → ∞, each solution of the boundary value problem (3.4), (4.1) tends to

the unique equilibrium which has the same total number of bills as the initial data. That

equilibrium has uniform age distribution.

For this model the age histogram of bills at equilibrium is independent of s. It is as

likely to find a bill which is four years old as one which is brand new. In [10] one finds the

age histogram for one dollar bills in circulation,

Months 5 10 15 20 25 30 35 40 45 50 55 60 65

Number 500 1190 1600 880 1000 990 610 500 400 250 210 175 100

The nonuniformity shows that the present model is inappropriate. However, the analysis

performed provides insights that serve for the better models.
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5 A model with replacement for all degrees of wear.

5.1 Introducing the model.

In the preceding model, bills in circulation were removed and replaced with new bills when

they have have been worn for exactly S units of time. More realisitically, the removal rate

of bills is a nondecreasing function, δ(s), of the number years that they have been wearing

out. The resulting dynamics is

∂t c+∂sc = −ac+bh−δ(s)c , ∂t h = ac−bh . (5.1)

A model which replaces the removed bills with an equal number of new ones adjoins the

boundary condition

c(t,0) =

Z ∞

0
δ(s)c(t, s) ds . (5.2)

In this model, 0≤ s < ∞ so arbitrarily old bills are permitted. The pertinent distributions

will be shown to be exponentially small as s → ∞, uniformly in t ≥ 0.

Initial data c0(s),h0(s) must satisfy (4.1) in order to avoid discontinuous solutions.

The removal at age S model is an extreme case where the removal rate is zero for s < S

and completely effective for s = S. This is a limiting case of δ(s) models as follows. Define

H(s) to be the step function

H(s) :=

{
0 when s < S

1 when s ≥ S
.

In the limit λ → ∞ the model with δ(s) = λH(s) converges to the model of §2.

Proposition 5.1. i. If c,h is a continuous solution of (5.1), (5.2) on [T1,T2[×[0,R[ and

c
∣∣
[T1,T2[×{s=0}

≥ 0 , c
∣∣
{s=0}×[0,R[

≥ 0 , and h
∣∣
{t=T1}×[0,R[

≥ 0 ,

then c and h are nonnegative on the rectangle [T1,T2[×[0,R[.

ii. If c,h is a nonnegative continuous solution of (5.1), (5.2) on the triangular domain of

influence

D :=
{
(t, s) : t ≤ t ≤ T , and s ≤ s ≤ s+(t − t)

}
,

and at least one of c or h is strictly positive at the vertex (t, s), then both c and h are strictly

positive at every interior point of D.

Proof. To prove i, consider the initial boundary value problem for the system (5.1) sup-

plemented by nonnegative initial values for c and h on the base and for c on the left hand

boundary. Define a first approximate solution to be c = h = 0 and for ν > 0 define cν,hν

inductively by solving

cν
t +cν

s +(a+δ(s))cν = bhν−1 , hν
t +bhν = acν−1 ,

with the given nonnegative initial values.
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It is not difficult to prove that the cν,hν is nondecreasing in ν and converges to the

unique solution of the boundary value problem. This proves the nonnegativity of that solu-

tion.

To prove ii suppose first that c(t, s) > 0. Integrate

ht +bh = ac ≥ 0 , (5.3)

along the left boundary of D to conclude that h is strictly positive along the left boundary

with the possible exception of the vertex.

Next integrate

ct +cs +(a+δ(s))c = bh ≥ 0 (5.4)

along path with the speed one that connects (t, s) to the left hand boundary. Since c is

nonnegative at the boundary and source term on the right is strictly positive when the path

is close to the left hand boundary, it follows that c is strictly positive at all interior points of

D.

Then (5.3) implies that h is strictly positive in the interior of D.

When h(t, s) > 0 the proof is similar. Start with the c equation to show that c is strictly

positive on the nonvertex points of the right hand boundary. Then (5.3) shows that h is

strictly positive in the interior. Then (5.4) shows that c is strictly positive in the interior.

