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GEOMETRIC AND NUMERICAL TECHNIQUES IN OPTIMAL

CONTROL OF TWO AND THREE-BODY PROBLEMS∗

B. BONNARD† , J.-B. CAILLAU‡ , AND G. PICOT§

Abstract. The objective of this article is to present geometric and numerical techniques devel-

oped to study the orbit transfer between Keplerian elliptic orbits in the two-body problem or between

quasi-Keplerian orbits in the Earth-Moon transfer when low propulsion is used. We concentrate our

study on the energy minimization problem. From Pontryagin’s maximum principle, the optimal so-

lution can be found solving the shooting equation for smooth Hamiltonian dynamics. A first step in

the analysis is to find in the Kepler case an analytical solution for the averaged Hamiltonian, which

corresponds to a Riemannian metric. This will allow to compute the solution for the original Kepler

problem, using a numerical continuation method where the smoothness of the path is related to the

conjugate point condition. Similarly, the solution of the Earth-Moon transfer is computed using

geometric and numerical continuation techniques.

1. Introduction. In this article we consider the orbit transfer in the two and
three-body problem, using low propulsion. In the first case, the model is given by
Kepler equation

q̈ = − q

|q|3
+
u

m

where m represents the mass of the satellite, subject to

ṁ = −δ|u|

modelling fuel consumption. The control satisfies the constraint |u| ≤ ε where ε is a
small parameter.

The physical optimal control has to maximize the final mass which leads to

min
u(.)

∫ tf

0

|u|dt

where tf is the fixed transfer time. From Pontryagin maximum principle [28], fixing
the boundary conditions—e.g. a transfer from a low eccentric to a geostationary
orbit—, an optimal solution can be numerically computed using a shooting algorithm.
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This leads to a complicated numerical problem. In [20], the following numerical
scheme is proposed. One computes the optimal solution using the convex homotopy

min
u(.)

∫ tf

0

[λ|u|2 + (1− λ)|u|]dt, λ ∈ [0, 1],

which amounts to regularizing the L1-minimization problem into an L2-problem. This
was the starting point of the use of continuation methods in orbital transfer, when
low propulsion is applied—see also [14] for the use of the continuation method in the
time minimal control problem, where the homotopy parameter is the bound of the
maximal amplitude of the thrust. From the mathematical point of view, the original
dynamics associated with the optimal flow is replaced by another Hamiltonian one,
and a continuation is made to solve the shooting equation.

The first motivation of this article is to present a neat geometric result from [8]:
Neglecting the mass variation, restricting to coplanar transfer (the inclination being
considered as a homotopy parameter) and replacing the L1-problem by an averaged
L2-problem, one can substitute the Hamiltonian vector field defined by the maximum
principle with

H =
1

2n5/3

[
9n2p2

n +
5
2
(1− e2)p2

e +
5− 4e2

2
p2

θ

e2

]
,

where n is the mean motion, e the eccentricity, and θ the angle of the pericenter (the
singularity e = 0 corresponds to circular orbits). Coordinates (n, e, θ) are moreover
orthogonal coordinates for the Riemannian metric associated with H,

g =
dn2

9n
1
3

+
2n5/3

5(1− e2)
de2 +

2n5/3

5− 4e2
dθ2.

Such a metric is isometric to

g = dr2 +
r2

c2
(dϕ2 +G(ϕ)dθ2)

where

r =
2
5
n5/6, ϕ = arcsin e

and

c =
√

2/5, G(ϕ) =
5 sin2(ϕ)

1 + 4 cos2(ϕ)
·

The Hamiltonian flow
−→
H is Liouville integrable and the metric in the above normal

form captures the main properties of the averaged orbital transfer. Indeed, one can
extract from g the following two-dimensional Riemannian metrics:

– g1 = dr2 +r2dψ2 which is associated with the orbital transfer where θ is kept
fixed (this encompasses the case of circular targets). Such a metric is flat and
geodesics are straight lines in suitable coordinates.
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– g2 = dϕ2 +G(ϕ)dθ2 which represents the restriction of the metric to r2 = c2

and describes by homogeneity the orbit transfer in the general case.
A generalization of the results of [31] will allow to compute for the metric g2 the
conjugate and cut loci and to get a global optimality solution for the averaged optimal
control problem. This is the starting point to analyze the original optimal control
problem using a continuation method.

A second motivation of this article is to present some results from geometric con-
trol theory connected to our analysis with adapted numerical codes developed to com-
pute the solutions. First of all, the maximum principle is only a necessary optimality
condition. In order to get sufficient optimality conditions under generic assumptions
one must define the concept of conjugate point, associated with the energy mini-
mization problem. This concept was already introduced in the standard litterature
of calculus of variations [5]. If the Hamiltonian optimal dynamics is described by
a smooth Hamiltonian vector field

−→
H , conjugate points are the image of the singu-

larities of the exponential mapping: expx(0) : p(0) −→ Πx exp tf
−→
H (x(0), p(0)) where

Πx : (x, p) −→ x is the canonical projection. Such points can be numerically com-
puted using the code [12]. An important remark, in view of the use of the (smooth)
continuation method in optimal control is to observe that the shooting equation is
precisely to find p(0) such that expx(0)(p(0)) = x1 where x1 is the terminal condition
and the derivative is generated using the variational equation of

−→
H . This will lead to

convergence results for the smooth continuation method in optimal control, related
to estimates of conjugate points.

The last section is devoted to the Earth-Moon transfer, using low propulsion. The
model is the standard circular restricted model [25] where the two primaries are fixed
in a rotating frame. Up to a normalization the system can be written in Hamiltonian
form,

ẋ =
−→
H0(x) + u1

−→
H1(x) + u2

−→
H2(x)

where x = (q, p) ∈ R4 and the drift
−→
H0 is given by

H0(x) =
1
2
(p2

1 + p2
2) + p1q2 − p2q1 −

1− µ

ρ1
− µ

ρ2
,

q being the position of the spacecraft, ρ1 representing the distance to the Earth with
mass 1−µ located at (−µ, 0), and ρ2 the distance to the Moon with mass µ located at
(1−µ, 0), µ ' 1.2153e−2 being a small parameter. The Hamiltonian fields associated
with the control are given by

Hi(x) = −qi, i = 1, 2,

and the control bound is |u| ≤ ε. The parameter µ is small and this remark was used
by Poincaré to study the dynamics of the free motion described by

−→
H0 by making
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a deformation of the case µ = 0 which corresponds to Kepler equation in rotating
coordinates [25]. Inspired by this approach and using our preliminary geometric
analysis, we propose a simple solution to the Earth-Moon transfer using low propulsion
for the energy minimization problem.

2. Geometric and numerical methods.

2.1. Maximum principle. We consider the energy minimization problem

min
u(.)

∫ tf

0

|u|2dt,

for a smooth control system of the form

ẋ = F0(x(t)) +
m∑

i=1

ui(t)Fi(x(t)) = F (x(t), u(t)), x ∈ X.

The set of admissible controls is the subset U of measurable bounded mappings u(.)
with corresponding trajectory x(.) defined on the whole interval [0, tf ]. Pontryagin
maximum principle [28] tells us that

Proposition 2.1. If (x, u) is an optimal pair on [0, tf ], there exists a non trivial
pair (p0, p), p0 ≤ 0 and p an absolutely continuous adjoint vector valued in T ∗X, such
that on [0, tf ] we have

(1) ẋ =
∂H

∂p
(x, p, u), ṗ = −∂H

∂x
(x, p, u),

and

(2) H(x, p, u) = max
v∈Rm

H(x, p, v)

where H(x, p, u) = p0
∑m

i=1 u
2
i + < p, F (x, u) >.

Definition 2.1. The mapping H from T ∗X × Rm to R is called the pseudo-
Hamiltonian. A triple (x, p, u) solution of (1-2) is called an extremal trajectory.

2.2. Computation of extremals. From the maximization condition (4), one
deduces that ∂H/∂v = 0, and there are two types of extremals:

– Abnormal extremals. They correspond to the situation p0 = 0 and are
implicitely defined by the relations Hi = 0, i = 1, . . . ,m, where Hi =<
p, Fi(x) > are the Hamiltonian lifts.

– Normal extremals. If p0 < 0, it can be normalized to −1/2 by homogeneity.
From ∂H/∂v = 0, one deduces ui = Hi for i = 1, . . . ,m, and plugging such
Hi into H defines a true smooth Hamiltonian

Hn = H0 +
1
2

m∑
i=1

H2
i

whose solutions are the normal extremals.
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2.3. The concept of conjugate point.

