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Abstract

Reflection of a shock from a solid wedge is a classical problem in gas dynamics.

Depending on the parameters either a regular or a irregular (Mach-type) reflection

results. We construct regular reflection as an exact self-similar solution for potential

flow. For some upstream Mach numbers MI and isentropic coefficients γ, a solution

exists for all wedge angles θ allowed by the sonic criterion. This demonstrates that, at

least for potential flow, weaker criteria are false.
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1 Introduction

The reflection problem

Reflection of an incident shock from a solid wedge is a classical problem of gas dynamics.

It has been studied extensively by Ernst Mach [25, 20] and John von Neumann [26], as well

as many other engineers and mathematicians.

Most commonly, reflection is studied in steady inviscid compressible flow, for example

when shocks in a nozzle are reflected from the walls. The reflections can be classified

roughly into regular and irregular reflections; see [1] for a more detailed discussion. In

∗E-mail address: velling@umich.edu
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Figure 1. Left: regular reflection, right: single Mach reflection (oversimplified). If the

reflection point is steady, the sonic criterion corresponds to MQ > 1.

either type, an incident shock Q impinges on a solid surface B (see Figure 1). In regular

reflection (RR), Q reaches a reflection point on the surface, continuing as the reflected shock

R (see Figure 1 left).

In irregular reflections (IRR), incident and reflected shock are connected by a more or less

complex interaction pattern which in turn connects to the solid surface by a third shock,

called Mach stem. The most important irregular reflections are double, complex and single

Mach reflection (DMR, CMR, SMR); various additional types have been proposed [15, 17,

18]. Figure 1 right shows an (oversimplified) version of single Mach reflection.

The reflection problem has several parameters. For polytropic gas it is sufficient to consider

the isentropic coefficient γ as well as LQ and LI , the Mach numbers in the Q resp. I regions.

The incident shock cannot exist unless LQ > 1. LQ and LI < LQ determine the incident

shock (not all LI may admit a matching reflected shock).

In Mach reflection, the Mach stem, reflected and incident shock appear to meet in a triple

point. In general this is possible only if they are joined by a contact discontinuity (slip

line); for some parameter values it is not possible at all. In fact for certain values RR is

not possible either. This is called the von Neumann paradox; it is perhaps the most famous

of the many problems arising in reflection. Many ideas have been proposed towards the

resolution of the paradox (see e.g. [15, 27, 13, 17, 18]); no single explanation has been

accepted widely so far.

However, this article is concerned with a different question: it is natural to ask which pa-

rameters cause a RR and which yield IRR. Of course both sides of Figure 1 are perfectly

valid stationary solutions, so the question has to be phrased more carefully. For example:

1. Which of the two is dynamically stable (e.g. asymptotically stable as a stationary

solution of the time-dependent problem)?

2. Which of the two is structurally stable under perturbations like downstream nozzles,

wall curvature or roughness, interaction with other flow patterns, perturbation of the

upstream flow to non-constant with curved incident shock, viscosity, heat conduc-

tion, boundary layers, noise, slow relaxation to thermal equilibrum and other kinetic
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Figure 2. A given upstream velocity (I) with possible downstream velocities (red curve) for

steady shocks with varying normal. The U shock is unphysical; K is the strong and L the

weak shock. Shocks cannot turn velocities by more than the critical angle τ∗.

effects, dissociation etc.

It is not clear whether these questions are really any better than the original one — perhaps

both sides of Figure 1 are stable. If so, then the new questions would merely fail in a less

obvious way, as stability is harder to check than existence. But let us assume for the sake

of the argument that the vague problem “does RR or IRR occur” can be expressed in some

way as a precise mathematical question that selects exactly one of the two choices.

Among the criteria that have been proposed (see [1, Section 1.5]), three are most important.

The first criterion, called detachment criterion, states that RR occurs whenever a reflected

shock exists. Clearly RR is not possible without a reflected shock, so this is the weakest

possible criterion.

The velocity~vI in the I region of Figure 4 forms an angle τ with B; the reflected shock must

turn this velocity by τ so that~vR is parallel to the wall, satisfying a slip boundary condition.

Given the I region data and γ, let the reflected shock be steady and pass through the reflec-

tion point, but vary its angle. This yields a one-parameter family of velocities~vR, forming

a curve called shock polar (see Figure 2). For physical shocks there is a maximum angle τ∗
between downstream and upstream velocity. τ∗ is determined by the upstream state.

If the angle τ between wall and ~vI region of Figure 4 right is bigger than τ∗, no reflected

shock exists. If τ = τ∗, there is exactly one reflected shock. For τ < τ∗ however there are

two, called weak reflection and strong reflection. We encounter another one of the major
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issues in reflection: which of these two should occur? [11] have discussed this question in

a related problem.

The flow in the R region can be supersonic or subsonic. If it is supersonic, then waves

in the R region cannot travel towards the reflection point. If it is subsonic, however, they

can reach it and interact with it, potentially altering the reflection type. This motivates the

second criterion, called sonic criterion: RR occurs exactly if there is a reflected shock with

supersonic R region, i.e. Mach number LR > 1.

On the shock polar (Figure 2), + indicates the point where MR = 1; velocities right of it

are supersonic, left of it subsonic. Hence there is an angle τ+ so that for τ < τ+ the weak

reflection L has LR > 1. For τ > τ+ however it has LR < 1. The strong reflection K is always

subsonic in the R region — so the sonic criterion has a pleasant property: only the weak

reflection is allowed, solving the uniqueness problem. Moreover since τ+ < τ∗, the sonic

criterion is stronger than the detachment criterion.

The third criterion is motivated by studying what happens when the parameters LI ,LQ are

varied so that a transition from RR to IRR occurs. One might suspect that the pressure in

the reflection point in the R,S regions is continuous and does not jump during transition.

Then the pressure behind the reflected shock in RR and the pressure behind the Mach stem

in IRR, a shock approximately straight and perpendicular to the wall, must be equal at

transition. There is a very limited set of LI ,LQ,γ for which this happens; the von Neumann

criterion (sometimes called mechanical equilibrum criterion) states that the transition can

occur only at those parameters.

The von Neumann criterion has various problems. Most importantly, for weak incident

shocks the pressure behind the Mach stem never matches the pressure below the reflected

shock, so RR should occur in all cases, contradicting observations.

Self-similar reflection

Reflection can also be studied in self-similar (sometimes called quasi-steady or pseudo-

steady) flow. In fact this is advantageous: for finding stationary solutions, choosing bound-

ary conditions that yield well-posedness, in particular uniqueness, can be rather subtle, as

evident from the awkward phrasing of the RR-or-IRR question above. For initial-value

problems, on the other hand, uniqueness is expected1 — or at least a necessary property

of any interesting model equation. Moreover, self-similar flow patterns occur naturally in

various reflection experiments.

In self-similar flow, density and velocity are functions of ξ = x/t and η = y/t rather than x,y.

To produce a reflection, we consider the horizontal upstream wall Â and the downstream

1[7, 6] raise doubt about the Cauchy problem for the Euler equations, but at least for potential flow the

author expects uniqueness to hold.
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Figure 3. Self-similar reflection of a straight vertical shock in a convex corner. Different

“?” patterns occur depending on corner angle and other parameters.
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Figure 4. Left: regular reflection. The dotted arc separates a region of constant velocity

(above) from a nontrivial region. Self-similar potential flow changes type from hyperbolic

(above) to parabolic to elliptic across the arc. Right: single Mach reflection.
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Figure 5. Left: transition angles predicted by each criterion (sonic and detachment almost

coincide); right: detail.

wall B̂ (see Figure 3), meeting in the origin and enclosing an angle 180◦−θ. For t < 0 a

vertical incident shock approaches the corner from the left, reaching it at t = 0; for t > 0 it

continues along B̂, while a complex pattern is reflected back from the corner. For regular

reflection, the incident and reflected shock meet in a point~ξ. An observer travelling in the

reflection point will observe a flow expanding at a constant rate, approaching a local RR as

in Figure 1 left as t ↑+∞.

To understand self-similarity intuitively, focus on the corner between the two walls in Figure

3 right. t ↑∞ corresponds to zooming into the corner whereas t ↓ 0 corresponds to zooming

infinitely far away from the corner.

The three transition criteria discussed for steady reflection specify angles θd (detachment),

θs (sonic) and θN (von Neumann), depending on γ and LQ, so that RR occurs for larger θ

whereas IRR occurs for smaller θ. (Here, LQ is the Q region Mach number as seen by an

observer traveling in the intersection point of incident shock and B̂ (= reflection point, in the

RR case); of course an observer stationary in the corner will perceive a different velocity in

the Q region.) Note that θd ≤ θs,θN always. Figure 5 compares the criteria in the case of

monatomic gas (γ = 5/3).

It has also been proposed that the correct criterion may not be the same in steady and self-

similar flow (see below), or that there may be bistable cases where RR and IRR can both

occur (see [16, 19]).

Nevertheless, it seems that there is an overall preference for the sonic criterion in the scien-

tific community, at least for self-similar reflection.

Numerical and physical experiments are hampered by various difficulties and have not been

able to select the correct criterion. For example numerical dissipation or physical viscosity

smear the shocks and cause boundary layers that interact with the reflection pattern and

can cause “spurious Mach stems” [28]. Moreover, θd and θs are only fractions of a degree

apart (see Figure 5 right), a resolution that even sophisticated experiments (e.g. [24]) have
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been unable to reach. To quote [1]: “For this reason it is almost impossible to distinguish

experimentally between the sonic and detachment criteria.”

Constructing exact solutions of most genuinely multi-dimensional flow problems is infea-

sible or restricted to severely simplified equations. Moreover it would be prohibitively

expensive if it could only confirm results that have already been obtained many orders of

magnitude faster by numerical or physical experiments, unless the certainty of mathematical

proof is needed. Regular reflection appears to be the first instance where rigorous analy-

sis might make a genuine contribution by answering a problem that could not be resolved

unambiguously by other techniques.

Results

In this article, using techniques developed in [11], regular reflection is constructed as a self-

similar solution of compressible potential flow, with polytropic (γ-law) gas. While classical

regular/Mach reflection studies vertical incident shocks, we consider the non-vertical cases

too (these may not arise from any t < 0 flow), including cases where θ > π
2

.

Most importantly, for some values of γ and upstream Mach number MI , in particular γ = 5/3

and MI = 1, every θ near θs can be covered. This shows rigorously that criteria stronger

than the sonic criterion are false, at least for potential flow with this choice of parameters.

As discussed above, there is some tendency to believe that regular reflection does not persist

beyond the sonic criterion; ongoing work aims to show this rigorously, at least under mild

assumptions. This would rule out the weaker criteria as well, in particular the detachment

criterion, hence prove that sonic is correct. The problem of weak vs. strong reflection (see

above) would vanish as well.

However, for now the success is qualified: potential flow lacks contact discontinuities, so

after the transition to (say) SMR the flow pattern must be qualitatively different from the

full Euler flow. It is still possible that the two models may have different transition criteria

(however, the author believes that this is not the case).

Although some genuinely multi-dimensional exact solutions have been constructed for

steady Euler flow, self-similar Euler flow is an open and inherently rather difficult prob-

lem. But again, it seems unlikely that numerical or experimental techniques will yield a

clear — let alone universally accepted — answer soon, so rigorous analysis would be very

valuable.