Proposition 5.2. Suppose that c,h is a solution of (5.1), (5.2), which converges exponen-

tially to zero as s → ∞ uniformly in t ≥ 0 and may have both positive and negative values.

i. For all t ≥ 0,

Z ∞

0
|c(t, s)|+ |h(t, s)| ds ≤

Z ∞

0
|c(0, s)|+ |h(0, s)| ds .

ii. The only case where there is equality in i for all t ≥ 0 is when both c and h are everywhere

nonnegative or everywhere nonpositive.

Proof. i. Denote by c±0 (s) := max{±c(0, s),0}. Similarly, h±0 (s). Then c± and h± are

nonnegative and

|c(0, s)|= c+
0 (s)+c−0 (s) , |h(0, s)|= h+

0 (s)+h−0 (s) ,

so
Z ∞

0
|c(0, s)|+ |h(0,s)| ds =

Z ∞

0
c+

0 (s)+h+
0 (s)+c−0 (s)+h−0 (s) ds .

Denote by c±(t, s),h±(t, s) the solutions of (5.1), (5.2) with initial values c±0 (s),h±0 (s).

Those solutions are nonnegative and

c = c+−c−, h = h+−h− .

Conservation of bills implies that

Z ∞

0
c±(t, s) + h±(t, s) ds =

Z ∞

0
c±(0, s)+h±(0, s) ds .

Therefore
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Z ∞

0
|c(t, s)|+ |h(t,s|ds ≤

Z ∞

0
c+(t, s)+c−(t, s)+h+(t, s)+h−(t, s) ds

=

Z ∞

0
c+(0, s)+c−(0, s)+h+(0, s)+h−(0, s) ds

=
Z ∞

0
|c(0, s)|+ |h(0, s)| ds .

To prove ii. use the same notations as in i.. If c,h are not everywhere of one sign, then

there are points s± where c±(0, s±)+ h±(0, s±) > 0. Proposition 5.1.ii implies that c± and

h± are strictly positive on the domain of influence D± of (0, s±).

Choose t so large that the two domains D± overlap so there is an interval on which both

c+ and c− are strictly positive and h+ and h− are strictly positive For such t

Z ∞

0
|c(t, s)| ds =

Z ∞

0
|c+(t, s)−c−(t, s)| ds <

Z ∞

0
c+(t, s)+c−(t, s) ds,

and
Z ∞

0
|h(t, s)| ds =

Z ∞

0
|h+(t, s)−h−(t, s)| ds <

Z ∞

0
h+(t, s)+h−(t, s) ds,

so the inequality in the proof of i is strict.

5.2 Equilibria and pointwise bounds.

The equilibria or steady state solutions (c(s),h(s)) are the solutions of

∂sc = −ac+bh−δ(s)c , 0 = ac−bh , (5.5)

c(0) =

Z ∞

0
δ(s)c(s) ds . (5.6)

Using the second equation in (5.5) in the first yields,

∂sc = −δ(s)c(s) . (5.7)

Integrate (5.7) from s = 0 to s = ∞ yields

−

Z ∞

0
δ(s)c(s) ds =

Z ∞

0
∂sc(s) ds = c(∞)−c(0) = −c(0) ,

showing that (5.6) is a consequence of (5.7).

The general solution of (5.7) is found by the classical computation

(
lnc(s)

)′
=

c′

c
= −δ(s). (5.8)

Define for s ≥ 0,

α(s) :=

Z s

0
δ(τ) dτ .
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Integrating (5.8) from s = 0 yields

lnc(s)− lnc(0) = −α(s) ,

whence

c(s) = Ae−α(s) , A = c(0) .

Then h(s) = ac(s)/b and the total number of bills is

N = A (1+a/b)

Z ∞

0
e−α(s) ds .

For each number of bills, N, there is a unique value of A and therefore a unique steady state

with that number of bills.

A difference between the δ(s) model and the model in §2 is that the steady state has an

age dependent population density. If one measured the histogram of bill ages in the steady

state, that would yield the curve e−α(s) and therefore α(s). Differentiation would yield δ(s).

The steady state histogram of bill ages determines δ(s) and depends on neither a nor b.

The next result uses the equilibria to obtain an upper bound on solutions uniformly in

time.