Definition 2.2. Let z = (x, p) be a normal reference extremal defined on [0, tf ].
The variational equation

δ̇z(t) = d
−→
Hn(z(t))δz(t)

is called the Jacobi equation. A Jacobi field is a non-trivial solution δz = (δx, δp). It
is said to be vertical at time t if δx(t) = dΠx(z(t))δz(t) = 0 where Πx is the projection
(x, p) 7→ x.

The following standard geometric result is crucial.
Proposition 2.2. Let L0 be the fiber T ∗x0

X and Lt = expt(
−→
Hn)(L0) be its image

by the one-parameter subgroup generated by
−→
Hn. Then Lt is a Lagrangian submanifold

whose tangent space at z(t) is generated by the Jacobi fields which are vertical at t = 0.
Definition 2.3. We fix x0 = x(0) and define for t ∈ [0, tf ] the exponential

mapping

expx0,t(p0) = Πx(z(t, z0))

where z(t, z0), with z0 = (x0, p0), denotes the normal extremal departing from z0 when
t = 0.

Definition 2.4. Let z = (x, p) be the reference normal extremal. The time
tc ∈ [0, tf ] is called conjugate if the mapping expx0,tc

is not an immersion at p(0).
The associated point x(tc) is said to be conjugate to x0. We denote by t1,c the first
conjugate point and by C(x0) the conjugate locus formed by the set of first conjugate
points occuring at time tf when we consider all normal extremals starting from x0.

The conjugate time notion admits the following generalization.
Definition 2.5. Let M1 be a regular submanifold of M , and let us define M⊥

1 =
{(x, p) ∈ T ∗M | x ∈M1, p ⊥ TxM1}. Then tfoc ∈ [0, tf ] is called a focal time if there
exists a Jacobi field J = (δx, δp) such that δx(0) = 0 and J(tfoc) is tangent to M⊥

1 .
Remark 2.1. The concept of conjugate point is related to the necessary and

sufficient optimality conditions, under generic assumptions, see for instance [12].

2.4. Conjugate points and smooth continuation method. Smooth contin-
uation is a general numerical method to solve a system of equations F (x) = 0 where
F : Rn −→ Rn is a smooth mapping, see [1]. The principle is to construct a homo-
topy path h(x, λ) such that h(x, 0) = G(x) and h(x, 1) = F (x) where G(x) is a map
having known zeros, or where the zeros can be easily computed using a Newton type
algorithm. The zeros along the path can be calculated by different methods, the sim-
plest being a discretization 0 = λ0 < λ1 < · · · < λn = 1 of the homotopy parameter
where, at step i+1, the zero computed at step i is used to initialize Newton algorithm.
The approach has to be adapted to optimal control problems: The shooting equation
comes from the projection of a symplectic mapping, the Jacobian can be computed
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using Jacobi fields and one must consider the central extremal fields associated with
the problem (see [13]). A short description of the method is given below in our case
study.

2.4.1. Shooting equation. We consider a family Hλ, λ ∈ [0, 1], of smooth
Hamiltonians on T ∗X associated with normal extremals of an energy minimization
problem. We fix the boundary conditions x0, x1 and the transfer time tf . This leads
to a family expλ

x0,tf
(p0) of exponential mappings. Using the notation Eλ : p0 −→

expλ
x0,tf

(p0), one must solve the shooting equation Eλ(p0) = x1.

Proposition 2.3. For each λ, the shooting equation is of maximal rank if and
only if the point x1 is not conjugate to x0 for the corresponding λ. Moreover, in
this case, the solutions of the shooting equation contain a smooth branch, which can
be parameterized by λ and the derivative E′λ can be generated integrating the Jacobi
equation.

From the above proposition, to ensure convergence of the method one must control

– the distance to the conjugate loci,
– that the branch has is defined on the whole interval [0, 1].

The second point is related to two standard problems in optimal control: Existence
of Lipschitzian minimizers—hence solutions of the maximum principle [22]—, and
compactness of the domain of the exponential mapping. Next we present a nice
geometric situation for which convergence of the method is ensured.

Definition 2.6. Consider the normal extremal field
−→
Hn of an energy minimiza-

tion problem with fixed final time tf . Given an initial condition x0, the separating
locus L(x0) is the set of points where two distinct normal extremal curves intersect
with same cost. The cut point along a normal extremal is the first point where it
ceases to be optimal. The cut locus Cut(x0) is the set of such points when we consider
all extremals initiating from x0 and losing optimality exactly at time tf .

2.4.2. Convergence of the continuation method in the Riemannian case.

We first recall that the Riemannian problem can be, at least locally, reset in the fol-
lowing framework.

Let F1, . . . , Fn be a set of smooth vector fields on a manifold X and assume
that they are linearly independent. One can define a Riemannian metric on X

by asserting that {F1, . . . , Fn} form an orthonormal frame. Introducing the con-
trol system dx(t)/dt =

∑n
i=1 ui(t)Fi(x(t)), the length of the curve x(·) is l(x) =∫ T

0

∑n
i=1(u

2
i (t))

1/2dt. From Maupertuis principle, minimizing length is equivalent to
minimizing the energy

∫ T

0

∑n
i=1 u

2
i (t)dt. There exists only normal extremals and Hn

is given by (1/2)
∑n

i=1H
2
i . Fixing the level set Hn = 1/2 parameterizes trajecto-

ries by arc length. For the energy minimization problem, the transfer time can be
arbitrarily prescribed.

Theorem 2.1. Let gλ, λ ∈ [0, 1], be a smooth family of complete Riemannian
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metrics on X. Let us fix the initial point x0. Denote iλ(x0) the distance from x0 to the
cut locus Cutλ(x0) and by iλ = infx0 iλ(x0) the injectivity radius of the corresponding
metric. Then,

– for length shorter than infλ iλ(x0), the continuation method with initial con-
dition of the shooting equation at x0 converges,

– for length shorter than infλ iλ the continuation method converges for every
initial condition of the shooting equation.

Remark 2.2. In the Riemannian case, the situation is neat. Completeness leads
to existence of smooth normal minimizers, the domain of the exponential mapping is
a sphere, and estimates of the injectivity radius are related to the curvature tensor.
In general, such estimates are a difficult problem and a pragmatic point of view is to
have numerical approximations [12].

3. The energy minimization problem in orbital transfer with low

thrust.

3.1. Preliminaries. Neglecting the mass variation and restricting to the copla-
nar case, the system is represented in Cartesian coordinates by

q̈ = − q

|q|3
+ u

where q = (q1, q2) is the position and x = (q, q̇) ∈ R4 is the state. We denote by
H0(q, q̇) = (1/2)q̇2 − 1/|q| the Hamiltonian of the free motion. We have the following
first integrals:

– C = q ∧ q̇ (momentum),
– L = −q/|q|+ q̇ ∧ C (Laplace integral).

Proposition 3.1. The domain Σe = {(q, q̇) | H < 0, C 6= 0}, called the
elliptic domain, is filled by elliptic orbits and to each orbit (C,L) corresponds a unique
(oriented) ellipse.

To represent the space of ellipses, one introduces the following geometric coordi-
nates:

– the semi-major axis of the ellipse a, related to the semi-latus rectum P by
the relation a = P/

√
1− e2,

– the argument of the pericenter θ,
– the eccentricity e, the eccentricity vector being (ex, ey) = (e cos θ, e sin θ).

To represent the position of the satellite we use the longitude l ∈ S1, while l ∈ R takes
into account the rotation number and is called the cumulated longitude. Observe that
e = 0 corresponds to circular orbits. The control u can be decomposed into moving
frames attached to the satellite, the two standard frames being

– the radial-orthoradial frame {Fr, For} where Fr = (q/|q|) ∂/∂q̇,
– the tangential-normal frame {Ft, Fn} where Ft = (q̇/|q̇|) ∂/∂q̇.
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3.2. Averaging of periodic sub-Riemannian problems. Let X be an n-
dimensional smooth manifold and let Fi(l, x), i = 1, . . . ,m be smooth vector fields
parameterized by l ∈ S1 that set up a constant rank m distribution on X (see also
Remark 3.2). Given a positive pulsation ω on S1 × X relating the time t and the
angle l according to

(3) dl = ω(l, x)dt,

one defines a periodic sub-Riemannianproblem as follows: Given two points x0 and
xf on the manifold, minimize the L2dt control norm of trajectories connecting the
two points and associated with the previous vector fields,

dx
dl

=
m∑

i=1

uiFi(l, x), u ∈ Rm,

min
u(.)