Here is the precise result:

Theorem 1.1. Consider potential flow, as discussed in Section 1. Consider a wall Â =
(−∞,0)×{0} (see Figure 6), a second wall ray B̂ at a clockwise angle 180◦−θ from Â,

and an incident shock Q, at a clockwise angle 180◦−βQ from Â, meeting B̂ in the reflection
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point~ξR. Assume that there is a corresponding reflected shock R in~ξR, emanating down

and left (or vertically down). Define

VI := {(x,y) ∈ R
2 : y > 0, −∞ < x < ycot(βQ)}

VQ := {(x,y) ∈ R
2 : y > 0, ycot(βQ) < x < ycotθ},

V := {(x,y) ∈ R
2 : y > 0, −∞ < x < ycotθ}

(see Figure 7).

1. Assume the sonic criterion holds: LR > 1 in~ξR in the sector below R.

2. Assume that

|~vI ·~nB| ≤ cI (1.1)

3. Envelope condition: of the two2 points on the R shock with Ld = 1, let~ξ
(0)
C be the

one closer to~ξR. Consider shocks with upstream data~vI ,ρI that go from~ξ
(0)
C coun-

terclockwise and satisfy Ld ≤ 1 in every point. Assume that all such shocks reach Â

before meeting B̂ or the circle with center~vI and radius cI .

Then there exists a weak3 solution φ = φ(t,x,y) ∈C0,1([0,∞)×V) of

unsteady potential flow for t > 0,~x ∈V , (1.2)

∇φ ·~n = 0 on ∂V , (1.3)

ρ = ρI , ∇φ =~vI for t = 0,~x ∈VI, (1.4)

ρ = ρQ, ∇φ =~vQ for t = 0,~x ∈VQ. (1.5)

Of course existence by itself merely validates that potential flow has interesting solutions.

In addition, detailed results about the structure of the weak solution can be obtained (see

Remark 2.28); most importantly, the flow patterns are of RR type.

Remark 1.2. By weak solution we mean that

∇φ(0,~x) =~vI for a.e.~x ∈VI (1.6)

∇φ(0,~x) =~vQ for a.e.~x ∈ VQ (1.7)

and
Z

Ω
ρϑt +ρ∇φ ·∇ϑ d~x dt +

Z

VI

ϑ(0,~x)ρId~x +
Z

VQ

ϑ(0,~x)ρQd~x = 0

for all test functions ϑ ∈C∞
c (Ω).

(For φ ∈C0,1(Ω), the velocity ∇φ is a.e. well-defined on {0}×V , but φt and hence ρ may

not be well-defined.)

2see Section 1
3see Remark 1.2



Regular reflection in potential flow 31

Remark 1.3. Condition (1.1) and the envelope condition are merely technical. The envelope

condition is needed in some cases to prove the shock does not vanish (which is never ob-

served in numerics); none of the other estimates requires it. Both conditions can probably

be removed by future research.

Related work on constructing exact solutions

In recent years multi-dimensional compressible inviscid flow has received renewed atten-

tion, after several recent breakthroughs brought the theory of one-dimensional compressible

flow to a satisfactory state [14, 2, 23, 3].

[11] (see also [10, 9]) studies supersonic flow onto a solid wedge. For sufficiently sharp

wedges, the steady solution consists of a straight shock on each side of the wedge, emanat-

ing downstream and separating two constant-state regions. In inviscid models this shock

wave must keep the downstream velocity tangential to the wedge surface (slip condition).

As for regular reflection, there are two different shocks for each (small) wedge angle, a

weak and a strong shock. The weak shock is more commonly observed, but no mathemat-

ical argument was known to favor it prior to [11]. In that article, an exact solution was

constructed for a wedge at rest in stagnant air, accelerated instantaneously to (sufficiently

high) supersonic speed at time 0. The resulting flow pattern is self-similar and has a weak

shock at the wedge tip.

Many of the techniques in [11] are essential in the present article.

The most closely related work, and so far the only other paper that proves global existence of

some nontrivial time-dependent solution of potential flow is [5]: using different techniques,

they construct exact solutions for regular reflection, assuming sufficiently blunt wedges

(θ≈ π
2 ).

Some prior work studies reflection and other problems for simplified models of gas dynam-

ics. [4] consider regular reflection for the unsteady transonic small disturbance equation as

model. [30] studies the same problem for the pressure-gradient system. The monographs

[29, 21] compute various self-similar flows numerically and present some analysis and sim-

plified models.

Potential flow

Here we briefly present derivation and elementary results for potential flow. More informa-

tion can be found in [11].

Consider the isentropic Euler equations of compressible gas dynamics in d space dimen-
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sions:

ρt +∇ · (ρ~v) = 0 (1.8)

(ρ~v)t +
d

∑
i=1

(ρvi~v)xi +∇(p(ρ)) = 0, (1.9)

Hereafter, ∇ denotes the gradient with respect either to the space coordinates~x = (x1,x2, · · · ,xd)
or the similarity coordinates t−1~x. ~v = (v1,v2, · · · ,vd) is the velocity of the gas, ρ the den-

sity, p(ρ) pressure. In this article we consider only polytropic pressure laws (γ-laws) with

γ≥ 1:

p(ρ) =
c2

0ρ0

γ

(
ρ

ρ0

)γ

(1.10)

(here c0 is the sound speed at density ρ0).

For smooth solutions, substituting (1.8) into (1.9) yields the simpler form

~vt +~v ·∇T~v+∇(π(ρ)) = 0. (1.11)

Here π is defined as

π(ρ) = c2
0 ·

{
(ρ/ρ0)

γ−1−1

γ−1 , γ > 1

log(ρ/ρ0), γ = 1.

This π is C∞ in ρ ∈ (0,∞) and γ ∈ [1,∞) and has the property

πρ =
pρ

ρ
.

If we assume irrotationality

vi
j = v

j
i

(where i, j = 1, . . .,d), then the Euler equations are reduced to potential flow:

~v = ∇~xφ

for some scalar potential4 function φ. For smooth flows, substituting this into (1.11) yields,

for i = 1, . . .,d,

0 = φit +∇φi ·∇φ+π(ρ)i =
(
φt +
|∇φ|2

2
+π(ρ)

)

i
.

Thus, for some constant A,

ρ = π−1(A−φt −
|∇φ|2

2
). (1.12)

4We consider simply connected domains; otherwise φ might be multivalued.
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Substituting this into (1.8) yields a single second-order quasilinear hyperbolic equation, the

potential flow equation, for a scalar field φ:

(
ρ(φt, |∇φ|)

)

t
+∇ ·

(
ρ(φt, |∇φ|)∇φ

)
= 0. (1.13)

Henceforth we omit the arguments of ρ. Moreover we eliminate A with the substitution

A← 0, φ(t,~x)← φ(t,~x)− tA

(so that φt ← φt−A). Hence we use

ρ = π−1(−φt −
1

2
|∇φ|2) (1.14)

from now on.

Using c2 = pρ and

(π−1)′ = (πρ)
−1 = (

pρ

ρ
)−1 =

ρ

c2
(1.15)

the equation can also be written in nondivergence form:

φtt +2∇φt ·∇φ+
d

∑
i, j=1

φiφ jφi j−c2∆φ = 0 (1.16)

(1.16) is hyperbolic (as long as c > 0). For polytropic pressure law the local sound speed c

is given by

c2 = c2
0 +(γ−1)(−φt−

1

2
|∇φ|2). (1.17)

Our initial data is self-similar: it is constant along rays emanating from ~x = (0,0). Our

domain V is self-similar too: it is a union of rays emanating from (t,x,y) = (0,0,0). In any

such situation it is expected — and confirmed by numerical results — that the solution is

self-similar as well, i.e. that ρ,~v are constant along rays ~x = t~ξ emanating from the origin.

Self-similarity corresponds to the ansatz

φ(t,~x) := tψ(~ξ), ~ξ := t−1~x. (1.18)

Clearly, φ ∈C0,1(Ω) if and only if ψ ∈C0,1({W). This choice yields

~v(t,~x) = ∇φ(t,~x) = ∇ψ(t−1~x),

ρ(t,~x) = π−1(−φt−
1

2
|∇φ|2) = π−1(−ψ+~ξ ·∇ψ− 1

2
|∇ψ|2).

The expression for ρ can be made more pleasant (and independent of~ξ) by using

χ(~ξ) := ψ(~ξ)− 1

2
|~ξ|2;
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this yields

ρ = π−1(−χ− 1

2
|∇χ|2). (1.19)

∇χ = ∇ψ−~ξ is called pseudo-velocity.

(1.13) then reduces to

∇ · (ρ∇χ)+2ρ = 0 (1.20)

(or +dρ, in d dimensions) which holds in a distributional sense. For smooth solutions we

obtain the non-divergence form

(c2I−∇χ∇χT ) : ∇2χ = (c2−χ2
ξ)χξξ−2χξχηχξη +(c2−χ2

η)χηη = |∇χ|2−2c2 (1.21)

Another convenient form is

(c2I−∇χ∇χT ) : ∇2ψ = (c2−χ2
ξ)ψξξ−2χξχηψξη +(c2−χ2

η)ψηη = 0. (1.22)

Here, (1.17) for polytropic pressure law yields

c2 = c2
0 +(γ−1)(−χ− 1

2
|∇χ|2) (1.23)

Remark 1.4. (1.20) inherits a number of symmetries from (1.8), (1.9):

1. It is invariant under rotation.

2. It is invariant under reflection.

3. It is invariant under translation in ~ξ, which is not as trivial as translation in ~x: it

corresponds to the Galilean transformation ~v←~v +~v0, ~x←~x−~v0t (with constant

~v0 ∈R
d) in (t,~x) coordinates. This is sometimes called change of inertial frame.

(1.21) is a PDE of mixed type. The type is determined by the (local) pseudo-Mach number

L :=
|∇χ|

c
, (1.24)

with 0≤ L < 1 for elliptic (pseudo-subsonic), L = 1 for parabolic (pseudo-sonic), L > 1 for

hyperbolic (pseudo-supersonic) regions.

While velocity~v is motion relative to space coordinates~x, pseudo-velocity

~z := ∇χ

is motion relative to similarity coordinates~ξ at time t = 1.
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The simplest class of solutions of (1.21) are the constant-state solutions: ψ affine in ~ξ,

hence ~v, ρ and c constant. They are elliptic in a circle centered in ~ξ =~v with radius c,

parabolic on the boundary of that circle and hyperbolic outside.

If we study a function called (e.g.) χ̃, then ψ̃, ρ̃, L̃ etc. will refer to the quantities computed

from it as ψ, ρ, L are computed from χ (e.g. ψ̃ = χ̃+ 1
2
|~ξ|2). We will tacitly use this notation

from now on.

Potential flow shocks

Consider a ball U and a simple smooth curve S so that U = Uu∪S∪Ud where Uu,Ud are

open, connected, and S,Uu,Ud disjoint. Consider χ : U →R so that χ = χu,d in Uu,d where

χu,d ∈ C 2(Uu,d).

χ is a weak solution of (1.20) if and only if it is a strong solution in each point of U− and

U+ and if it satisfies the following conditions in each point of S:

χu = χd, (1.25)

~n · (ρu∇χu−ρd∇χd) = 0 (1.26)

Here~n is a normal to S.

(1.25) and (1.26) are the Rankine-Hugoniot conditions for self-similar potential flow shocks.

They do not depend on~ξ or on the shock speed explicitly; these quantities are hidden by

the use of χ rather than ψ. The Rankine-Hugoniot conditions are derived in the same way

as those for the full Euler equations (see [12, Section 3.4.1]).

Note that (1.25) is equivalent to

ψu = ψd. (1.27)

Taking the tangential derivative of (1.25) resp. (1.27) yields

∂χu

∂t
=

∂χd

∂t
, (1.28)

∂ψu

∂t
=

∂ψd

∂t
. (1.29)

The shock relations imply that the tangential velocity is continuous across shocks.