Proposition 5.3. i. If c(t, s),h(t, s) is a solution of (5.1), (5.2) and c̃(s), h̃(s) is an equilib-

rium of that system with the property that

|c(0, s)| ≤ c̃(s) , and |h(0, s)| ≤ h̃(s) ,

then, for all t ≥ 0 one has

|c(t, s)| ≤ c̃(s) , and |h(t, s)| ≤ h̃(s) .

ii. If c(t, s),h(t,s) is a continuously differentiable solution of (5.1), (5.2) with initial data

vanishing for s large, then there is an equilibrium solution c̃(s), h̃(s) so that for all t ≥ 0

and s ≥ 0

|c(t, s)|+ |ct(t, s)|+ |cs(t, s)|+ |h(t, s)|+ |ht(t, s)|+ |hs(t, s)| ≤ c̃(t, s) .

Proof. To prove i, define c±(t, s),h±(t, s) as in the proof of Proposition 5.2. The difference

c̃− c±, h̃−h± is a solution of the δ(s) model with nonnegative initial data. It follows that

the solution remains nonnegative for all t ≥ 0 that is

0 ≤ c±(t, s) ≤ c̃ , 0 ≤ h±(t, s) ≤ h̃ .

Since c± are nonnegative and c = c+−c−, it follows that

|c| ≤ max{c+,c−} ≤ c̃ ,

with a similar argument for |h|. The proof of i is complete.

To prove ii, observe that if f (c(t,x),h(t, s)) is a solution, then so is
(
∂tc,∂th

)
. Choose

an equilibrium c̃, h̃ so that

|ct(0, s)| ≤ c̃(s) , and |ht| ≤ h̃(s) .
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Part i shows that these upper bounds remain valid for t ≥ 0.

Once |c| and |ct | and |h| are bounded above by equilibria, the same is true for cs since

the first of the equations (5.1) expresses cs as a combination of the other three.

To estimate the derivative hs, differentiate (5.3) to find

∂ths = acs −bhs , hs(t, s) = e−tb hs(0, s)+

Z t

0
e−(t−s)b acs(t, s) dt .

The integrability of e−bt yields the desired bound for hs.

5.3 Behavior of the bulk quantities.

Recall equation (3.1). Integrating the dynamic equation for c yields

Z ∞

0

(
∂tc+∂sc

)
ds =

Z ∞

0

(
−ac+bh−δc

)
ds = −aC +bH −

Z ∞

0
δ(s)c(t, s)ds .

Leibniz’ rule for differentiating under the integral shows that

Z ∞

0
∂tc ds = ∂t

Z ∞

0
c(t, s) ds = C′(t) .

The Fundamental Theorem of Calculus implies that

Z ∞

0
∂sc(t, s) ds = c(∞)−c(0) = −c(0) .

Using these identities in the integrated dynamic law and using also the boundary condition

yields

C′ = −aC +bH .

A similar but simpler calculation yields

H ′ = aC−bH .

This is exactly the system of ordinary differential equations in §2. The large time behavior

of that equation yields the following result.

Proposition 5.4. As t → ∞ one has

C(t)→
b

a+b
N , H(t)→

a

a+b
N ,

where N is the the total number of bills. The convergence is at the exponential rate e−(a+b)t .

It is remarkable that this conclusion holds for all removal rates δ(s). The evolution

of the bulk quantities is not affected by δ. Measuring the rate at which the bulk quantity

C(t) relaxes to equilibrium yields a + b. The ratio b/a determines and is determined by

the relative size of C and H. In practice the two bulk quantities are of comparable size, the

coefficients a,b are of comparable size.
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5.4 Large time behavior.

In this section the strategy of Lasalle’s Invariance Principal is used to show that as t → ∞,

solutions of the δ(s) model tend to the unique equilibrium which has the same total number

of bills.

Theorem 5.5. Suppse that c,h is a continuously differentiable solution of (5.1), (5.2) whose

initial data have compact support in s. Denote by ce,he the equilibrium solution with the

same number of bills,

Z ∞

0
c(t, s)+h(t, s)ds =

Z ∞

0
ce(s)+he(s)ds .