∫ tf

0

|u|2dt =
∫ lf

0

|u|2 dl
ω(l, x)

(here |u|2 =
m∑

i=1

|ui|2).

The total angular length, lf > 0 is fixed, implicitly defining tf through (3).

Pontryagin maximum principle asserts that minimizing trajectories are projection
of Hamiltonian curves on the cotangent bundle (extremals), z = (x, p), such that

dx
dl

=
∂H

∂p
(l, x, p, u),

dp
dl

= −∂H
∂x

(l, x, p, u),

where

H(l, x, p, u) = p0|u|2 +
m∑

i=1

uiHi(l, x, p), Hi = 〈p, Fi(l, x)〉, i = 1, . . . ,m,

is the Hamiltonian parameterized by l ∈ S1, u ∈ Rm, and a non-positive constant
p0. We restrict the analysis to the normal case, p0 < 0, and pass to affine coordi-
nates in (p0, p) setting p0 = −1/2. Pontryagin maximization condition that, almost
everywhere along an extremal,

H(l, z(l), u(l)) = max
v∈Rm

H(l, z(l), v),

implies that the control is given by the dynamic feedback

(4) u(l, z) = ω(l, x)(H1, . . . ,Hm)(l, z),

and that z is an integral curve of the maximized Hamiltonian

Hn(l, z) =
ω(l, x)

2

m∑
i=1

H2
i (l, z).
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We are interested in the behaviour of solutions for large angular length, so we set ε =
1/lf as the small parameter and renormalize the problem in the following manner—
typical of systems with two time scales.

In contrast to l which is the fast time, define the slow time s = εl in [0, 1], and
renormalize variables on the cotangent bundle by

x̃ = x, p̃ = p/ε.

Lemma 3.1. In the renormalized variables,

(5)
dz̃
ds

=
−→
Hn(s/ε, z̃).

Proof. Obvious since Hn(l, x, ·) is quadratic in the adjoint state p.
For fixed z, Hn(·, z) is a smooth function on S1 and can be expanded into its

Fourier series. In particular, one can define its first coefficient or average,

H(z) =
1
2π

∫ 2π

0

Hn(l, z) dl.

Since taking symplectic vector field and averaging readily commute, it is well known
[2, 21] that H trajectories are good approximations of those of Hn as ε goes to zero.

Theorem 3.1. Given any initial condition, the solution z̃ε of (5) converges
uniformly on [0, 1] towards the solution z of the averaged Hamiltonian.

Remark 3.1. The same rate of convergence holds for the cost which can be added
as a new state in the augmented system. But as the integrand depends on the fast
variable l through the pulsation ω, there is a priori no higher order approximation of
the performance index [4, 16].

As for Hn(s/ε, z) which converges to H in the large space of Schwartz distribu-
tions,1 one can only expect weak convergence on the control uε of the original problem
on [0, 1/ε]. We address two questions: First, can we describe the fast oscillating con-
trol by means of Fourier series with slowly varying coefficients and, secondly, what is
the asymptotic behaviour of ‖uε‖∞ when ε → 0? The importance of such an esti-
mate relies on the fact that one has in practice to estimate lf so as to meet a given
requirement on the L∞-norm of the control.

We first note that the average system provides a sub-Riemannian approximation
of the original one.

Proposition 3.2. The averaged Hamiltonian is a nonnegative quadratic form in
the adjoint. If constant, its rank is not less than m, and H can locally be written as
a sum of squares, thus defining a sub-Riemannian (Riemannian if k = n) problem.

Proof. Clearly, H(x, ·) remains quadratic nonnegative in p by linearity and posi-
tivity of the integral and

kerH(x, ·) =
⋂

l∈S1

kerHn(l, x, ·)

1Topological dual of the space of smooth compactly supported functions on the real line.
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so that, if constant, the rank k is at least equal to m. In this case, the quadratic form
can always be decomposed into a sum of k squares in a chart by taking the square
root of the associated symmetric nonnegative matrix.

Remark 3.2. (i) The increase in the rank is related to the generation of Lie
brackets of the following system with drift: Set x̂ = (l, x) and define

F̂0(x̂) = ω(x̂)
∂

∂l
, F̂i(x̂) = ω(x̂)Fi(x̂), i = 1, . . . ,m.

The fast oscillations (with respect to l) of the control in

dx̂
dt

= F̂0(x̂) +
m∑

i=1

uiF̂i(x̂)

generate new directions, namely

(adjF̂0)F̂i, j ≥ 0, i = 1, . . . ,m,

a natural requirement being that the distribution {F̂0, F̂1, . . . , F̂m} on the augmented
space S1 × X be bracket generating. This is equivalent to the bracket condition on
S1 ×X for the distribution {∂/∂l, F1, . . . , Fm}.
(ii) The assumption of rank constancy is sufficient to get a decomposition into a
smooth sum of squares [3]. That the assumption is crucial is illustrated by the fact
that it cannot be removed, even in the analytical category. Eigenvalues (and associated
projectors) are indeed analytic functions on the set of matrices in the neighbourhoud
of a simple (hence diagonalizable) endomorphism [23, Theorem II.5.16]. Avoiding
semi-simple eigenvalues is necessary as is clear considering[

x1 x2

x2 −x1

]

whose eigenvalues are not differentiable at (0, 0). But even in the simple symmetric
nonnegative analytic case, existence of a differentiable square root matrix may fail as
illustrated by

(6)

[
x2

1 + x2
2 0

0 1

]
.

To get a positive result with non constant rank, one must actually restrict to the sym-
metric nonnegative case with analytic dependence on one real variable only. Eigen-
values and eigenvectors are then analytic on the real line [Ibid., Theorem II.6.1 and
§II.6.2], and nonnegativeness ensures analyticity of square roots of the eigenvalues.
(iii) In the case of periodic sub-Riemannian systems, the loss of regularity may orig-
inate in averaging. The analytical distribution on S1 ×R2

F1(l, x) =
√

2(x1 cos l + x2 sin l)
∂

∂x1
, F2(l, x) =

∂

∂x2
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has quadratic form [
2(x1 cos l + x2 sin l)2 0

0 1

]

whose averaged is (6) which does not even define a differentiable sub-Riemannian
system on R2.
(iv) A much stronger requirement is the existence of a change of coordinates on X

(inducing a symplectic transformation on the cotangent) so that the averaged quadratic
form be diagonal.

For a given z ∈ T ∗X, let

u(l, z) =
∑
k∈Z

ck(z)ek(l), ek(l) = eikl,

denote the Fourier series of the control (4). One has the following convergence result.
Proposition 3.3. For any positive ε, the normal optimal control is

uε(l) = ε
∑
k∈Z

ck ◦ z̃ε(εl) ek(l)

and the series converges pointwisely. Moreover, for any k ∈ Z,

ck ◦ z̃ε → ck ◦ z uniformly on [0, 1] as ε→ 0+

where the sub-Riemannian extremal z depends only on the boundary conditions x0,
xf on X.

Proof. For l ∈ [0, lf ],

uε(l) = u(l, x̃ε(εl), εp̃ε(εl))

= εu(l, x̃ε(εl), p̃ε(εl))

= ε
∑
k∈Z

ck(z̃ε(εl)) ek(l)

thanks to the pointwise convergence of the Fourier series at l for z = z̃ε(l). For any
k ∈ Z,

ck(z) =
1
2π

∫ 2π

0

u(l, z)ek(l)dl

and the dependence on z is continuous since the integrand is bounded in a compact
neighbourhood of the image of z.

Let us finally denote λ(l, x) the biggest (positive) eigenvalue of the nonnegative
quadratic form in p

|u(l, x, p)|2 = ω2(l, x)
m∑

i=1

H2
i (l, z) = 2ω(l, x)Hn(l, z),
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and define

λ(x) = max
l∈S1

λ(l, x).

As a supremum of continuous functions, x 7→ λ(x) is only lower semi-continous and
we must assume the existence of a continous upper bound in the subsequent result.

Proposition 3.4. Let σ be a continuous function such that σ2 dominates λ in
a neighbourhood of x. Then

lim sup
ε→0+

‖uε‖∞
ε

≤ ‖σ ◦ x · |p|‖∞.

Proof. On [0, lf ], one has

|uε(l)|2 = ε2|u(l, z̃ε(εl))|2

≤ ε2σ2 ◦ x̃ε(εl) · |p̃ε(εl)|2,

so the result holds since the square root of the right hand side converges uniformly to
σ ◦ x · |p| as ε goes to zero by continuity of σ.