Define (zx
u, z

y
u) :=~zu := ∇χu and (vx

u,v
y
u) :=~vu := ∇ψu. Abbreviate zt

u :=~zu ·~t, zn
u :=~zu ·~n,

and same for v instead of z. Same definitions for d instead of u. We can restate the shock

relations as

ρuzn
u = ρdzn

d, (1.30)

zt
u = zt

d. (1.31)
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Using the last relation, we often write zt without distinction.

The shock speed is σ =~ξ ·~n, where~ξ is any point on the shock. A shock is steady in a point

if its tangent passes through the origin. We can restate (1.30) as

ρuvn
u−ρdvn

d = σ(ρu−ρd)

which is a more familiar form.

We focus on ρu,ρd > 0 from now on, which will be the case in all circumstances. If ρu = ρd

in a point, we say the shock vanishes; in this case zn
d = zn

u in that point, by (1.31). In all

other cases zn
d, zn

u must have equal sign by (1.31); we fix ~n so that zn
d, zn

u > 0. This means

the normal points downstream. The shock is admissible if and only if ρu ≤ ρd which is

equivalent to zn
u ≥ zn

d.

A shock is called pseudo-normal in a point~ξ if zt = 0 there. For~ξ = 0, this means that the

shock is normal (vt = 0), but for~ξ 6= 0 normal and pseudo-normal are not always equivalent.

It is good to keep in mind that for a straight shock, ρd and~vd are constant if ρu and~vu are.

Obviously~zd may vary in this case.

We will need two detailed results.

Proposition 1.5. Consider a fixed point on a shock with upstream density ρu and pseudo-

velocity ~zu held fixed while we vary the normal. Define β := ](~zu,~n). ρd is strictly de-

creasing in |β|, whereas Ld, |~zd| are strictly increasing. cd is strictly decreasing for γ > 1,

constant otherwise. Moreover

(∂β~vd) ·~n = (∂β~zd) ·~n = zt
(∂zn

d

∂zn
u

−1
)

, (1.32)

(∂β~vd) ·~t = (∂β~zd) ·~t = zn
d− zn

u. (1.33)

If~zu = (zx
u,0) with zx

u > 0, then zx
d is increasing in |β|.

Proof. This is [11, Proposition 2.5.1].

Proposition 1.6. Consider a straight shock with vx
u = 0, v

y
u < 0 and downstream normal

~n = (sinβ,−cosβ) through~ξ = (0,η).For every β ∈ (−π
2
, π

2
) there is a unique η = η∗0 ∈R

so that v
y
d

= 0. η∗0 and the corresponding downstream data are analytic functions of β. η∗0
is strictly increasing in |β|.

For the shock passing through (0,η∗0), let~ξ∗L and~ξ∗R be the two points with Ld =
√

1−ε.

These points are analytic functions of β. Ln
u, ρd and zn

u are increasing functions5 of β; vx
d

5All of these are independent of the location along the (straight) shock.
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ψ-normal

direction
vector

~ξ

cu

(Ld < 1)

(mirror image)
Ld = 1

~vu

~zu

expansion
shock

in~zu

Ld = 1

vanishing
shock

Figure 8. Left: through each~ξ farther than cu from~vu there are exactly two straight shocks

(solid, dashed) with Ld = 1, mirror images of each other. The shocks with Ld ≤ 1 are

between them (indicated by arc left of~ξ). The solid lines define the direction field whose

integral curves are “envelopes”. Right: no shock with Ld ≤ 1 can approach ~vu faster (in

counterclockwise direction) than the counterclockwise envelope.

and Ln
d are decreasing functions of β. For β ∈ [0, π

2
), η∗L is a strictly decreasing function of

β with range (η∗
L
,η∗0], where η∗0 is the η∗0 for β = 0, and η∗

L
is some negative constant.

Proof. This is [11, Proposition 2.6.2].

Envelope

Many techniques in this paper are similar to the construction in [11]; Section 4.2 in loc.cit.

is a good overview. However, in [11, Proposition 4.11.1], a lower bound for the shock

strength is obtained by a delicate argument using the density. Although this argument would

reproduce the results of [5] (namely RR existence for θ≈ π
2 ), it cannot prove the main new

contribution of this paper: existence (at least in some cases like γ = 5/3, MI = 1) of RR for

θ≈ θs (with θ > θs), where θs is the smallest θ allowed by the sonic criterion (see Section

1).

For this goal, a new idea is needed: as we will show, the curved portion S of the reflected

shock in Figure 4 left has an elliptic region of potential flow on its right (downstream) side,

hence downstream pseudo-Mach number Ld ≤ 1 everywhere. Such a shock cannot vanish

until it reaches the circle of radius cI around ~vI ; moreover Ld ≤ 1 is a constraint on the

possible shock tangents, so that the shock cannot reach the circle quickly. It is bounded

away from the circle by the envelope:

Definition 1.7. Given constant upstream velocity~vu and sound speed cu. Consider a shock
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through a point ~ξ with |~zu| = |~vu−~ξ| > cu. As shown in Proposition 1.5, Ld is strictly

increasing in |β| where β = ](~zu,~n) ∈ (−π,π] is the counterclockwise angle from~zu to~n.

There are exactly two shock normals so that Ld = 1. They are mirror-images of each other

under reflection across the line with tangent~zu through~ξ (see Figure 8 left). Consider the

one with β > 0; its tangent spans the solid line on Figure 8 left. The tangents for different
~ξ form a direction field. The counterclockwise envelope is defined to be a maximal integral

curve of that direction field (see Figure 8 right).

We can parametrize the envelope (like other smooth shocks) in polar coordinates (r,φ)
centered in ~vu, by a function φ 7→ r∗(φ) (because the shock relations do not admit shocks

with a tangent passing through~vu). The counterclockwise envelope satisfies an ODE of the

form

∂r∗

∂φ
(φ) = − f (r∗(φ)) (1.34)

for some analytic f .

We will not need the fact, but explicit formulas for f can be derived. For example for γ > 1,

f (r) = r

√
√
√
√
√

1− γ+1

γ−1+2(r/cu)−2 ·
(

γ+1

2+(γ−1)(r/cu)2

) 2
γ−1

γ+1

γ−1+2(r/cu)−2 −1
(1.35)

Moreover it can be shown that the envelope always reaches the circle, meeting it in a point

where the envelope is C1, but not more regular, and tangent to the circle; it cannot be

continued beyond that point.

Proposition 1.8. Let some smooth shock be parametrized as φ 7→ r(φ); let the envelope be

parametrized by φ 7→ r∗(φ). Assume that Ld < 1 in every point of the shock. If r(φ0)≥ r∗(φ0)
for some φ0, then r(φ) > r∗(φ) for φ > φ0. If instead Ld > 1 in every point of the shock, then

r(φ) < r∗(φ) for φ > φ0.

Proof. Our discussion above can be restated as follows: Ld < 1 for the shock means −β∗ <

β < β∗ where β∗ is the β for the envelope. Hence

| ∂r

∂φ
|< f (r(φ)).

In particular
∂r

∂φ
>− f (r(φ)).

Since f is smooth, in particular Lipschitz, the invariant region theorem shows that the shock

cannot meet the envelope for φ > φ0.

In Proposition 2.21 we will exploit this fact to bound the curved portion of the reflected

shock away from the downstream wall and to ensure its uniform strength.
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min: 0.626354
incident exists

envelope condition

MI

γ
−

1

10.1

100

10

1

0.1

0.01

Figure 9. For βQ = 0 (vertical incident shocks) and the set of MI,γ enclosed below the

dashed and above the solid line, solutions can be constructed for all θ ∈ (θs,
π
2
].

Sonic criterion

We focus on the classical case of vertical incident shocks. In some cases, Theorem 1.1

allows us to construct a regular reflection pattern like Figure 4 left for every myrefsec-

tion:refl). As θ ↓ θs, the dottedθ > θs near θs, where θs is the smallest θ allowed by the

sonic criterion (see Section parabolic arc in Figure 4 left approaches the reflection point.

To check whether the envelope condition is satisfied for a particular choice of θ and incident

shock, it suffices to find the reflected shock and~ξC on it (see Theorem 1.1) and to integrate

the ODE (1.34) defining the envelope. Although the ODE is trivially separable, the resulting

integral and nonlinear algebraic equation do not have an explicit solution except for special

values of γ (see (1.35)). Numerical integration is needed to check whether the envelope

meets B̂ or the circle with center~vI and radius cI before it meets Â.

In Figure 9, we consider arbitrary γ ∈ [1,∞) and MI ∈ (0,∞) while fixing θ = θs. Values of

γ and MI above the dashed curve do not admit a vertical incident shock with zero velocity in

the Q region (a similar phenomenon occurs in the full Euler equations). Values below both

solid and dashed curve violate the envelope condtion. Values between solid and dashed

curve do have an incident shock as well as a reflected shock that satisfies the envelope

condition.

The smallest possible γ in that feasible region is γ = 1.626354... with MI = 1. In particular

the monatomic gas case γ = 5/3 is covered, whereas γ = 7/5 or γ = 4/3 are not covered.

(However, the latter values are also possible if we allow non-vertical incident shocks.) For
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γ = 5/3, MI = 1 we have θs = 55.4583...◦; for θ = θs the envelope meets Â in the point

(−0.000012...,0), just enough to avoid B̂ and the circle.

While the proof of Theorem 1.1 itself is rigorous, checking the envelope condition is done

numerically here, i.e. not a mathematical proof in the strict sense. However, the shock

relations form a small system of nonlinear algebraic equations and the envelope is defined

by (1.34), a scalar nonlinear ODE which is benign except for a mild singularity as r ↓ 1.

The numerical methods for these types of equations are well-understood and a complete

convergence theory and error analysis is available — which is not at all the case for the

full Euler or potential flow PDE. Another option is to study rigorous proofs in various

asymptotic limits such as MI ↓ 0, γ ↑ ∞. Moreover the envelope condition is most likely

unnecessary since regular reflection up to θ = θs is observed in numerics for many other

values of γ and MI as well. Since we expect that the condition will be eliminated by further

research, it makes little sense to strive for absolute rigour at this point.

2 Construction of the flow

The elliptic region is constructed as follows: we define a function set F by imposing many

constraints on a weighted Hölder space C
2,α
β (weighted to account for loss of regularity in

the corners). An iteration K : F → C
2,α
β is constructed so that its fixed points solve the

PDE and boundary conditions for the elliptic region (see Remark 2.7). F and K depend

on several parameters like γ, collected in a parameter vector λ. To show that K has a fixed

point for all λ, we use Leray-Schauder degree theory.

Most of the effort is spent on showing that K does not have fixed points on ∂F , which im-

plies that K has the same Leray-Schauder degree for all λ. As ∂F is defined by constraints

in the form of inequalities with continuous sides, this is achieved by showing that a fixed

point satisfies the strict version of each inequality (< instead of ≤).

A major technical difficulty are the parabolic arcs (dotted arc in Figure 4 left) where self-

similar potential flow (1.22) degenerates from elliptic to parabolic. This problem has been

solved in [11] (and, by different techniques, in [5]), by modifying the arc to be slightly

elliptic, with boundary condition L2 = 1−ε, and obtaining estimates uniform in ε.