Then as t → ∞, c,h converges to ce,he in the sense that

lim
t→∞

Z ∞

0
|c(t, s)−ce(s)|+ |h(t, s)−he(s)| ds = 0 ,

and

lim
t→∞

max
0≤s<∞

(
|c(t, s)−ce(s)|+ |h(t, s)−he(s)|

)
= 0 ,

Proof. Denote by

c := c−ce , h := h−he ,

the solution which is the deviation from equilibrium. Apply Proposition 5.3.ii to find an

equilibrium c̃, h̃ so that |c|, |ct|, |c− s|, |h|, |ht|, |hs| are all bounded above by c̃.

Proposition 5.2.i implies that

Z ∞

0
|c(t, s)|+ |h(t, s)| ds

is a nonincreasing nonnegative function of t. Denote by E ≥ 0 its limit as t → ∞. The first

assertion of the Theorem is that E = 0. So we need to show that E > 0 is impossible.

Choose tn > 0 so that

E ≤
Z ∞

0
|c(tn, s)|+ |h(tn, s)| ds ≤ E +

1

n
.

Then the sequence of solutions,

(
cn(t, s),hn(t, s)

)
:=

(
c(t + tn, s),h(t + tn, s)

)

inherit the pointwise upper bounds of c,h, and, for all t ≥ 0,

E ≤

Z ∞

0
|cn(t, s)|+ |hn(t, s)| ds ≤ E +

1

n
.

In addition, since c,h has zero total bills, one has

Z ∞

0
cn(t, s)+hn(t, s) ds = 0 .
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Ascoli’s Theorem asserts that there is a subsequence of the cn,hn which converges uni-

formly on compact subsets of [0,∞[×[0,∞[ to a uniformly lipshitz continuous solution of

the δ(s) model. The limit inherits the pointwise bounds for c,h and its first derivatives. In

addition, the dominated convergence theorem allows one to pass to the limit in the preced-

ing two estimates to show that for all t ≥ 0,

Z

|c(t, s)|+ |h(t, s| ds = E , and

Z

c(t, s)+h(t, s) ds = 0 .

If E > 0, then the vanishing total number of bills shows that it is not true that c and

h have the same sign. Proposition 5.2.ii. shows that in this case it is impossible to have
R

|c|+ |h|ds independent of t ≥ 0. The conclusion is that E = 0 which completes the proof

of the first assertion of the Theorem.

The second, assertion of the Theorem is a consequence of the first. To see this let

F(t) := max
0≤s<∞

(
|c(t, s)−ce(s)|+ |h(t, s)−he(s)|

)
≥ 0 .

For t > 0 choose s = s(t) so that

|c(t, s)−ce(s)|+ |h(t, s)−he(s)| ≥ F(t)/2 .

Choose K > 0 so that for all t ≥ 0 and s ≥ 0,

∣∣∂s(c(t, s)−ce(s))
∣∣+

∣∣∂s(h(t, s)−he(s))
∣∣ ≤ K .

Then, on the interval

|s− s| <
F(t)

4K
,

one has

|c(t, s)−ce(s)|+ |h(t, s)−he(s)| ≥ F(t)/4 .

Therefore
Z ∞

0
|c(t, s)−ce(s)|+ |h(t, s)−he(s)| ds

≥

Z

|s−s|<F/4K
|c(t, s)−ce(s)|+ |h(t, s)−he(s)| ds

≥ 2
F(t)

4K

F(t)

4
.

The first assertion of the Theorem shows that left hand side tends to zero as t → ∞. It

follows that F(t) tends to zero which is the second assertion of the Theorem.

6 Growth and inflation.

We study models where more bills are replaced than are removed. The total number of bills

grows. This is the model which best fits normal monetary policy, and observed data. We

make the realistic assumption that there is a finite upper limit S on the number of years a

bill can spend in circulation. The resulting model takes place on a finite interval 0 ≤ s ≤ S,
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ct +cs +ac−bh+δ(s)c = 0 , 0 ≤ s ≤ S , (6.1)

ht −ac+bh = 0 , 0 ≤ s ≤ S , (6.2)

h(t,0) = 0 . (6.3)

The replacement of bills is handled with a boundary condition

c(t,0) = (1+ r)

Z S

0
δ(s)c(s) ds , 0 ≤ r . (6.4)

The model posits that bills which are removed from circulation are replaced with an infla-

tionary factor 1+ r while those that circulate for S years simply disappear from circulation.