3.3. Computations in Kepler case. Using the neat geometric coordinates of
§3.1 on the three dimensional space of ellipses, we get

Hn(l, z) =
ω(l, x)

2
(H2

1 +H2
2 )(l, z), u(l, z) = ω(l, x)(H1,H2)(l, z),

(7) |u(l, z)|2 = ω2(l, x)(H2
1 +H2

2 )(l, z),

with

F1(l, x) =
P 2

W 2

(
sin l

∂

∂ex
− cos l

∂

∂ey

)
,

F2(l, x) =
P 2

W 2

(
2P
W

∂

∂P

+(cos l +
ex + cos l

W
)
∂

∂ex
+ (sin l +

ey + sin l
W

)
∂

∂ey

)
,

and

ω(l, x) =
W 2

P 3/2
, W = 1 + ex cos l + ey sin l.

Introducing mean motion, n = a−3/2, and true anomaly, τ = l − θ, one gets

F1(l, x) =
(1− e2)2

n4/3W 2

(
−3ne sin τ

1− e2
∂

∂n
+ sin τ

∂

∂e
− cos τ

1
e

∂

∂θ

)
,(8)

F2(l, x) =
(1− e2)2

n4/3W 2

(
− 3nW

1− e2
∂

∂n
+ (cos τ +

e+ cos τ
W

)
∂

∂e

+ (sin τ +
sin τ
W

)
1
e

∂

∂θ

)
,(9)
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with

W = 1 + e cos τ.

As a result, the computation of Fourier series of Hn (or u) are performed with respect
to τ rather than l so, as θ only appears through τ ,

Hn(l, z) =
∑
k∈Z

ck(n, e, p)ek(l − θ) =
∑
k∈Z

ck(z)ek(l),

and coefficients verify

ck(z) = ck(n, e, p)ek(θ).

Proposition 3.5. The adjoint pθ is a linear first integral of H.
Proof. According to the previous remark, θ is cyclic in the averaged Hamiltonian.

The remarkable feature of the set (n, e, θ) of coordinates is the following [7, 18, 19].
Proposition 3.6. The averaged Hamiltonian is Riemannian and orthogonal in

(n, e, θ) coordinates,

H(z) =
1

2n5/3

[
9n2p2

n +
5
2
(1− e2)p2

e +
5− 4e2

2
p2

θ

e2

]
.

Fourier coefficients of the control are obviously obtained from (8-9), noting that
Lemma 3.2. One has

e+ cos τ
W

= −z − 2
√

1− e2

e

∑
k≥1

zk cos kτ,
sin τ
W

= −2
e

∑
k≥1

zk sin kτ,

where z = −e/(1 +
√

1− e2) is the only pole in the open unit disk of W = 1 + e cos τ .
We finally provide a continuous upper bound of the eigenvalues of the quadratic

form associated with the control norm, allowing us to estimate precisely ‖uε‖∞ as
ε→ 0+.

Proposition 3.7. Eigenvalues of the quadratic form (7) are uniformly dominated
by

σ2(n, e) =
4(1− e2)
n2/3

[
(1 + e)2

n4/3
+ 1

]
+

e

n2/3

[
e+

√
1− e2

]
.

Proof. Since we have a rank two distribution (8-9) of vector fields (parameterized
by l ∈ S1) on the three-dimensional manifold X, a simple computation shows that
the maximum eigenvalue is

λ(l, x) =
ω2(l, x)

2

[
F 2

1 + F 2
2 +

√
(F 2

1 − F 2
2 )2 + 4(F1|F2)2

]
(l, x),

hence the result.
The resulting estimate provided by Proposition 3.4 depends only on the geodesic

connecting the two prescribed points on the manifold. Complete quadrature for these
geodesics are computed in the next section.
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3.4. Analysis of the averaged system. The main step in the analysis is to
use further normalizations to obtain a geometric interpretation.

Proposition 3.8. In the elliptic domain, we set

r =
2
5
n5/6, ϕ = arcsin e,

and the metric is isometric to

g = dr2 +
r2

c2
(dϕ2 +G(ϕ)dθ2)

with

c =
√

2/5 and G(ϕ) =
5 sin2 ϕ

1 + 4 cos2 ϕ
·

Geometric interpretation.. This normal form captures the main properties of the
averaged orbital transfer. Indeed, we extract from g two Riemannian metrics in
dimension two

g1 = dr2 + r2dψ2

with ψ = ϕ/c which is associated with orbital transfer where θ is kept fixed, and also

g2 = dϕ2 +G(ϕ)dθ2

which represents the restriction to r2 = c2.

3.4.1. Analysis of g1. When pθ vanishes, θ is constant. The corresponding
extremals are geodesics of the Riemannian problem in dimension two defined by dθ =
0. We extend the elliptic domain to the meridian half-planes all isometric to

Σ0 = {n > 0, e ∈]− 1,+1[}.

In polar coordinates (r, ψ), Σ0 is defined by {r > 0, ψ ∈] − π/(2c), π/(2c)[}. This
extension allows to go through the singularity corresponding to circular orbits. Geo-
metrically, this describes transfers where the angle of the pericenter is kept fixed and
pθ = 0 corresponds to the transversality condition. Such a policy is clearly associated
with steering the system towards circular orbits where the angle θ of the pericenter
is not prescribed. An important physical subcase is the geostationary final orbit.

In the domain Σ0, the metric g1 = dr2 + r2dψ2 is a polar metric isometric to the
flat metric dx2 + dz2 if we set x = r sinψ and z = r cosψ.
We deduce the following proposition.

Proposition 3.9. The extremals of the averaged coplanar transfer in Σ0 are
straight lines in suitable coordinates, namely

x =
23/2

5
n5/6 sin(c−1arcsin e), z =

23/2

5
n5/6 cos(c−1arcsin e)
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Fig. 1. Geodesics of the metric g1 in (n, ex) and flat coordinates.

with c =
√

2/5. Since c < 1, the domain is not convex and the metric g1 is not
complete.

Proof. The axis ex = 0 corresponds to circular orbits. Among the extremals, we
have two types (see Fig. 1): complete curves of type 1, and non-complete curves of
type 2 that meet the boundary of the domain. The domain is not geodesically convex
and in subdomain II, the existence theorem fails. For each initial condition, there
exists a separatrix S which corresponds to a segment line in the orbital coordinates
which is meeting n = 0 in finite time. Its length gives the bound for a sphere to be
compact.

In order to complete the analysis of g and to understand the role of g2, we present
now the integration algorithm.

3.4.2. Integrability of the extremal flow. The integrability property is a
consequence of the normal form only,

g = dr2 + r2(dϕ2 +G(ϕ)dθ2),

and the associated Hamiltonian is decomposed into

H =
1
2
p2

r +
1
r2
H ′, H ′ =

1
2
(p2

ϕ +
p2

θ

G(ϕ)
).

Lemma 3.3. The Hamiltonian vector field
−→
H admits three independent first in-

tegrals in involution, H, H ′, pθ, and is Liouville integrable.
To get a complete parameterization, we proceed as follows. We use the (n, e, θ)

coordinates and write

H =
1

4n5/3
[18n2p2

n +H ′′]

with

H ′′ = 5(1− e2)p2
e +

5− 4e2

e2
p2

θ.
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Lemma 3.4. Let s = n5/3 then s(t) is a polynomial of degree 2, s(t) = c1t
2 +

ṡ(0)t+ s(0) with s(0) = n5/3(0), ṡ(0) = 15n(0)pn(0) and c1 = 25H/2.

Lemma 3.5. Let dT = dt/4n5/3. If H ′′(0) 6= 0, then

T (t) =
1

2
√
|∆|

[arctanL(s)]t0

where L(t) = (2at+ b)/
√
|∆|, a = c1, b = ṡ(0) and ∆ = −25H ′′(0)/2 is the discrimi-

nant of s(t).

This allows to make the integration. Indeed if H ′′ = 0, pe = pθ = 0 and the
trajectories are straight lines (the line S in Fig. 1). Otherwise, we observe that
n5/3(t) is known and depends only upon n(0), pn(0) and H which can be fixed to 1/2
by parameterizing by arc length. Hence, it is sufficient to integrate the flow associated
with H ′′ using the parameter dT = dt

4n5/3 where T is given by the previous lemma.
Let H ′′ = c23 and pθ = c2. Using pe = ė/10(1− e2), we obtain

ė2 =
20(1− e2)

e2
[c3e2 − (5− 4e2)c22].