For a particular choice of λ the problem is much simpler (see Figure 18). In that case an

explicit solution can be given and shown to be unique and have nonzero Leray-Schauder

index. This implies that K has nonzero degree, hence at least one fixed point, for every

λ. The fixed point is extended to a solution on the entire domain by adding the hyperbolic

regions and interface shocks. Using the ε-uniform estimates as well as compactness, we

can pass to the limit ε ↓ 0 to obtain a solution of our problem.
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~ξ0
C

~vI

η0
C

~ξ∗C

~ξ∗C

Figure 10. Perturbation from the trivial case of R parallel to the wall.

Parameter set and definitions

Instead of working in the setting of Theorem 1.1, it will be convenient to choose parameters

in a different way.

Choose ρI ,cI > 0. Note that we may fix ρ0 and c0 in the pressure law (1.10) separately;

however, given these constants (and γ), every other c is a function of ρ only (and vice versa).

Let ε ≥ 0 be sufficiently small for the following. Consider a vertical downward velocity

~vI onto a solid wall B (see Figure 10). According to Proposition 1.6, there is exactly one

straight shock with upstream velocity~vu =~vI and sound speed cu = cI so that~vd = 0; that

shock is horizontal. Let η0
C > 0 be its vertical coordinate. Of the two points on that shock

with Ld =
√

1−ε, let~ξ0
C = (ξ0

C ,η0
C) be the right one. By the same proposition, the shock

belongs to a smooth one-parameter family of shocks, each called R shock, parametrized

by η∗C ∈ (0,η0
C], so that v

y
d = 0 and so that~ξ∗C = (ξ∗C ,η∗C) is the right Ld =

√
1−ε point.

Define M
y
I ∈ [−1,0) to be v

y
I /cI in these coordinates. Note that (1.1) rules out M

y
I < −1.

Let~vR =~vd be the downstream velocity of the R shock.

It is not clear whether there is an incident shock Q matching each reflected shock R. In fact

for η∗C = η0
C , the R shock does not even meet B, so clearly there is no RR. However, for the

construction of the elliptic region, a Q shock or reflection pattern are not needed.

To complete the situation of Theorem 1.1, a wall Â is needed. To satisfy the slip boundary

condition (~vI −~ξ) ·~n = 0 on Â, necessarily the extension of Â to a line has to pass through

~vI . We fix Â by choosing~ξAB on B.

Let E be the counterclockwise envelope starting in~ξC . If E meets B before it meets the

circle with center~vI and radius cI (Figure 11 left), let~ξEB be that point. Otherwise (Figure



42 V. Elling

E

R

Â

B

~ξC
E

~ξAB

~ξEB

cI

R

Â

~vI

~vR

~ξAB

B

~ξC

origin

~ξEB

Figure 11. Â is chosen so that (1) E reaches it before B or the dashed circle, and (2) it forms

an angle ≤ 90◦ with R.

Q

~ξA

ξ

η

R

A ~ξAB

S

~ξR

~ξ
(ε)
B

Ω

~vI

~ξ
(ε)
C

~ξ
∗(0)
C~ξ

∗(ε)
C

~vR

B(ε)

P(0)

P∗(ε)

P̂(ε)

Figure 12. To avoid degeneracy, we impose a “slightly elliptic” boundary condition, L2 =

1− ε for ε > 0, on P(ε). The shock S is free, along with the endpoints~ξA and~ξ
(ε)
C which

may slide freely on Â resp. P̂(ε). But for fixed points~ξ
(ε)
C can be shown to be close to~ξ∗(ε),

hence to~ξ∗(0).
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11 right) take the line through~vI and the meeting point of E and circle, and let~ξEB be its

intersection with B. We allow

ξAB ∈ (ξEB,vx
R] (2.1)

(and ηAB = 0 obviously). This constraint ensures that (1) the envelope meets Â first, while

(2) R and A form a sharp or right angle.

Given~ξAB we let B̂ be the part of B right of~ξAB. Â is the half-line upwards starting in~ξAB

whose extension passes through~vI . Let~nA be the unit normal of A pointing left,~nB the unit

normal of B̂ pointing down. Let ~nR be the downstream (hence downwards) unit normal of

the R shock. For each ~n?,~t? is always the corresponding unit tangent in counterclockwise

direction.

Remark 2.1. Every local RR pattern that satisfies the conditions of Theorem 1.1 is covered

by the parameter ranges defined above.

ρI and~vI define a potential ψI for the I region:

ψI(~ξ) =−π(ρI)−
|~vI |2

2
+~vI ·~ξ.

Similar potentials ψR and ψQ (if an incident shock Q exists) are defined by ρR,~vR and

ρQ,~vQ.

Now we use Remark 1.4: invariance under translation. Translation in self-similar coordi-

nates corresponds to a change of inertial frame, i.e. to adding a constant velocity to all~v,~ξ.

Moreover we may rotate by Galilean invariance. This changes Figure 11 to Figure 12 which

has the coordinates in which we originally posed the self-similar reflection problem.

Let P∗(ε) be the circle arc centered in ~vR with radius cR ·
√

1−ε (see Figure 12, where the

coordinates have been changed), passing from ~ξ
(ε)
B on B̂ counterclockwise to ~ξ

∗(ε)
C on R,

excluding the endpoints. (We omit the superscript ε if it is clear from the context.) ~ξ∗C will

be called the expected corner location. Let B(ε) be the part of B̂ from~ξAB to~ξB (excluding

the endpoints).

Take~nR,~nQ to be the downstream unit normals of the shocks R,Q (~nR points towards B̂). Let

~nA,~nB be outer unit normals of Â, B̂, i.e. pointing away from the gas-filled sector V enclosed

by B̂, Â.

We choose an extended arc P̂ that overshoots~ξ∗C by an angle δP̂ > 0, which we choose

continuous in γ,ξAB,η∗C. The particular δP̂ is not important, but it may not depend on ε, and

P̂ may not have a horizontal tangent in Figure 14 coordinates.

P∗, P̂, and later P, are called quasi-parabolic arc (or parabolic arcs, by abuse of terminol-

ogy, or short arcs).
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Parameter set The Definitions 2.2, 2.5 and 2.6 use many constants and other objects that

will be fixed later on. In all of these cases, an upper (or lower) bound for each constant is

found. Whenever we say “for sufficiently small constants” (etc.), we mean that bounds for

them are adjusted. To avoid circularity, it is necessary to specify which bounds may depend

on the values of which other bounds. In the following list, bounds on a constant may only

depend on bounds on preceding constants.

δP̂,CL,Cη,δSB,δCc,δPσ,δPn,δd,δρ,δLb,

CPt ,CvtR,CvnA,CSn,δvtA,δvnB,δo,Cd,ε,CC , rI,α,β. (2.2)

The constants CC , rI,α,β may depend on ε itself, not just on an upper bound. rI may also

depend on ψ. The reader may convince himself that the remainder of the paper does respect

this order.

The parameters γ, η∗C and ξAB used in Leray-Schauder degree arguments will be restricted

to compact sets below so that any constant that can be chosen continuous in them might

as well be taken independent of them. Dependence on other parameters like ρI will not be

pointed out explicitly.

Constants δ? as well as α,β, rI,ε are meant to be small and positive, constants C? are meant

to be large and finite.

Definition 2.2. For the purposes of degree theory we define a restricted parameter set

Λ :=
{

λ = (γ,η∗C,ξAB) : γ ∈ [1,γ], η∗C ∈ [η∗
C
,η∗C],ξAB ∈ [ξ

AB
,ξAB]

}

where it is important that ξAB and vx
R are the values in the coordinates of Figure 10 and

Figure 11; clearly their values are entirely different in any other coordinate system we use.

γ ∈ [1,∞) is an arbitrary constant. Moreover,

η∗C := η0
C−

{

0, γ = 1,

Cη · ε1/2, γ > 1,
(2.3)

and

ξAB := vx
R−

{

0, γ = 1,

Cξ · ε1/2, γ > 1,
(2.4)

where Cξ,Cη (to be determined in Proposition 2.19) do not depend on ε or λ. η∗
C

is a

constant satisfying 0 < η∗
C

< η∗C. Finally, ξ
AB
∈ (ξEB,ξAB] may depend on γ and η∗C.

Proposition 2.3. Λ contains (γ,η∗C,ξAB) = (1,η0
C,vx

R) and is path-connected, for ε suffi-

ciently small (depending on Cη,Cξ) and ξ
AB

sufficiently close to ξEB.

Proof. 1. We note that the interval (ξEB,vx
R] has boundaries that are continuous func-

tions of λ.
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possible Â
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~vI

~vR

~ξEB

~ξT T
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~ξE

~ξ
∗(0)
C

Figure 13. The shaded sector consists of all Â rays that (1) form a sharp angle with R, while

(2) meeting E before E meets B or the circle.

2. The interval is always nonempty: consider the coordinate system and setting of Fig-

ure 11, extended in Figure 13. Consider a line T through~ξ
∗(0)
C that touches the (upper

half of the) circle with center ~vI and radius cI in a point~ξT . T can be considered

a zero-strength shock (velocity~vI , density ρI on both sides), with Ld = 1 in~ξT and

Ld > 1 elsewhere. Hence Proposition 1.8 applies: let φ 7→ r(φ) parametrize the line

segment from~ξ
∗(0)
C to~ξT ; let φ 7→ rE(φ) parametrize E. Then rE(φ) > r(φ) > cI on

the interior of the corresponding φ interval, so the envelope E cannot touch the circle

right of ~ξT . Moreover, since we have assumed that M
y
I ≤ 1 (restriction (1.1)), that

means the circle either meets or intersects B. If E meets B before it meets the circle,

then necessarily it meets the part of B left of the circle first.

On the other hand, the extremal choice ξAB = vx
R for Â corresponds to (a segment

of) the line through~vI and~vR (right side of the shaded sector in Figure 13), which is

perpendicular to R. Its intersection with the circle is necessarily right of~ξT . Thus: if

E meets the circle before it meets B, then ξEB < vx
R necessarily. If E meets B before

the circle, then it must meet it left of the origin, so ξEB < 0 < vx
R. Either way the

interval (ξEB,vx
R] is nonempty.

Threfore the interval (ξ
AB

,vx
R−Cξ · ε1/2] is also nonempty, if ε is sufficiently small

(depending on Cξ) and ξ
AB

sufficiently close to ξEB.

3. Finally, we show that the special λ = (1,η0
C,vx

R) can be connected by paths in Λ to all

other λ: it connects to any (1,η∗C,ξAB) with η∗C ∈ [η∗
C
,η0

C) and ξAB ∈ [ξ
AB

,vx
R]. These

include (1,η0
C−Cη · ε1/2,vx

R−Cξ · ε1/2) which connects to any (γ,η0
C−Cη · ε1/2,vx

R−
Cξε1/2) with γ > 1. This point, in turn, connects to any (γ,η∗C,ξAB) with η∗C ∈ [η∗

C
,η∗C]

and ξAB ∈ [ξ
AB

,ξAB]. Hence Λ is path-connected.
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~ξ
(ε)
B

~ξ
(ε)
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Figure 14. Transformation to “onion” coordinates (σ,η)

Function set and iteration

Definition 2.4. Let U ⊂ Rn open nonempty bounded with ∂U uniformly Lipschitz. Let

F ⊂ ∂U . For k ∈ N0, α ∈ [0,1] and β ∈ (−∞,k + α] we define the weighted Hölder space

C
k,α
β (U,F) as the set of u ∈ C k,α(U−F) so that

‖u‖
C

k,α
β (U,F)

:= sup
r>0

rk+α−β‖u‖C k,α(U−Br(F))

is finite.

Definition 2.5. For sufficiently small δP̂ > 0, there is a function b ∈ C 2(V) with b, |∇b| ≤ 1

so that b = 0 on P̂(0), b > 0 elsewhere, bn = 0 on Â and B̂, and so that b depends continuously

on the parameters λ but is independent of ε. From now on we fix a particular b.