If S is chosen reasonably large, there will be very few. On a technical level admitting the

possibility of arbitrarily old bills poses mathematical problems which are irrelevant in the

practical situation where S less than 20 is more than reasonable from the data in §2.

The total number of bills satisfies

∂t

Z S

0
c(t, s)+h(t, s) ds = r

Z S

0
δ(s) c(t, s) ds .

6.1 Exponentially growing modes.

Seek solutions of the form

eγt(c(s),h(s)) . (6.5)

The differential equations are equivalent to,

(γ+∂s)c+ac−bh+δ(s)c = 0 , γh−ac+bh = 0 . (6.6)

The second yields

ac−bh = γh =
γa

b+ γ
c .

Plugging in yields

∂sc+
(

ρ(γ)+δ(s)
)

c = 0 , ρ(γ) := γ+
γa

b+ γ
.

With α(s) as in Section 5.2, the solutions c(s) are constant multiples of

c(s) = e−ρ(γ)s−α(s) . (6.7)

The boundary condition is satisfied if and only if

1

1+ r
=

Z S

0
δ(s) e−ρ(γ)s−α(s) ds . (6.8)

The function ρ(γ) is strictly monotone increasing for γ ≥ 0 so the right hand side is a

decreasing function of γ ≥ 0 which tends to 0 as γ → ∞.
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Define r0 by

1

1+ r0
:=

Z S

0
δ(s) e−α(s) ds .

For r = r0, the boundary condition is satisfied for γ = 0.

Given r > r0 there is exactly one value of γ > 0 so that the boundary condition is satis-

fied. It is for this range of r that the number of circulating bills is growing. These computa-

tions prove the following result.

Proposition 6.1. For each r > r0 there is only one value of γ > 0 so that the boundary value

problem (6.6) with boundary condition (6.4) has nontrivial solutions. For each such r there

is a unique solution (6.5). The function c is equal to a constant multiple of (6.7), and h is

given in terms of c by h = ac/(b+ γ).

6.2 Large time behavior.

As in all the models we have studied, nonnegative initial data lead to nonnegative solutions

and therefore there is a comparison principal which asserts that for two solutions, one has

c1(t, s) ≤ c2(t, s) , and h1(t, s) ≤ h2(t, s) , 0 ≤ s ≤ S

for all t ≥ 0, if and only if the inequalities holds at t = 0

If (c(0, s),h(0,s)) is a bounded nonnegative data set, then one can choose M > 0 suffi-

ciently large so that

c(0, s) ≤ M c(s) and h(0, s) ≤ M h(s) .

The order relations remain true for all time so

c(t,x) ≤ M eγtc(s) and h(t, s) ≤ M eγth(s) .

This shows that solutions can grow no faster than eγt .

Theorem 6.2. Suppose that r > r0, γ, and (c(s),h(s)) define the exponentially growing

mode from Proposition 6.1. Then there is a γ′ < γ and C > 0 so that if c(t, s),h(t,s) is a

nonnegative solution, there is a constant A so that

‖(c(t, s),h(t, s))−Aeγt(c(s),h(s))‖L∞([0,S]) ≤Ceγ′t ‖(c(0, s),h(0,s))‖L∞([0,S]) .

Proof of Theorem 6.2. Introduce the mapping R(t) which sends the value of a solution

at time t = 0 to the solution at time t ≥ 0. The Riemann Matrix R(t, s,σ) is the Schwartz

kernel of this map defined by,

(c(t, s),h(t, s)) =

Z

R(t, s,σ)
(
c(0,σ),h(0,σ)

)
dσ .

For σ ∈]0,S[ fixed, each column of the 2×2 matrix R satisfies the equations (6.1), (6.2),

together with the boundary condition (6.4). The first (resp. second) column has initial value
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equal to (µσ , 0) (resp. (0 , µσ)) where µσ is a unit point mass (a.k.a. Dirac delta) supported

at σ. Computations dating to the original work of Riemann show that for 0 ≤ t < S−σ

R(t, s,σ) =

(
e−atµσ+t 0

0 e−btµσ

)
mod L∞ .