To integrate, we set w = 1− e2 for e ∈]0, 1[, so the equation takes the form

dw
dT

= Q(w)

where

Q(w) = 80w[(c23 − c22)− (c23 + 4c22)w]

with positive discriminant. Hence the solution is

w =
1
2
c23 − c22
c23 + 4c22

[
1 + sin(

4√
5

√
c23 + 4c22 )T +K

]
,

K being a constant. We deduce that

θ(T ) = θ(0) + 2c2
∫ T

0

1 + 4w(s)
1− w(s)

ds

where θ(0) can be set to 0 by symmetry. To conclude, we must integrate (1 +
4w(s))/(1−w(s)) with w = K1(1+sinx) and x = (4s/

√
5)

√
c23 + 4c22 +K. Therefore,

we must evaluate an integral of the form∫
A+B sinx
C +D sinx

dx·

More precisely, the formula is∫
A+B sinx
C +D sinx

dx =
B

D
x+AD −BC

∫
dx

C +D sinx
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with ∫
dx

C +D sinx
=

2√
C2 −D2

arctan
(
C tan(x/2) +D√

C2 −D2

)
and C2 −D2 > 0. The previous lemmas and computations give

Proposition 3.10. For H ′′ 6= 0, the solutions of
−→
H can be computed using

elementary functions and

n(t) =
[
25
2
Ht2 + 15n(0)pn(0)t+ n5/3(0)

]3/5

,

e(t) =
√

1−K1(1 + sinK2(t)),

θ(t) = θ(0) +
pθ

2|pθ|
K3

[
−4x+

10
K3

arctan
(1−K1) tan(x/2)−K1

K3

]K2(t)

K

,

with

K = arcsin
(

1− e(0)2

K1
− 1

)
, K1 =

1
2
H ′′(0)− p2

θ

H ′′(0) + 4p2
θ

,

K2(t) =
4√
5

(
T (t)

√
H ′′(0) + 4p2

θ +K

)
, K3 =

√
5p2

θ

H ′′(0) + 4p2
θ

·

For H ′′ = 0, they are straight lines.
Remark 3.3. The above formulas give the complete solution of the associated

Hamilton-Jacobi Equation.

3.4.3. Geometric properties of g2. The previous integration algorithm shows
that the extremals of this metric describe the evolution of the angular variables θ and
ϕ parameterized by dT = dt/r(t)2 where r(t)2 is a second order polynomial whose
coefficients depend only upon the energy level H fixed to 1/2, r(0) and pr(0). We
now give some basic properties of g2.

Lemma 3.6. The metric g2 can be extended to an analytic metric on the whole
sphere S2, where θ and ϕ are spherical coordinates with two polar singularities at
ϕ = 0 or π corresponding to e = 0, whereas the equator corresponds to e = 1; θ is an
angle of revolution. The meridians are projections on S2 of the extremals of g1.

Lemma 3.7. The two transformations (ϕ, θ) 7→ (ϕ,−θ) and (ϕ, θ) 7→ (π − ϕ, θ)
are isometry of g2. This induces the following symmetries for the extremal flow:

– if pθ 7→ −pθ then we have two extremals of same length symmetric with respect
to the meridian θ = 0,

– if pϕ 7→ −pϕ then we have two extremals of same length intersecting on the
antipodal parallel, ϕ = π − ϕ(0).

Such properties (illustrated on Fig. 3.4.3) are shared by the following one-parame-
ter family of metrics.
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Fig. 2. Action of the symmetry group on the extremals.

Metrics induced by the flat metric on oblate ellipsoid of revolution.. We consider
the flat metric of R3, g = dx2 + dy2 + dz2, restricted to the ellipsoid defined by

x = sinϕ cos θ, y = sinϕ sin θ, z = µ cosϕ

where µ ∈]0, 1[. A simple computation leads to

Eµ(ϕ)dϕ2 + sin2 ϕ dθ2

for the restricted metric, where Eµ(ϕ) = µ2 + (1− µ2) cos2 ϕ, and we can write

g2 =
1

Eµ(ϕ)
(Eµ(ϕ)dϕ2 + sin2 ϕdθ2)

where µ = 1/
√

5. We deduce the following lemma.
Lemma 3.8. The metric g2 is conformal to the flat metric restricted to an oblate

ellipsoid of revolution with parameter µ = 1/
√

5.

3.4.4. A global optimality result with application to orbital transfer.

In this section, we consider an analytic metric on R+ × S2

g = dr2 + (dϕ2 +G(ϕ)dθ2)

and let H be the associated Hamiltonian. We fix the parameterization to arc length
by restricting to the level set H = 1/2. Let x1, x2 be two extremal curves starting
from the same initial point x0 and intersecting at some positive t. We get the relations

r1(t) = r2(t), ϕ1(t) = ϕ2(t), θ1(t) = θ2(t),

and from Lemma 3.4, we deduce that
Lemma 3.9. Both extremals x1 and x2 share the same pr(0) and for each t,

r1(t) = r2(t).
If we consider now the integral curves of H ′ where H = (1/2)p2

r +H ′/r2 on the
fixed induced level and parameterize these curves using dT = dt/r2, we deduce the
following characterization.
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Proposition 3.11. The following conditions are necessary and sufficient to
characterize extremals of H ′ 6= 0 intersecting with same length

ϕ1(T ) = ϕ2(T ) and θ1(T ) = θ2(T )

together with the compatibility condition

T =
∫ t

0

dt
r2(t)

=
[

2√
∆

arctanL(t)
]t

t=0

.

Theorem 3.2. A necessary global optimality condition for an analytic metric on
R+ × S1 normalized to

g = dr2 + r2(dϕ2 +G(ϕ)dθ2)

is that the injectivity radius be greater than or equal to π on the sphere r = 1, the
bound being reached by the flat metric in spherical coordinates.

Proof. We observe that in the flat case, the compatibility condition cannot be
satisfied. Moreover, the injectivity radius on S2 is π corresponding to the half-length
of a great circle. For the analytic metric on S2 under consideration, the injectivity
radius is the length of the conjugate point at minimum distance or the half-length of a
closed geodesic [17]. The conjugate point is, in addition, a limit point of the separating
line. Hence, if the injectivity radius is smaller than π, we have two minimizers for the
restriction of the metric on S2 which intersects with a length smaller than π. We shall
show that it corresponds to a projection of two extremals x1 and x2 which intersect
with same length.

For such extremals r(0) = 1, we set pr(0) = ε, H = 1/2 and we get

2H ′ = p2
ϕ(0) +

p2
θ(0)

G(ϕ(0))
= λ2(ε), λ(ε) =

√
1− ε2.

If t1 is the injectivity radius on the level set H ′ = 1/2, for H ′ = λ2(ε)/2 and pr(0) = ε,
it is rescaled to T1 = t1/λ(ε). The compatibility relation for T = T1 then gives

T1 = arctan
t+ ε

λ(ε)
− arctan

ε

λ(ε)
·

Clearly, the maximum of the right member is π, taking ε < 0, |ε| → 1. Hence, it can
be satisfied since t1 < π. The flat case shows that it is the sharpest bound. By
homogeneity, we deduce the following corollary.

Corollary 3.1. If the metric is normalized to dr2 + (r2/c2)(dϕ2 + G(ϕ)dθ2),
then the bound for the injectivity radius on r2 = c2 is cπ.

3.4.5. Riemannian curvature and injectivity radius in orbital trans-

fer. Using standard formulæ from Riemannian geometry [17], we have the following
proposition.
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Proposition 3.12. Let g be a smooth metric of the form dr2+r2(dϕ2+G(ϕ)dθ2).
The only non-zero component of the Riemann tensor is

R2323 = r2
[
−G

′′(ϕ)
2

−G(ϕ) +
G′(ϕ)2

4G(ϕ)

]
which takes the form R2323 = −r2F (F ′′ + F ) if we set G(ϕ) = F 2(ϕ). We have
therefore R2323 = 0 if and only if F (ϕ) = A sin(ϕ + ϕ0) which is induced by the flat
case in spherical coordinates.