Proof. The construction is straightforward. δP̂ is taken so small that P̂(0) does not meet

Â∪ B̂∪{~ξAB} except in~ξ
(0)
B .

Definition 2.6.

Onion coordinates

Rotate Figure 12 so that B̂ is the positive horizontal axis (see Figure 14 left), then shift

horizontally so that ~vI is vertical (Remark 1.4). Define new coordinates (σ,η) ∈ R
2 (see

Figure 14 right) so that

1. the coordinate change from (ξ,η) to (σ,η) is C ∞ with C ∞ inverse,
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2. B(ε) maps to (0,1)×{0},

3. Â maps to {0}× (0,∞),

4. P̂(ε) maps to {1}× (0, η̂C) (where η̂C is the η coordinate of the upper endpoint of

P̂(ε)),

5. ~ξ
(ε)
B maps to (1,0),

6. ~ξAB maps to (0,0).

We require that the change of coordinates and its inverse depend continuously (in the C ∞

topology) on λ ∈ Λ. The construction is straightforward.

Here and in what follows, we will use the weighted Hölder spaces C
2,α
β (U), as in Definition

2.4. The domain U is either [0,1]2 with F = {(0,0), (1,1)}, or Ω with F = {~ξAB,~ξC} (to be

defined). For the shock parametrization we use U = [0,1] with F = {0,1}, or (in Figure 14

left coordinates) U = [ξA,ξC ] with F = {ξC}; for U = P we use F = {~ξC}, and for U = A

or U = B we take F = {~ξAB}. We omit F as it will be clear from the context. β ∈ (1,2) and

α ∈ (0,β−1] will be determined later. C
2,α
β are Banach spaces so that standard functional

analysis applies. Moreover, C
2,α
β (Ω) is continuously embedded in C1(Ω), so we have C1

regularity in the corners as well, which is crucial.

Free boundary fit

Let F be the set of functions ψ ∈ C
2,α
β ([0,1]2) that satisfy all of the many conditions ex-

plained below. Require

‖ψ‖
C

2,α
β ([0,1]2)

≤CC (ε). (2.5)

The curves of constant σ (isolines) in the (ξ,η) coordinate plane are nowhere horizontal,

since the other coordinate is η. Moreover ψI
η = v

y
I < 0 and ψI

ξ = vx
I = 0, so for all σ ∈ [0,1]

there is a unique point (ξ, s(σ)) on the isoline so that

ψI(ξ, s(σ)) = ψ(σ,1). (2.6)

We define another coordinate transform by first mapping (σ,ζ) ∈ [0,1] to (σ,η) with η =

s(σ)ζ and then mapping to~ξ with the previous coordinate transform.

Let~ξA resp.~ξC be the~ξ coordinates for the (σ,ζ) plane points (0,1) and (1,1). Let S be

the~ξ plane curve for (0,1)×{1} (it is the graph of s, with endpoints~ξA and~ξC). Define P

resp. A resp. Ω to be the image of {1}× (0,1) resp. {0}× (0,1) resp. (0,1)× (0,1).

Require shock-wall separation:

d(S,B)≥ δSB > 0. (2.7)
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(2.7) ensures that the map from (σ,ζ) to~ξ is a well-defined change of coordinates, uni-

formly nondegenerate (depending on δSB and CC ), with C
2,α
β ([0,1]2) resp. C

2,α
β (Ω) regular-

ity. It is clear now that ∂Ω is the union of the disjoint sets S, P, A, B, and {~ξC,~ξB,~ξA,~ξAB}.

Require: corner close to target:

|ηC−η∗C | ≤ ε1/2, (2.8)

We require ε to be so small that~ξC ∈ P̂.

For later use we define η±C := η∗C±ε1/2 and let ξ±C be so that~ξ±C ∈ P̂C.

Corner cone:

sup
~ξ,~ξ′∈Ω

](~ξ−~ξC ,~ξ′−~ξC)≤ π−δCc. (2.9)

(](~x,~y) is the counterclockwise angle from~x to~y.)

Iteration

Here we change to the coordinates of Figure 12 for the remainder of the definition.

Shock strength/density: require that

−χ− 1

2
|∇χ|2 > 0, (2.10)

so that ρ is well-defined (see (1.19)), and require

min
Ω

ρ≥ ρI +δρ. (2.11)

Pseudo-Mach number bound: require

L2 ≤ 1−δLb ·b in Ω, (2.12)

(Note that L is well-defined because by (2.11) ρ > 0, so c > 0.) b = 0 on P̂
(0)
C which has

distance≥ ε
3

(for sufficiently small ε) from Ω, so (2.12) implies

L2 ≤ 1− 1

3
|∇b|L∞δLb · ε≤ 1− 1

3
δLb · ε in Ω, (2.13)

Require: there is6 a function ψ̂ ∈ C
2,α
β (Ω) with the following properties:

6ψ̂ is the product of an iteration step with input ψ. We will ensure in Proposition 2.10 that ψ̂ is unique and

continuously dependent on ψ.
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1. ψ close to ψ̂:

‖ψ− ψ̂‖
C

2,α
β

([0,1]2)
≤ rI(ψ) (2.14)

where rI ∈C(F ; (0,∞)) is a continuous function to be determined later.

2. Right away we require rI to be so small that

−χ̂− 1

2
|∇χ̂|2 > 0, (2.15)

so that in particular ρ̂ is well-defined and positive. Moreover, require

∇ψ̂ 6=~vI , (2.16)

3. We require rI to be so small that (using (2.13))

(
c2

0 +(1− γ)(χ+
1

2
|∇χ̂|2)

)
I−∇χ̂2 > 0, (2.17)

i.e. is a (symmetric) positive definite matrix.

4. Let L = L(ψ, ψ̂) be defined in~ξ coordinates as

((
c2

0 +(1− γ)(χ+
1

2
|∇χ̂|2)

)
I−∇χ̂2

)

: ∇2ψ̂, (2.18)

|∇χ̂|2
2

+
(1−ε)

(
(γ−1)χ+c2

0

)

2+(1−ε)(γ−1)
, (2.19)

(
ρ̂∇χ̂−ρI∇χI

)
· ~vI −∇ψ̂

|~vI−∇ψ̂| , (2.20)

∇ψ̂ ·~nA,∇ψ̂ ·~nB

)

. (2.21)

where the codomain is

Y := C
0,α
β−2

(Ω)×C
1,α
β−1

(S)×C
1,α
β−1

(P)×C
1,α
β−1

(A)×C
1,α
β−1

(B).

(2.20) is well-defined by (2.15) and (2.16). The other components have no singulari-

ties.

Note: ∇ψ ∈ C
1,α
β−1

, so |∇χ|2 ∈ C
1,α
β−1

, so

((
c2

0 +(1− γ)(χ+
1

2
|∇χ̂|2)

)
I−∇χ̂2

)

∈ C
1,α
β−1

↪→ C 0,β−1 ↪→ C 0,α

(α≤ β−1 as required above), and ∇2ψ ∈ C
0,α
β−2

, so (2.18) is ∈ C
0,α
β−2

. In the same way

we check that (2.19), (2.20) and (2.21) are C
1,α
β−1

.

For ψ̂ we use the C
2,α
β (Ω) topology. We pull back ψ̂ and the value of L to (σ,ζ)

coordinates, via the coordinate transform defined by ψ (see above), so that we have a

fixed domain [0,1]2 for all Banach spaces. Then L is a nonlinear smooth map in the

corresponding topologies.

Most importantly: require

L(ψ, ψ̂) = 0. (2.22)
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Other bounds

Require

‖ψ‖C0,1(Ω) ≤CL (2.23)

where CL may not depend on ε.

χt and χn on parabolic arc:

max
P

c−1|∂χ

∂t
| ≤CPt · ε1/2, (2.24)

max
P

c−1 ∂χ

∂n
≤−δPn. (2.25)

We emphasize that δPt ,δPn may depend only on λ, but not on ε (or ψ).

Velocity components:

~v ·~nA ≤CvnA · ε1/2, in Ω, (2.26)

~v ·~tR ≤~vR ·~tR +CvtR · ε1/2, in Ω, (2.27)

~v ·~nB ≤~vI ·~nB−δvnB in Ω (2.28)

and

~v ·~tA ≤~vI ·~tA−δvtA in Ω. (2.29)

Shock normal: Let N ⊂ S1 (unit circle) be the set of~n counterclockwise from~nR to~tA. Then

the shock normal satisfies

sup
S

d(~n,N)≤CSn · ε1/2. (2.30)

Set Σ1 := A, Σ2 := S, Σ3 := P and Σ4 := B. Write the components (2.19), (2.21), (2.20) of

L as

gi(~ξ, χ̂(~ξ),∇χ̂(~ξ)
︸ ︷︷ ︸

=:~p

) (i = 1, . . .,4),

where the~ξ dependence includes the dependence on χ(~ξ) and ∇χ(~ξ).

g2 has some singularities, but not on the set of ~ξ,χ,∇χ so that (2.28) and (2.11) (resp.

(2.15) and (2.16)) are satisfied. That set is simply connected, so we can modify g2 on its
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complement and extend it smoothly to Ω×R×R
2. The modification is chosen to depend

smoothly on λ.

Require uniform obliqueness:

|gi
~p ·~n| ≥ δo|gi

~p| ∀~ξ ∈ Σi. (2.31)

Functional independence in upper corners: for i, j = 1,4 and for i, j = 2,3 set

G :=

[

gi
p1 g

j

p1

gi
p2 g

j

p2

]

,

regard it as a function of~ξ (including the dependence on ∇χ̂(ξ)) and require

‖G‖,‖G−1‖ ≤Cd in Bδd
(~ξC)∩Ω. (2.32)

Let F be the set7 of admissible functions so that all of these conditions are satisfied. Define

F to be the set of admissible functions such that all of these conditions are satisfied with

strict inequalities, i.e. replace ≤,≥ by <,>, “increasing” by “strictly increasing” etc.

[This is the end of Definition 2.6.]

The elliptic problem is solved by iteration; ψ̂ is the new iterate, ψ the old one. L defines

ψ̂, as we show later. As always, the iteration is designed so that its fixed points solve the

problem:

Remark 2.7. If ψ̂ = ψ, then (2.18), (2.20), (2.19), (2.21) and the definition of S yield

(c2I−∇χ2) : ∇2ψ = 0 in Ω,

∇χ ·~n = 0 on A and B,

χI = χ and

(ρ∇χ−ρI ∇χI) ·~n = 0 on S,

L =
√

1−ε on P

(we may take closures by regularity (2.5)).

Remark 2.8. Consider a coordinate system where~ξAB = 0. For any point on A or B, we

can use even reflection of ψ across the corresponding boundary to obtain a new situation

where the point is in the interior. (In ~ξA or ~ξB, we obtain a new situation with a point

at a shock resp. quasi-parabolic arc with an elliptic region on one side.) The boundary

condition χn = ψn = 0 (due to~ξAB = 0), for even reflection of ψ, implies that ψ is C1 across

the boundary; then necessarily it is also C2,α.

7The notation F does not necessarily imply that F is the closure of F .
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For fixed points ψ = ψ̂, standard regularity theory immediately yields that the solution is

locally analytic (even after reflection). The same technique applied to ψ̂ and to solutions

ψ́ of linearized equations (here ψ, ψ̂ and ψ́ are reflected) yields C2,α regularity. (The same

argument applies to S extended by mirror reflection across Â.)