When the point mass moving to the right encounters the boundary it disappears into the

boundary. The boundary condition induces a jump discontinuity in c to emerge from s = 0

at that time. For t > S the difference

F = R(t, s,σ) −

(
0 0

0 e−btµσ

)

is a piecewise smooth function of t, s uniformly bounded on {S < t ≤ T}×{0 ≤ s ≤ S}×
{0 < σ < S}. This can be proved by constructing, using the method of progressing waves as

in [2], [4], corrections to this leading term which yield approximate solutions whose error

is as smooth as one likes. Thus, the operator R(t) mapping initial data to data at time t is for

t > S the sum of diag
(
0 , e−bt

)
and a compact operator with bounded piecewise continuous

kernel.

Fix t > S. Consider R(t) as a map from L∞([0,S]), R(t) to itself. The preceding result

shows that the intersection of the spectrum of R(t) with {|z| > e−bt} consists of a discrete

set of eigenvalues of finite multiplicity.

Choose r∈]e−bS,1[ and denote by V the finite dimensional complex vector space spanned

by the generalized eigenspaces corresponding to eigenvalues λ with |λ| ≥ r. The space V

contains the exponentially growing real mode (c(s),h(s)) from Section 6.1 corresponding

to the positive eigenvalue eγt of R(t).

Denote by P the open cone of functions (c,h) so that the essential infinium of both c

and h are strictly positive. The operators R(t) map P to itself. Define the finite dimensional

real vector space

W := ReV .

Then W contains the strictly positive growing mode (c(s),h(s)) and is invariant under R(t)
for all t. P∩W3 (c(s),h(s)) is a nonempty relatively open cone in W endowing W with the

structure of an ordered vector space. The Perron-Frobenius Theorem (see [3] for example)

applied to R(t)
∣∣
W

, the restriction of R to W, shows that the largest eigenvalue of R(t) is eγt

and has algebraic and geometric multiplicity equal to one. The other eigenvalues are strictly

smaller in absolute value.

Denote by Π the spectral projection of R(1) on the principal eigenspace

Π :=
1

2πi

I

|z−eγ|=ρ

(
R(1)− zI)−1 dz, 0 < ρ << 1.

Then

V = Range(I−Π) ⊕ C
(
c(s),h(s)

)
.

The Perron-Frobenius argument shows that there is a 0 < γ̃ < γ so that the restriction of

R(1) to Range(I −Π) has spectrum in {|z| ≤ γ̃}. The spectral radius formula implies that

for any γ′ ∈]̃γ , γ[ there is a C so that for all v ∈ Range(I−Π) and t ≥ 0,

R(t)v ≤ Ceγ′t‖v‖ .

Together with R(t)
(
c(s),h(s)

)
= eγt

(
c(s),h(s)

)
this completes the proof.
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6.3 Conclusions.

• Once a policy with parameters r,δ is in place for a while, the bills will settle into the

exponentially growing mode Aeγt(c(s),h(s)). The parameter γ is the growth rate of the

number of bills in circulation so is observable.

• Given the growth rate, γ1 for one dollar bills, the known age histogram for one dollar

bills determines ρ(γ1)s + α(s). For one dollar bills, hoarding is irrelevant so a = b = 0

yielding ρ(γ1) = γ1. Thus, the age histogram determines γ1s + α(s) and therefore α(s) and

δ(s).

• For higher denominations it is reasonable that δ(s) is the same or similar to its value

for one dollar bills.

• The age histogram for one dollar notes predicts ρ(γ). Since γ is known this gives

a/(b + γ) which is the ratio c/h in the steady state. Thus the hoarded population would be

estimated.

• One can find r from (6.8).

• One does not yet have a,b. For the trio a,b,γ one would know γ and a/(b + γ). One

more measurement is needed to get a and b. One gets an estimate for the hoarded bills

without this additional measurement.

• The missing datum could be extracted from the age histogram of the circulating bills

in the higher denomination. If the model is correct, the histogram will be different from

that of one dollar bills because of hoarding.
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