Hence, the main non-zero sectional curvature of the metric is

K =
R2323

| ∂
∂θ ∧

∂
∂ϕ |2

and computing this term in the case of orbital transfer, we get:
Lemma 3.10. The sectional curvature in the plane (ϕ, θ) is given by

K =
(1− 24 cos2 ϕ− 16 cos4 ϕ)

r2(1 + 4 cos2 ϕ)2

and K → 0 as r → +∞.
Proposition 3.13. The Gauss curvature of the metric of g2 = dϕ2 + G(ϕ)dθ2

with G(ϕ) = (sin2 ϕ)/(1 + 4 cos2 ϕ) is

K =
5(1− 8 cos2 ϕ)
(1 + 4 cos2 ϕ)2

·

Theorem 3.3. The Gauss curvature of g2 is negative near the poles and max-
imum at the equator. The injectivity radius is π/

√
5 and is reached by the shortest

conjugate point along the equator.
Proof. Clearly K is maximum and equal to five along the equator which is an

extremal solution. Hence a direct computation gives that the shortest conjugate point
is on the equator with length π/

√
5. It corresponds to the injectivity radius if the half-

length of a shortest periodic extremal is greater than π/
√

5. Simple closed extremals
are computed in [8] using the integrability property and a simple reasoning gives that
the shortest corresponds to meridians whose length is 2π. Hence the result is proved.

Corollary 3.2. Since π/
√

5 < π
√

2/5, the necessary optimality condition of
Theorem 3.3 is not satisfied in orbital transfer for the extension of the metric to
R+ × S2.

3.4.6. Cut locus on S2 and global optimality results in orbital transfer.

From the previous section, the computation of the injectivity radius for the metric
on S2 is not sufficient to conclude about global optimality. A more complete analysis
is necessary to evaluate the cut locus. This analysis requires numerical simulations.
The main results are [8, 11]:
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Fig. 3. Conjugate and cut loci in averaged orbital transfer.

Proposition 3.14. For the metric g2 on S2, they are exactly five simple closed
geodesics modulo rotations around the poles, the shortest being meridians with length
2π, the longest the equator with length 2π

√
5.

Theorem 3.4. Except for poles, the conjugate locus is a deformation of a stan-
dard astroid with axial symmetry and two cusps located on the antipodal parallel. With
the exception of poles, the cut locus is a simple segment, located on the antipodal par-
allel, with axial symmetry, and whose extremities are cusps points of the conjugate
locus. For a pole, the cut locus is reduced to the antipodal pole.

Proof. The proof is made by direct analysis of the extremal curves. The main
problem is to prove that the separating line is given by points on the antipodal parallel
where, because of the isometry ϕ → π − ϕ, two extremals curves with same length
intersect. This property cannot occur before. The results are represented Fig. 3.

Geometric interpretation and comments.. The metric is conformal to the restric-
tion of the flat metric to an oblate ellipsoid of revolution. For such a metric, the cut
locus is known since Jacobi and is similar to the one represented on Fig. 3. It is a
remarkable property that there is no bifurcation of the cut locus when the metric is
deformed by the factor Eµ(ϕ) In orbital transfer for instance, the Gauss curvature is
not positive. On S2, relations between the conjugate and cut loci allow to deduce the
cut locus from the conjugate locus.2 The conjugate locus can also easily be computed
using the code [12]. It can also be deduced by inspecting the extremal flow only, the
conjugate locus being an envelope.

Finally, we observe that in order to have intersecting minimizers, we must cross
the equator ϕ = π, that is e = 1. The same is true for conjugate points. Hence we
deduce

Theorem 3.5. Conjugate loci and separating lines of the averaged Kepler metric
are always empty in the spaces of ellipses where e ∈ [0, 1[.

2For instance, a domain bounded by two intersecting minimizing curves must contain a conjugate

point.
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3.5. The averaged system in the tangential case. An interesting question
is to analyze if the averaged system in the tangential case where the control is oriented
along Ft retains similar properties [10]. The first step is to compute the corresponding
averaged system.

Proposition 3.15. If the control is oriented along Ft only, the averaged Hamil-
tonian associated with energy minimization is

Ht =
1

2n5/3

[
9n2p2

n +
4(1− e2)3/2

1 +
√

1− e2
p2

e +
4(1− e2)

1 +
√

1− e2
p2

θ

e2

]
and corresponds to the Riemannian metric

gt =
dn2

9n1/3
+
n5/3

4

[
1 +

√
1− e2

(1− e2)3/2
de2 +

1 +
√

1− e2

(1− e2)
e2dθ2

]
where (n, e, θ) remain orthogonal coordinates.

3.5.1. Construction of the normal form. We proceed as in Section 3.4 and
set

r =
2
5
n5/6, e = sinϕ

√
1 + cos2 ϕ .

The metric becomes

gt = dr2 +
r2

c2
(dϕ2 +G(ϕ)dθ2), c =

2
5
< 1,

and

G(ϕ) = sin2 ϕ

(
1− (1/2) sin2 ϕ

1− sin2 ϕ

)2

.

Hence the normal form is similar to the full control case. As before, we introduce the
metrics

g1 = dr2 + r2dψ2, ψ = ϕ/c,

and

g2 = dϕ2 +G(ϕ)dθ2.

The main difference with the full control case will concern the singularities of the
function G.

3.5.2. Metrics g1 and g2. The metric g1 corresponds again to transfer to
circular orbits and is the polar form of the flat metric dx2 + dz2, if x = r sinψ and
z = r cosψ.

The normal form reveals the same homogeneity property between the full control
and the tangential case, so the metric g2 can be used to make a similar optimal-
ity analysis, evaluating the conjugate and cut locus. But the metric g2 cannot be
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interpreted as a smooth metric on S2. This can be seen by computing the Gauss
curvature.

Proposition 3.16. The Gauss curvature of g2 is given by

K =
(3 + cos2 ϕ)(cos2 ϕ− 2)

(1 + cos2 ϕ) cos2 ϕ
·

In particular K → −∞ when ϕ → π/2, and since K < 0, the conjugate locus of any
point is empty.

Nevertheless, the extremals can be smoothly extended through the singular boun-
dary of the domain, the equator ϕ = π/2.

3.5.3. Integration of the extremal flow. The algorithm based on the normal
form is similar to the bi-input case, but we compare the respective transcendence.
The Hamiltonian is written

H =
1

4n5/3
[18n2p2

n +H ′′]

where H ′′ now takes the form

H ′′ =
8(1− e2)3/2

1 +
√

1− e2
p2

e +
8(1− e2)

1 +
√

1− e2
p2

θ

e2
·

We set H ′′ = c23, pθ = c2, and from

pe = 4n5/3 (1 +
√

1− e2)e
16(1− e2)3/2

we obtain (
dw
dT

)2

=
Q(w)

(1 + w)2

where w =
√

1− e2, T is as in the bi-input case, and Q is the fourth-order polynomial

Q(w) = 32w[c23(1− w2)(1 + w)− 8c22w
2].

Hence, the integration requires the computation of the elliptic integral∫
dw(1 + w)√

Q(w)

which has an additional complexity. It is related to the pole of order 2 of the metric
at the equator. See [9, 15] for both aspects.

3.5.4. Conclusion in both cases. The previous analysis shows that the full
control case and the tangential one admit a uniform representation in coordinates
(θ, ϕ). In particular, it allows to make a continuation between the respective Hamil-
tonians, i.e., between the respective functions G. A correction has to be made between
orbit elements e which are respectively defined by

e = sinϕ versus e = sinϕ
√

1 + cos2 ϕ.
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Fig. 4. Extremal flow of g2 in the full control and tangential cases, in the (θ, ϕ)-coordinates,

starting from ϕ = π/6.

The flows in the two cases are presented on Fig. 4 and reveal the similar structure.
The conjugate locus is reached after having crossed the equator. On Fig. 5 and 6
we present a first continuation result, in the tangential case, showing the convergence
of the method from the averaged to the non averaged trajectory for specific transfer
orbits.
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Fig. 5. Computation by continuation of the non-averaged solution. The averaged trajectories

are clearly nice approximations of the optimal ones of the original system. Hence, convergence of the

underlying shooting method to compute the non-averaged minimizing trajectory is easily obtained.

3.6. Conjugate and cut loci on a two-sphere of revolution. The problem
of computing the conjugate and cut loci in orbital transfer is connected to a very old
geometric problem which goes back to Jacobi and is briefly introduced next.

Definition 3.1. The two-sphere S2 endowed with a smooth metric of the form
dϕ2 +G(ϕ)dθ2 in spherical coordinates is called two-sphere of revolution.

Many of them can be realized as Riemannian surfaces of revolution embedded
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Fig. 6. Trajectory of a non-averaged solution for ε = 1e−2 with (e(0), n(0)) = (7.5e−1, 5e−1)

and (e(tf ), n(tf )) = (5e − 2, 3e − 1). Dashed ellipses are averaged ellipses and provide a good

approximation of the motion.

in R3 by rotating on a smooth curve homeomorphic to a half-circle. The classical
examples are the following:

– Round sphere S2. It is constructed restricting the Euclidian metric to S2 and
given by dϕ2 + sin2(ϕ)dθ2.