Proposition 2.9. For sufficiently small ε (with bound depending only on CPt ) and rI (de-

pending continuously and only on ψ,δvx):

for all ψ∈F , L(ψ, ψ̂′) is well-defined for ψ̂′ near ψ, and the Fréchet derivative ∂L/∂ψ̂′(ψ,ψ)

(of L with respect to its second argument ψ̂′, evaluated at ψ̂′ = ψ) is a linear isomorphism

of C
2,α
β onto Y .

Proof. The proof is almost identical to [11, Proposition 4.4.6]; the new corner between A,B

is covered by [22, Theorem 1.4] in the same way as the other ones.

Proposition 2.10. rI can be chosen so that ψ̂ is unique and depends continuously on ψ∈ F

(both in the C
2,α
β topology) and λ.

Proof. The proof is exactly the same as for [11, Proposition 4.4.7].

Proposition 2.11. For ε and rI sufficiently small: for all continuous paths t ∈ [0,1] 7→
λ(t) in Λ,

S

t∈(0,1)

(
{t}×Fλ(t)

)
is open and

S

t∈[0,1]

(
{t}×F λ(t)

)
is closed8 in [0,1]×

C
2,α
β ([0,1]2).

Proof. All conditions on ψ in Definition 2.6 are inequalities which can be made scalar by

taking a suitable supremum or infimum. Then their sides are continuous under C
2,α
β ([0,1]2)

changes to ψ which, by Proposition 2.10, means continuous in C
2,α
β ([0,1]2) change to ψ̂.

(Most inequalities need only C 1([0,1]2).)

1. Closedness: consider sequences (tn,ψn) in
S

t∈[0,1]

(
{t}×F λ(t)

)
that converge to a

limit (t,ψ).

Let ψ̂n be associated to ψn as in Definition 2.6. By continuity (Proposition 2.10),

(ψ̂n) converges to a limit ψ̂ as well. By continuity of L in ψ, ψ̂ and λ, we have

Lλ(t)(ψ, ψ̂) = 0 as well.

Let sn be defined by ψn as in (2.6), with s← sn and ψ← ψn. Then by (2.6), (sn)

converges in C
2,α
β [0,1] as well, to a limit s which satisfies (2.6) itself.

Most conditions on ψ are nonstrict inequalities with continuous left- and right-hand

side, so they are still satisfied by ψ. We check the strict inequalities explicitly and in

order:

8We make no statement about F being the closure of F . It certainly contains the closure, but it could be

bigger, for example if one of the inequalities in Definition 2.6 becomes nonstrict in the interior without being

violated.
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(2.10) is implied by (2.11).

(2.15) resp. (2.16) resp. (2.17) are implied by (2.14) resp. (2.28) resp. (2.13), by

choosing rI sufficiently small.

All inequalities are satisfied, so ψ ∈ F .

2. Openness:

same proof, using that all inequalities are strict now, by definition of F , hence pre-

served by sufficiently small perturbations.

Definition 2.12. Define K : F → C
2,α
β ([0,1]2) to map ψ into ψ̂ as given in Definition 2.6,

but pulled back to (σ,ζ) coordinates and the [0,1]2 domain (see Definition 2.6) with the

coordinate transform defined by ψ.

Regularity and compactness

Proposition 2.13. For sufficiently small α ∈ (0,1) and β ∈ (1,2), depending only on Cd ,

δLb · ε, δo, CL, δvx:

1. When parametrized in the coordinates of Figure 10,

‖S‖C0,1 ≤CsL (2.33)

and

‖S‖
C

2,α
β
≤Cs (2.34)

for CsL = CsL(CL,δvx) and Cs = Cs(CC ,δvx); the weight β is with respect to the end-

points~ξA,~ξC.

2. For a fixed point ψ of K :

(a) (2.23) is strict for sufficiently large CL.

(b) (2.5) is strict for sufficiently large CC = CC (Cd,δLb · ε,CL,δo,δvtA,δd).

(c) For K b Ω− P̂−{~ξB,~ξAB} and all k ≥ 0, α′ ∈ (0,1),

‖ψ‖
C k,α′ (K) ≤CCK (2.35)

where CCK = CCK(d,CL,δo,δvtA) is decreasing in d := d(K, P̂∪{~ξAB}) and not

dependent on ε.

(d) ψ is analytic in Ω−{~ξAB,~ξC}; S is analytic except in~ξC .
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3. For sufficiently small rI > 0, depending continuously and only on ψ, there are δα,δβ >

0 so that for all ψ ∈ F ,

‖ψ̂‖
C

2,α+δα
β+δβ

(Ω)
≤CK (2.36)

Here, CK ,δα,δβ depend only on Cd,δLb · ε,δo,CL,δvx,

Proof. The proof is as the one for [11, Proposition 4.5.2], with obvious modifications. The

only additional problem is the corner in~ξAB. This is very easy to treat with [11, Proposition

5.1.1] because of (2.32) and (2.31) for~ξAB. Note that the corner angle in~ξAB is bounded

away from π because of the restrictions on ξAB (see Section 2).

Remark 2.14. (2.36) implies in particular that K is a compact map. ψ ∈ C
2,α
β ([0,1]2) is

mapped continuously into ψ̂ ∈ C
2,α+δα

β+δβ
(Ω). The latter space is compactly embedded in

C
2,α
β (Ω). Pullback to C

2,α
β ([0,1]2) by the σ,ζ coordinates defined by ψ (not ψ̂) may destroy

the extra regularity, but preserves compactness.

Pseudo-Mach number control

Proposition 2.15. For ε and δLb sufficiently small, with bounds depending only on δρ: if

ψ ∈ F is a fixed point of K , then (2.12) is strict and

L2 < 1−ε in Ω−P. (2.37)

Proof.

d(Ω, P̂(0))≥ 1

3
· ε,

for ε small enough. Remember from Definition 2.5 that b = 0 on P̂(0). Therefore:

L2 = 1−ε < 1−‖b‖C0,1 ·d(P(ε), P̂(0))≤ 1−δLb ·b on P
(ε)

,

e.g. for δLb ≤ 1.

On the shock, we may use (2.11) combined with [11, Proposition 3.6.1] to rule out that

L2 + δLb · b has a maximum in a point where L < 1 and L ≥ 1−δLS, with δLS as supplied

by loc.cit. Here δLb has to be chosen so that |δLb∇b| ≤ δLS is satisfied. (Now δLb depends

continuously on δρ as well.)

In addition we can choose δLb so small that δLb · b satisfies the preconditions of Theorem

1 and Theorem 2 in [8] (where it is called b). For Theorem 2 we use that bn = 0 on Â and

on B̂. Let δLΩ be the δ from those theorems (it depends only and continuously on λ). Then

L2 +δLb ·b cannot have a maximum in a point of Ω∪A∪B where L2 ≥ 1−δLΩ .
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Ω

~vI

~vR = (0,0)

R

ξ

η

cR

√
1− ε

P

A

S

~ξAB

~nA

Figure 15. In this frame P is centered in~vR = 0, R is horizontal and~vI is vertical.

In the corner between A,B, due to C1 regularity the boundary conditions imply ∇χ = 0, so

L = 0, so L2 +δLb ·b = δLb ·b < 1 for δLb sufficiently small.

In~ξA we use that the shock is pseudo-normal (by the boundary condition ∇χ ·~nA = 0 which

implies ∇χ ·~t = 0 for the corresponding shock tangent~t since S,A form a right angle), so

Ld = Ln
d which is uniformly bounded above away from 1 by a constant depending on δρ,

since (2.11) implies uniform shock strength.

Assume that (2.12) is not strict (or violated). Then L2 + δLb · b has a maximum ≥ 1 some-

where. For δLb sufficiently small (no new dependencies) that means L2 has a maximum

≥ 1−min{δLΩ,δLS} somewhere. But no matter where in Ω this occurs, it contradicts one

of the cases discussed above. Hence (2.12) is strict.

(2.37) can be shown in the same manner, by taking b = 0 instead, using the actual boundary

condition L =
√

1−ε on P and and considering ε < δLS,δLΩ.

Arc control and corner bounds

The discussion of parabolic arcs is very similar to [11, Sections 4.7 to 4.10]. For the conve-

nience of the reader we restate the results using new notation and point out some differences

in details.

A new choice of coordinates is convenient (see Figure 15): since self-similar potential

flow is invariant under translations, we may translate so that ~vR moves to the origin (all

other velocities ~v and coordinates~ξ have ~vR subtracted), then rotate clockwise until R is

horizontal. In this frame, ~vI is vertical down and P is centered in ~vR = 0. This means ψR

and χR are both constant on P, which simplifies certain calculations.
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In polar coordinates (r,φ) with respect to the origin (center of P), P corresponds to r =

cR ·
√

1−ε.

Proposition 2.16. If CPt < ∞ is sufficiently large, if δPn > 0 is sufficiently small, if ε is

sufficiently small and CPv,CPρ sufficiently large, with bounds depending only on CPt , then

for any fixed point χ of K , (2.24) and (2.25) are strict, and

|ρ−ρR| ≤CPρε1/2 and (2.38)

|~v−~vR| ≤CPvε1/2 on P. (2.39)

Proof. The proof is as for [11, Proposition 4.8.1], with obvious modifications.

If (2.8) is satisfied, but not in its strict version, then η∗C = η+
C or η∗C = η−C (where~ξ± are as

defined in Definition 2.6 after (2.8)). Each of these two cases must be ruled out.

Proposition 2.17. For ε sufficiently small: for any fixed point ψ∈F of K , the lower bound

in (2.8) is strict:

ηC > η−C

Proof. Same as for [11, Proposition 4.10.1].

Proposition 2.18. Consider ηC = η+
C . For sufficiently small ε, there is an a≥ 0 so that

1. ψ+aξ does not have a local minimum (with respect to Ω) at P∪{~ξB}, and

2. a shock through~ξ+
C with upstream data~vI and ρI and tangent (1, a

−v
y
I

) has v
y
d > 0.

Proof. This follows as in Propositions 4.10.2, 4.10.3 and 4.10.5 of [11].

Only the final upper bound requires some adaptation:

Proposition 2.19. Let χ ∈ F be a fixed point of K . For Cη sufficiently large and for ε > 0

sufficiently small, the upper part of (2.8) is strict:

ηC < η+
C .

Proof. Again, consider the coordinates of Figure 15.

By Proposition 2.18, ψ + aξ cannot have a local minimum at P∪{~ξB}. For ηC = η+
C , we

have (ψ + aξ)η = ψη > 0 in~ξC by [11, (4.9.8)] (for sufficiently small ε), so the minimum

cannot be in~ξC either (note that the domain locally contains the ray downward from the

corner).
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On the shock (excluding endpoints): let ξ 7→ s(ξ) be a local parametrization of the shock .

ψ+aξ = ψI +aξ, so

∂t(ψ+aξ) = ∂t(ψI +aξ) =~vI ·~t +
a

(1+ s2
ξ)

1/2
=

v
y
I sξ +a

(1+ s2
ξ)

1/2
.

For a local minimum at the shock we need ∂t(ψ+aξ) = 0, so

sξ =
a

−v
y
I

.

A global minimum, in particular ≤ ψ(~ξC)+ aξC , additionally requires that~ξC (as well as

the rest of the shock) is on or below the tangent through the minimum point, because ψI

and thus ψI + aξ are decreasing in η. By Proposition 2.18, the shock through~ξ+
C with that

tangent has v
y
d > 0 for ηC = η+

C . In the minimum point the tangent has same slope but is

at least as high, so the shock speed is at least as high, so v
y
d = ψη = (ψ + aξ)η there is

at least as high, in particular > 0 too. But that contradicts a minimum (the ray vertically

downwards from any shock point is locally contained in Ω, by (2.30)). Hence ψ+aξ cannot

have a global minimum at the shock.

The equation (2.2.5) yields

(c2I−∇χ2) : ∇2(ψ+aξ) = 0

(aξ is linear), so the classical strong maximum principle rules out a minimum in the interior

(unless ψ + aξ is constant, which means we are looking at the unperturbed solution which

has ηC = η∗C < η+
C ).

On B, the boundary condition ψn = χn = 0 implies (ψ + aξ)n = aξn ≥ 0 (the slope of B in

the frame of Figure 15) is always nonnegative), so the Hopf lemma rules out a minimum of

ψ+aξ at B.

On A the boundary condition χn = 0 yields ψn =~ξ ·~n =~ξAB ·~nA ≥ 0 (see Figure 15). This is

actually ψn > 0, except in the special case where (in the notation of Definition 2.2) ξAB = vx
R

which is allowed only if γ = 1 and η∗C = η0
C: the “unperturbed” case. In that case, the proof

of Proposition 2.26 shows that only the unperturbed solution (Figure 18) can solve the

problem. Its corner is exactly in the expected location, so that ηC = η∗C < η+
C .

Velocity and shock normal control

Proposition 2.20. If CvtR,CvnA are sufficiently large (bounds depending only on CPt ), if CSn

is sufficiently large (bound depending only on CvtR,CvnA), if ε is sufficiently small (bound

depending only on CSn), and if δCc is sufficiently small, then for any fixed point ψ ∈ F of

K , the inequalities (2.27), (2.26), (2.30) and (2.9) are strict. Moreover

|χt| ≥ δχt on S∩Bδd
(~ξC), (2.40)
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η

R

ξξa

~ξ0

S

~vI

~ξA

Figure 16. A maximum of vx requires negative curvature, causing a contradiction

~ξC

~nA

P

S

~tA

B̂

Â

(0,0)

~vI

~vI

Â

B̂

S

P
(0,0)

~vI

Figure 17. Left: mirror-reflect Figure 12 across Â and rotate around the origin. Right:

setting of Figure 14 left.
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for some constants δχt ,δd > 0.

Proof. 1. For (2.27): consider the coordinates of Figure 15 where~tR = (1,0). Let ξ 7→
s(ξ) parametrize S (the shock normal bounds (2.30) show that S is nowhere vertical

in these coordinates,, for sufficiently small ε, bound depending on CSn). Assume that

~v ·~tR = vx attains a positive global maximum (with respect to Ω) in a point~ξ0 at S

(i.e. on the downstream side). Since~vI = (0,v
y
I) with v

y
I < 0, this means nx < 0 in~ξ0

(because ny < 0), i.e. sξ(ξ0) < 0 (see Figure 16).

sξ(ξ0) can be expressed as a continuous function of vx(~ξ0) and~ξ0. The set of possible

~ξ0 is contained in the set of possible shock locations which is pre-compact. Therefore

if vx = CvtR · ε1/2 in~ξ0 ∈ S, then

sξ(ξ0)≤−Cs1 · ε1/2 (2.41)

where Cs1 = Cs1(CvtR) > 0 is uniformly increasing in CvtA.

For a constant-state solution (2.27) is immediate. Otherwise, since S and ψ are ana-

lytic (Proposition 2.13), we can apply [11, Proposition 3.5.1] with ~w = (1,0), which

yields that curvature κ < 0, i.e. sξξ > 0, in~ξ0. Therefore sξ(ξ) < sξ(ξ0) for ξ < ξ0

near ξ0. On the other hand, sξ ≥ 0 in ~ξA since the boundary condition χn = 0 re-

quires the shock to be perpendicular to the wall A; in particular sξ(ξA) > 0 > sξ(ξ0)
by (2.41). (In this choice of coordinates, A is either vertical or has negative slope,

since we require it to form right or sharp angles with R, by choice of ξAB in Section

2.)

Therefore we can pick ξa ∈ (ξA,ξ0) maximal so that sξ(ξa) = sξ(ξ0). Then sξ(ξ) <
sξ(ξ0) for ξ ∈ (ξa,ξ0), so by integration

s(ξa) > s(ξ0)+ sξ(ξ0) · (ξa−ξ0).

But that means the shock tangent in ξa is parallel to the one in ξ0 but higher, so

the shock speed σ :=~ξ ·~n is smaller. By [11, (2.4.19)], that means vn
d is smaller,

whereas vt is the same (parallel tangents). nx < 0, so vx
d is bigger. Contradiction —

we assumed that we have a global maximum of vx in~ξ0.

[11, Propositions 3.3.1 and 3.4.1] rule out local maxima of vx in Ω and at B, where

we use that χ is analytic and that (1,0) is not vertical, i.e. not normal to B.

At A: if A is vertical, then the boundary condition requires vx = ξA < 0; if A is not

vertical, then (1,0) is not normal, so [11, Proposition 3.3.1] applies again.

In~ξAB, the two boundary conditions combine to yield~v =~ξAB, so vx = ξAB < 0.

In~ξA, sξ ≥ 0 (see above) yields vx ≤ 0.

On P we can use (2.39) with vx
R = 0, increasing CvtR to > CPv if necessary (this makes

CvtR depend on CPt as well).

All parts of Ω are covered; (2.27) is strict.
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2. For (2.26): consider the coordinates of Figure 17 left. There,~nA = (1,0), so we need

to show vx =~v ·~nA ≤ CvnA · ε1/2. On A, the boundary condition yields vx = 0. B is

never vertical, so [11, Proposition 3.4.1] rules out extrema of vx at B. [11, Proposition

3.3.1] does not allow extrema in Ω. At P, (2.39) yields vx = vx
R + O(ε1/2); note that

vx
R < 0 in these coordinates. At S, we can use the same curvature argument as for

~v ·~tR, except that we now use sξ ≥ 0 in~ξC rather than~ξA. Altogether we obtain a

contradiction again, if CvnA is sufficiently large, depending only and continuously on

CPt .

3. Consider the coordinates of Figure 15. The slope sξ of some shock passing through a

point~ξ is uniquely determined by (and continuous in)~ξ and vx, with sgnsξ =−sgnvx

(since~vI = (0,v
y
I), v

y
I < 0). The set of possible shock locations~ξ is pre-compact, so

(2.27) implies

sup](~n,~nR) < CSn · ε1/2

where CSn = CSn(CvtR).

Analogously we argue that (2.29) implies

sup](~tA,~n) < CSn · ε1/2,

where CSn = CSn(CvtR,CvnA) now. (2.30) is strict with these choices.

4. These shock normal bounds also imply (2.9) is strict, for δCc > 0 and ε > 0 sufficiently

small(er), with ε bound depending only on CSn.

5. Near each corner the shock normal bound bounds ~n away from the~ξ direction, so

|χI
t | ≥ δχt and therefore (2.40) for some δχt .

Proposition 2.21. 1. If δSB is sufficiently small, then (2.7) is strict.

2. There is a constant δρS > 0 so that

ρd ≥ ρI +δρS at S (2.42)

Proof. 1. Consider the envelope E defined in Section 2. The parameter set Λ (see Def-

inition 2.2) has been chosen so that for any λ ∈ Λ, E passes from~ξ
∗(0)
C to Â without

meeting B̂ or the circle (with radius cI centered in~vI). Since Λ has also been chosen

compact, E is in fact uniformly bounded away from B̂ and the circle.

E starts in~ξ
∗(0)
C ; let E ′ be the counterclockwise envelope (Definition 1.7) starting in

~ξC instead. E,E ′ are solutions of an ODE (1.34), so they depend continuously on

the initial point. Hence for~ξC sufficiently close to~ξ
∗(0)
C , i.e. by (2.8) for sufficiently

small ε (with upper bound depending only on the choice of Λ), E ′ is also uniformly

bounded away from B̂ and the circle.
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Now we can apply the argument displayed in Figure 6 right: |~ξ−~vI | is r in the polar

coordinates used in Section 1. Let E ′ and the shock S be parametrized by φ 7→ rS(φ)

resp. φ 7→ rE′(φ), with φ ∈ [φC,φA], φC corresponding to the ray from ~vI through~ξC

and φA to the ray from~vi containing Â. rS(φC) = rE′(φC) because S and E ′ both pass

through~ξC . By (2.13), Ld < 1 at S. Therefore, Proposition 1.8 yields rS(φ) > rE′(φ)
for all φ > φC. Hence topologically S is separated from B̂ and the circle by E ′, so

it also has uniformly lower bounded distance from them. In particular (2.7) is strict,

for sufficiently small δSB (depending only on the choice of Λ, but not on any other

constant).

2. If S vanishes in some point~ξ, then Ld = Lu = |~ξ−~vI |/cI which — since S has uniform

distance from the circle — is uniformly bounded below away from 1. However, this

contradicts (2.13). The shock cannot vanish; on the contrary, by continuity the shock

has uniformly lower-bounded strength. That implies (2.42), for sufficiently small δρS.

(Again, it depends only on Λ, not on the choice of other constants.)

Proposition 2.22. If δρ and ε are sufficiently small (with bounds depending only on CPt ),

then for any fixed point ψ ∈ F of K , the inequality (2.11) is strict.

Proof. By Proposition 2.13, ψ and hence s are analytic. Thus we may use [11, Proposition

3.2.1] which rules out minima of ρ in Ω and (using Remark 2.8) at A or B.

Consider the coordinates of Figure 12. In~ξA, the first shock condition is

ψ(~ξA) = ψI(~ξA) = −π(ρI)+vx
I

(
ξA−

1

2
vx

I

)
.

(2.29) implies

ψ(~ξAB)≤ ψ(~ξA)+( ξAB
︸︷︷︸

=0

− ξA
︸︷︷︸

<0

)(vx
I −δvtA) =−π(ρI)+δvtAξA−

1

2
(vx

I )
2

︸ ︷︷ ︸

<0

.

So in~ξAB = 0, since ∇χ = 0 by boundary conditions on A,B and C1 regularity:

ρ = π−1(−χ− 1

2
|∇χ|2) = π−1(−ψ) = ρI +δρAB

for some constant δρAB > 0 depending only on the parameters λ; note that π is a strictly

increasing function for any γ≥ 1. We can pick δρ < δρAB so that ρ≤ ρI +δρ is not possible

in~ξAB.

On P we know ρ up to a small constant, by (2.38), so we can choose δρ even smaller so that

ρ≤ ρI +δρ is not possible at P.
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By (2.42), ρ at S is uniformly bounded below away from ρI. Hence, for δρ sufficiently

small, ρ cannot have a global minimum close to ρI at S.

We see that for sufficiently small δρ and ε, depending continuously on CPt (and λ), (2.11)

is strict.

Proposition 2.23. If δvtA, δvnB and ε are sufficiently small (δvtA , δvnB bounds depending

only on δρ,CSn, ε bound depending only on CPt ), and if δCc is sufficiently small, then for any

fixed point ψ ∈ F of K , the inequalities (2.29) and (2.28) are strict.

Proof. Consider the coordinates of Figure 17 right, where~v ·~nB = −vy. (2.11) implies that

the shock is uniformly strong. By (2.30), the shock normal~n is everywhere downwards and

uniformly not horizontal. Thus vy > v
y
I + δvnB at S for sufficiently small δvnB, depending

only on δρ and CSn.

[11, Proposition 3.3.1] rules out local maxima of vy in Ω.

If vy has a local maximum at A, then A must be horizontal ([11, Proposition 3.4.1]), but by

construction it is not.