– Oblate ellipsoid of revolution O(µ). If we restrict the Euclidian metric to the
surface

x = sinϕ cos θ, y = sinϕ sin θ, z = µ cosϕ,

with µ < 1, the metric is (1− (1− µ2) sin2 ϕ)dϕ2 + sin2(ϕ)dθ2 which can be
set in the form dϕ2 +G(ϕ)dθ2 using a quadrature.

We recall some basic properties on the ellipsoid of revolution.

Proposition 3.17. On an oblate ellipsoid of revolution,

– the Gauss curvature is monotone increasing from the North pole to the equa-
tor,

– the cut locus of a point which is not a pole is a subarc of the antipodal parallel,
– the conjugate locus of a point which is not a pole has a standard astroid shape

with four cusps.

The simple structure of the cut locus is a consequence of [31].

Theorem 3.6. Let dϕ2 +G(ϕ)dθ2 be a metric on a two-sphere of revolution. We
assume:

– The transformation ϕ −→ π − ϕ is an isometry i.e. G(π − ϕ) = G(ϕ),
– The Gauss curvature K is monotone non decreasing along a meridian from

the North pole to the equator.
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Then, the cut locus of a point not a pole is a simple branch located on the antipodal
parallel.

Application. Let gλ be the family of analytic metrics on S2 defined by

gλ = dϕ2 +Gλ(ϕ)dθ2, Gλ(ϕ) =
(1 + λ)2 sin2 ϕ

(1 + λ cos2 ϕ)
, λ ≥ 0.

The Gauss curvature is given by

Kλ = − 1√
G

∂2
√
G

∂2ϕ
=

(1 + λ)(1− 2λ cos2 ϕ)
(1 + λ cos2 ϕ)2

·

Hence if 0 < λ ≤ 2, then Kλ is monotone non decreasing from the North pole to the
equator and the previous theorem asserts that the one parameter family has a cut
locus reduced to a simple branch for λ ∈]0, 2].

If λ > 2 the Gaussian curvature Kλ is not monotone and the result cannot be
applied. In particular the orbit transfer with full control corresponds to λ = 4, while
at the limit case λ = +∞ a singularity appears. The Riemannian metric has a pole
at the equator, the situation being similar to the one occuring when the thrust is only
tangential. Hence Theorem 3.6 has to be refined to deal with such situations. The
final result is coming from [9].

We consider a metric of the form g = ϕ2 +G(ϕ)dθ2 where G′ is non zero on ]0, π
2 [

and G(π − ϕ) = G(ϕ).

Definition 3.2. The first return mapping to the equator is the map

∆θ : pθ ∈]0,
√
G(π/2)[7→ ∆θ(pθ)

that is the θ-variation of the extremal parameterized by arc length and associated with
the adjoint vector component pθ. The extremal flow is called tame if the first return
mapping is monotone non-increasing for pθ ∈]0,

√
G(π/2)[.

Theorem 3.7. In the tame case, the cut locus of a point different from a pole is a
subset of the antipodal parallel. If moreover ∆θ′(pθ) < 0 < ∆θ′′(pθ) on ]0,

√
G(π/2)[,

then the conjugate locus of such a point has exactly four cusps.

Remark 3.4. This result can be extended to the singular case where the metric
has poles at the equator.

4. Energy minimization in the Earth-Moon space mission with low

thrust.

4.1. The N-body problem. In this section, we follow mainly [25] (see also [27]
and [32]). ConsiderN point massesm1, . . . ,mN moving in a Galilean reference system
R3 where the only forces acting are their mutual attractions. If q = (q1, . . . , qN ) ∈
R3N is the state and p = (p1, . . . , pN ) is the momentum vector, the equations of
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motion are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q

where the Hamiltonian is

H =
N∑

i=1

|pi|2

2mi
− U, U(q) =

N∑
1≤i<j≤N

Gmimj

|qi − qj |
·

A subcase is the coplanar situation where the N masses are in a plane R2. In this
case the Galilean reference frame can be replaced by a rotating frame defined by

K =

[
0 1
−1 0

]
, exp(ωtK) =

[
cosωt sinωt
− sinωt cosωt

]
,

and introducing a set of coordinates which uniformly rotates with frequency ω, one
defines the symplectic transformation

ui = exp(ωtK)qi, vi = exp(ωtK).

A standard computation gives the Hamiltonian of the N -body problem in rotating
coordinates,

H =
N∑

i=1

|v|2

2mi
−

N∑
i=1

wtuiKvi −
N∑

1≤i<j≤N

Gmimj

|qi − qj |
·

In particular, the Kepler problem in rotating coordinates up to a normalization has
the following Hamiltonian

H =
|p|2

2
− tqKp− 1

|q|
·

4.2. The circular restricted 3-body problem in Jacobi coordinates. The
following representation of the Earth-Moon problem fits in the so-called circular re-
stricted 3-body problem. In the rotating frame, the Earth which is the biggest primary
planet with mass 1 − µ is located at (−µ, 0) while the Moon with mass µ is located
at (1 − µ, 0) (the small parameter being µ ' 1.2153e − 2). We note z = x + iy the
position of the spacecraft, and ρ1, ρ2 the distances to the primaries,

ρ1 =
√

(x+ µ)2 + y2,

ρ2 =
√

(x− 1 + µ)2 + y2.

The equation of motion is

z̈ + 2iż − z = −(1− µ)
z + µ

ρ3
1

− µ
z − 1 + µ

ρ3
2
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that is

ẍ− 2ẏ − x =
∂V

∂x
, ÿ + 2ẋ− y =

∂V

∂y
,

where −V is the potential of the system defined by

V =
1− µ

ρ3
1

+
µ

ρ3
2

·

The system can be written using Hamiltonian formalism setting

q1 = x, q2 = y, p1 = ẋ− y, q2 = ẏ + x,

and the Hamiltonian describing the motion writes

H0(q1, q2, p1, p2) =
1
2
(p2

1 + p2
2) + p1q2 − p2q1 −

1− µ

ρ1
− µ

ρ2
·

4.3. Jacobi integral, Hill regions and equilibrium points. The Jacobi
integral using Hamiltonian formalism is simply the Hamiltonian H0 which gives

H0(x, y, ẋ− y, ẏ + x) =
ẋ2 + ẏ2

2
− Ω(x, y)

where

Ω(x, y) =
1
2
(x2 + y2) +

1− µ

ρ1
+
µ

ρ2
·

Solutions are confined on the level set

ẋ2 + ẏ2

2
− Ω(x, y) = h, h constant.

The Hill domain for the value h is the region where the motion can occur, that is
{(x, y) ∈ R2 | Ω(x, y) + h ≥ 0}.

The equilibrium points of the problem are well known. They split into two dif-
ferent types:

– Euler points. They are the collinear points denoted L1, L2 and L3 located on
the line y = 0 defined by the primaries. For the Earth-Moon problem they
are given by

x1 ' −1.0051, x2 ' 8.369e− 1, x3 ' 1.1557.

– Lagrange points. The two points L4 and L5 form with the two primaries an
equilateral triangle.

Some important information about stability of the equilibrium points are provided by
the eigenvalues of the linearized system. The linearized matrix evaluated at points L1,
L2 or L3 admits two real eigenvalues, one being strictly positive, and two imaginary
ones. The collinear points are consequently not stable. In particular, the eigenvalues
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of the linearized matrix evaluated at L2 with µ = 1.2153e − 2 are approximately
±2.931837 and ±2.334248i. When it is evaluated at L4 or L5, the linearized matrix
has two imaginary eigenvalues since µ < µ1 = (1/2)(1 −

√
69/9) in the Earth-Moon

system. Points L4 and L5 are thus stable according to Arnold stability theorem [25].
See also [24]for a review of mission design techniques using the equilibrium points.

4.4. The continuation method. The mathematical continuation method in
the restricted circular problem is omnipresent in Poincaré’s work, in particular for
the continuation of circular orbits [26]. Geometrically, it is simply a continuation of
trajectories of Kepler problem into trajectories of the 3-body problem. It amounts
to considering µ as a small parameter—the limit case µ = 0 being Kepler problem in
the rotating frame—writing

H0 =
|p|2

2
− tqKp− 1

|q|
+ o(µ).

The approximation for µ is valid, a neighbourhood of the primaries being excluded.
In the Earth-Moon problem, since µ is very small, the Kepler problem is a good
approximation of the motion in a large neighbourhood of the Earth.