On B the boundary condition implies 0 = χn = χ2, so vy = ψ2 = ηAB = 0.

At P we can use (2.39) with v
y
R = 0 > v

y
I to obtain vy > v

y
I if ε is small enough (depending

on CPt ).

Altogether we have that (2.28) is strict if δvnB is small enough.

The arguments for (2.29) are analogous, looking at Figure 17 left coordinates instead: the

shock S is nowhere vertical (by (2.30)), so vy > v
y
I +δvtA at S for sufficiently small δvtA . If B

is not horizontal, then the direction (0,1) is not perpendicular to it, so [11, Proposition 3.4.1]

rules out a local vy extremum at B; if B is horizontal, then 0 = χn = χ2, so vy = ψ2 = ηAB = 0

on it. A is always vertical, i.e. never perpendicular to (0,1), so by [11, Proposition 3.4.1]

no vy extremum is possible at it. In~ξAB = 0, the boundary conditions combine to ~v = 0,

so vy = 0 > v
y
I + δvtA if δvtA is small enough. At P we can use (2.39) again to obtain

vy ≥ v
y
R−CPt · ε1/2 > v

y
I (using v

y
R > v

y
I and for ε sufficiently small, with bound depending

only on CPt ). [11, Proposition 3.3.1] rules out interior extrema of vy. Hence (2.29) is strict

if δvtA is small enough.

Fixed points

Proposition 2.24. For δo sufficiently small, with bounds depending only on δρ and CL, for

Cd resp. δd sufficiently large resp. small, with bounds depending only on δρ and CL, and for

ε sufficiently small, with bounds depending only on CPt , CL and δρ:



Regular reflection in potential flow 63

If χ ∈ F is a fixed point of K , then (2.31) and (2.32) are strict.

Proof. Compared to [11, Proposition 4.13.1], the only new case is a corner between two

walls, A and B. The corner angle is bounded away from 0 and π by constants depending

only on the parameters λ. (Note that ξAB in Section 2 has been lower-bounded uniformly

by ξ
AB

in Definition 2.2, so that Â, B̂ are uniformly not parallel.) g~p on A and B is their

respective normal, so (2.32) is obvious.

Proposition 2.25. If the constants in (2.2) in Definition 2.6 are chosen sufficiently small

resp. large: for any λ ∈ Λ, Kλ cannot have fixed points on F λ−Fλ.

Proof. Let χ ∈ F be a fixed point of K . We show that every inequality in the definition of

F is strict, so χ ∈ F .

(2.5) and (2.23) are strict by Proposition 2.13.

(2.7) is strict by Proposition 2.21.

(2.11) is strict by Proposition 2.22.

A fixed point satisfies ψ = ψ̂, so ‖ψ− ψ̂‖= rI(ψ) > 0 cannot be true. (2.14) is strict.

(2.12) strict is provided by Proposition 2.15.

Due to Proposition 2.15, L2 = 1−ε on each point of P, so we are in the situation of Section

2 and [11, Section 4.7 etc]. Proposition 2.16 shows that (2.24) and (2.25) are strict.

(2.26) and (2.27) are strict by Proposition 2.20.

(2.28) and (2.29) are strict by Proposition 2.23.

Propositions 2.17 and 2.19 rule out ηC = η∗C±δ−1ε if δ is small enough, so (2.8) is strict.

(2.9) is strict by Proposition 2.20.

(2.5) yields a trivial upper bound on the density in Ω, hence downstream at the shock.

(2.30) is strict by Proposition 2.20.

Proposition 2.24 shows that (2.31) and (2.32) are strict.

All inequalities are strict, so ψ ∈ F .
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constant

⇒ reflection point ↑ ∞

density,
velocity

θ

Take θ ↑ 90◦

Figure 18. The unperturbed case: a straight vertical shock R. In this case there is no

reflection point and no incident shock.

Existence of fixed points

We determine the Leray-Schauder degree of K on F for a particular choice of parameters λ:

the unperturbed problem (see Figure 18), featuring a straight shock separating two constant-

state regions (η∗C = η0
C, ξAB = vx

R in the coordinates of Definition 2.2), for γ = 1.

Proposition 2.26. For sufficiently small ε:

For γ = 1, η∗C = η∗C and ξAB = vx
R, K has nonzero Leray-Schauder degree.

Proof. We can use reflection across A (Remark 2.8) to obtain the problem of Propositions

4.14.1 and 4.14.3 in [11]. The resulting iteration K is almost the same as in loc.cit., except

for minor differences in the coordinate transform from (σ,ζ) ∈ [0,1]2 (fixed domain) to~ξ
coordinates (see Definition 2.6 as compared to [11, Definition 4.4.3]). The proofs of [11,

Propositions 4.14.1 and 4.14.3] carry over without any change to show that the present

problem has nonzero Leray-Schauder degree.

Proposition 2.27. For sufficiently small resp. large constants in (2.2): K has a fixed point

for all λ ∈ Λ.

Proof. The proof is identical to the one of [11, Proposition 4.15.1], except for the definition

of Λ (Definition 2.2); we use the known Leray-Schauder degree in (γ,η∗C,ξAB) = (1,η0
C,vx

R)

from Proposition 2.26.
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P(ε)

P∗(ε)

S(ε)

Ω

A(ε)

B(ε)

R

Q

Figure 19. The expected and actual parabolic arc (P∗(ε) and P(ε)) differ by curve of length

O(ε1/2) (by (2.8))

Construction of the entire flow

Proof of Theorem 1.1. For all ρI ,cI,MI ∈ (0,∞) and for each choice (in Definition 2.2) of

γ, η∗
C

and ξ
AB

we obtain a separate parameter set Λ. For sufficiently small constants in (2.2),

Proposition 2.27 yields fixed points ψ for all λ ∈Λ. Note that there is no lower bound on ε,

except that α,β etc. may change as ε ↓ 0.

By Definition 2.6, Remark 2.7, Proposition 2.16 and (2.35), the fixed points satisfy

(c2I−∇χ2) : ∇2ψ = 0 in Ω(ε), (2.43)

|ψ−ψR(~ξ∗C)|= O(ε1/2) and (2.44)

|ρ−ρR|= O(ε1/2) and (2.45)

|∇ψ−~vR|= O(ε1/2) on P(ε), (2.46)

χ = χI and (2.47)

(ρ∇χ−ρI ∇χI) ·~n = 0 on S, (2.48)

∇χ ·~n = 0 on A∪B, (2.49)

|~ξC−~ξ
∗(ε)
C |= O(ε1/2) (2.50)
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where the O constants are independent of ε. For regularity, Proposition 2.13 yields

‖ψ‖
C0,1(Ω

(ε)
)
≤C1, (2.51)

‖ψ‖
Ck,α(K∩Ω

(ε)
)
, |S|

Ck,α(K∩S
(ε)

)
≤C2(d) (2.52)

where d := d(K, P̂(ε)∪{~ξAB}) > 0.

for constants C1 and C2(d) independent of ε.

Now consider those parameter vectors λ that arise from the situtation in Theorem 1.1, i.e.

so that there is an incident shock Q meeting R in a local regular reflection. We extend ψ

from above to a function ψ(ε) defined on all of V as shown in Figure 19: set ρ = ρR,~v =~vR

in the region enclosed by R shock, B̂ and P∗(ε); set ρ = ρQ, ~v =~vR,Q in the region right of

the Q shock and ρ = ρI , ~v =~vI in the remaining area. In each of the four regions, ψ(ε) is a

strong solution of self-similar potential flow, so we can multiply the divergence-form PDE

[11, (2.2.3)] with any test function ϑ ∈C∞
c (V) and integrate over all region to obtain a sum

of boundary integrals of the type
Z

M
ρ∇χ ·~n ds

where M are various curves; ∇χ and ρ are limits on one of the sides of M.

The symmetric difference of P(ε) and P∗(ε) has length O(ε1/2) (by (2.50), so since ∇ψ
and ψ are bounded in each region (uniformly in ε, by (2.51)), the boundary integral over

the difference contributes only O(ε1/2). The difference of the integrals on each side of

P∗(ε)∩P(ε) are O(ε1/2) due to (2.45) and (2.46). The integrals over A,B vanish due to (2.49).

Finally, the integrals on each side of S(ε) cancel due to (2.47) and (2.48). Altogether:

Z

V
ρ(ε)∇χ(ε) ·∇ϑ−2ρ(ε)ϑ d~ξ = O(ε1/2). (2.53)

C k,α with k + α > 1 is compactly embedded in C0,1, so by (2.52) with a diagonalization

argument, for every compact K ⊂V −{~ξAB}−P
∗(0)

we can find a sequence (εk) ↓ 0 so that

ψ(εk) converges to ψ(0) in C0,1(K). Moreover ρ(ε) and ∇χ(ε) are bounded on V uniformly in

ε, so we may take ε ↓ 0 in (2.53) to obtain

Z

V
ρ(0)∇χ(0) ·∇ϑ−2ρ(0)ϑ d~ξ = 0. (2.54)

In addition, (2.47) and (2.44) combined with (2.51) show that

ψ(0) ∈C(V) (2.55)

Finally, by construction of ψ(ε),

ρ(0)(s~ξ),~v(0)(s~ξ)→
{

ρI ,~vI , ~ξ ∈VI,

ρQ,~vQ, ~ξ ∈VQ

as s→∞, (2.56)
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i.e. their limits on rays to infinity are exactly as for the initial data in Figure 3. This means

the limit approaches the initial data as t ↓ 0.

(2.54), (2.49), (2.55) and (2.56) show that φ(t,~x) := ψ(0)(t−1~x) defines a solution of (1.2),

(1.3), (1.4) and (1.5).

By taking γ ↑∞, η∗
C
↓ 0 and ξ

AB
↓ ξEB , we obtain a solution for every γ∈ [1,∞), η∗C ∈ [η0

C,0)

and ξAB ∈ (ξEB,vx
R]. (in the cases γ > 1 and η∗C = η0

C , we may use that η∗C approaches η0
C

as ε ↓ 0).

As mentioned (Remark 2.1), this exhausts all cases covered by the conditions of Theorem

1.1. The proof is therefore complete.

Remark 2.28. In addition to mere existence we obtain some structural information in the

proof:

1. The solution has the structure shown in Figure 4 left, with pseudo-Mach number

L > 1 in the I,R,Q regions, L < 1 in the elliptic region Ω.

2. The solution has constant density and velocity in each of the I,R,Q regions.

3. The solution is analytic everywhere except perhaps at P
∗(0)

and in~ξAB and, of course,

the shocks.

4. The curved shock is analytic away from Â and P
∗(0)

and Lipschitz overall.

5. Density and velocity are bounded.

It is expected that density and velocity are at least continuous. However, the methods devel-

oped in [11] yield boundedness everywhere, but continuity only away from P
∗
. Note that

P
∗

can not be a classical shock with smooth data on each side, because the one-sided limit

of L on the hyperbolic side R of P∗ is = 1 everywhere (> 1 is needed for positive shock

strength).

Some additional structural information:

1. The possible (downstream) normals of the curved shock are between~nR and~tA (coun-

terclockwise).

2. The shocks are admissible and do not vanish anywhere.

3. In the elliptic region, vx < vx
I and vy ≥ 0 (in Figure 4 left coordinates).

4. In the elliptic region, the density ρ is greater than ρI .

Additional information can be obtained from the inequalities in Definition 2.6.
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[30] Yuxi Zheng. Two-dimensional regular shock reflection for the pressure gradient sys-

tem of conservation laws. Acta Math. Appl. Sin. Engl. Ser., 22(2):177–210, 2006.