4.4.1. The control problem. The control system in the rotating frame is de-
duced from the previous model and can be written in Hamiltonian form

dx
dt

=
−→
H 0(x) + u1

−→
H 1(x) + u2

−→
H 2(x)

where x = (q, p),
−→
H 0 is the free motion and

−→
H 1,

−→
H 2 are given by

−→
H i = −qi, i =1,2.

As for the Kepler problem, the mass variation of the satellite can be introduced in
the model dividing ui by m(t) and adding the equation ṁ = −δ|u|. Again, it will
be not taken into account here. Moreover we still restrict our analysis to the energy
minimization problem with fixed final time tf and control valued in R2. The physical
problem which is to maximize the final mass can be analyzed using a continuation
method. Preliminary results in the minimum time case are given in [15].

A lunar mission using low propulsion called SMART-1 was realized by ESA and
the practical details of the mission—in particular the description of the trajectory—
are reported in [29, 30]. We present a trajectory analysis based on our geometric
and numerical techniques. For simplicity, we have fixed the boundary conditions to
circular orbits, the one around the Earth corresponding to the geostationary one. But
everything can be applied to other boundary conditions, for instance those described
in the report status of the SMART-1 mission. A trajectory comparison is discussed
in the final section (see also [6]).

Our analysis is based on a numerical continuation, including second-order opti-
mality check, where µ is the parameter of the continuation. The averaged system is
finally applied to get an approximate energy minimizing trajectory for the phase of
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the mission that starts from the circular Earth orbit and aims at a quasi-elliptic orbit
where the apogee is about 338000 Kilometers. In the restricted problem approxima-
tion, the effect of the inclination (around 30 degrees in phase two of the mission) is
not modelled here.

4.4.2. Numerical continuation for the Earth-L2 transfer. As a first ap-
proach we choose to simulate the Earth-L2 transfer in the restricted 3-body problem.
Indeed, in the limit case µ = 0, the Moon and the point L2 are identical. Moreover,
in the Earth-Moon system, the point L2 and the Moon are very close. As a result, the
first phase of an Earth-Moon transfer is comparable to an Earth-L2 transfer. Solving
the shooting function associated with the Earth-L2 transfer is consequently useful to
provide a good approximation of the solution of the Earth-Moon transfer shooting
function.

Using a circular orbit around the Earth for the geostationary one, we set as initial
condition x0 = (1 − µ + 1.099e − 1, 0, 0, 2.8792). The point L2 is located on (xL2 , 0)
with xL2 solution of the equation

x− (1− µ)(x+ µ)
ρ3
1

− µ(x− 1 + µ)
ρ3
2

= 0.

Since we want to reach L2 with a zero speed, we fix the target xf = (xL2 , 0, 0, 0).
By making the parameter µ vary from zero, one builds up a family (Sµ)µ of shooting
functions which connects the Kepler and the 3-body problem. The numerical con-
tinuation method can be applied to deduce low thrust extremal trajectories of the
Earth-L2 transfer from the Kepler ones.

In accordance with the report status of ESA, we fix the transfer time to 121
time units of the restricted 3-body problem, which approximately corresponds to the
transfer time from the Earth to the point L2 during the SMART-1 mission (about
17 months). In addition, we consider a constant spacecraft mass of 350 Kilograms,
see [29, 30]. Setting µ = 0, we compute an extremal using the shooting method,
then increase µ up to 1.2153e − 2 with a discrete continuation. At each step, the
first conjugate time along the extremal is computed to ensure convergence of the
continuation method. The Euclidian norm of the extremal control is plotted Fig. 14
to draw a comparison between the control bound and the maximum thrust allowed
by electro-ionic engines. Figs. 7 to 14 present the computed spacecraft trajectories in
both rotating and fixed frames, as well as the first conjugate time and the norm of
the control along trajectories in Kepler and Earth-Moon systems.

The numerical continuation method, considering µ as a small parameter, leads to
deduce an extremal trajectory of the energy minimization Earth-L2 transfer problem
from one corresponding to the Kepler case, in accordance with Poincaré’s work. The
second order optimality condition check ensure that the computed extremals are lo-
cally energy minimizing in L∞([0, tf ]). We also note that in both cases µ = 0 and
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Fig. 7. Earth-L2 trajectory in the rotating frame, µ = 0.
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Fig. 8. Earth-L2 trajectory in the fixed frame, µ = 0.

µ = 1.2153e− 2, the maximum value reached by the norm of the extremal control is
inferior to the bound |u| ≤ 8e−2 of the SMART-1 electro-ionic engine (7.3e−2 New-
tons), while transfer times are comparable.
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Fig. 9. Second order condition check. Neither the determinant of Jacobi fields nor the associ-

ated smallest singular value vanish, ensuring local optimality of the whole extremal.

Fig. 10. Norm of the extremal control, Earth-L2 transfer, µ = 0.

4.4.3. Numerical continuation method for the Earth-Moon transfer.

The second part of our trajectory analysis is devoted to the Earth-Moon transfer. We
use the same dynamics and initial conditions as previously. In this case, the circular
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Fig. 11. Earth-L2 trajectory in the rotating frame, µ = 1.2153− 2.
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Fig. 12. Earth-L2 trajectory in the fixed frame, µ = 1.2153e− 2.

orbit around the Moon, denoted OL and defined by

(x1 − 1 + µ)2 + x2
2 = 1.7e− 3, x2

3 + x2
4 = 2.946e− 1, (x1 − 1 + µ, x2) ⊥ (x3, x4),



272 B. BONNARD, J.-B. CAILLAU, AND G. PICOT

Fig. 13. First conjugate time, Earth-L2 transfer, µ = 1.2153e− 2.

Fig. 14. Norm of the extremal control, Earth-L2 transfer, µ = 1.2153e− 2.

is chosen as the target orbit. In addition to the former necessary conditions, the max-
imum principle provides the transversality condition p(tf ) ⊥ Tx(tf )OL. The shooting
equation is modified accordingly, and one has to check local optimality computing
focal instead of conjugate points.

The transfer time is fixed to 124 time units of the restricted 3-body problem. The
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extremal trajectory is obtained using the shooting method and initializing p0 with the
initial costate vector of the Earth-L2 transfer. The Earth-Moon trajectories in both
rotating and fixed frames, the first focal time and the norm of the extremal control
are presented from Fig. 15 to Fig. 22 for µ varying between 0 and 1.2153e − 2. In
the two cases µ = 0 and µ = 1.2153e− 2, the first focal time along extremals t1,foc is
higher than 3tf/2, ensuring local optimality. The maximal bound of the norm of the
extremal control is about 4.5e− 2 which approximately corresponds to the half of the
maximal thrust allowed during SMART-1 mission.

It is interesting to notice that the Earth-L2 Keplerian trajectory differs from
the Earth-Moon Keplerian trajectory. The first phase of the Earth-Moon transfer
matches the Earth-L2 transfer. It underlines the crucial role of the neighbourhood of
the point L2 where the attractions of the two primaries compensate each other. By
treating the first phase as a Keplerian transfer from the geostationary orbit (GEO)
to a geostationary transfer orbit (GTO), we are able to use the averaging results of
section 3.2 in order to estimate the maximal bound of the control associated with
energy minimizing trajectories.

The first phase of the Earth-Moon trajectory with µ = 1.2153e − 2 can be ap-
proximated by a Keplerian transfer from the GEO to a GTO orbit with semi-major
axis a ' 5.84e − 1, eccentricity e ' 3.96e − 1, and argument of pericenter θ = 8π/7.
Using the system of coordinates introduced in Proposition 3.9, one can compute the
appropriate geodesic and estimate the final longitude required to achieve a prescribed
maximal bound on the norm of the control thanks to Proposition 3.7.
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Fig. 15. Earth-Moon trajectory in the rotating frame, µ = 0.
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Fig. 16. Earth-Moon trajectory in the fixed frame, µ = 0.
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Fig. 17. First focal time and norm of extremal control, Earth-Moon transfer, µ = 0.
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Fig. 18. Norm of extremal control, Earth-Moon transfer, µ = 0.
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Fig. 19. Earth-Moon trajectory in the rotating frame, µ = 1.2153e− 2.
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Fig. 20. Earth-Moon trajectory in the fixed frame, µ = 1.2153e− 2.
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Fig. 21. First focal time, Earth-Moon transfer, µ = 1.2153e− 2.
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Fig. 22. Norm of extremal control, Earth-Moon transfer, µ = 1.2153e− 2.
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[19] S. Geffroy, Généralisation des techniques de moyennation en contr0̂e optimal. Application
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