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AN INTEGER PROGRAMMING APPROACH FOR THE

SELECTION OF TAG SNPS USING MULTI-ALLELIC LD∗

YANG-HO CHEN† AND TING CHEN†

Abstract. Single Nucleotide Polymorphisms (SNPs) are common among human populations.

SNPs that are proximally located within a small human chromosome region are generally strongly

correlated that a subset of SNPs, termed tag SNPs, can provide enough information to infer neigh-

boring SNPs. Such correlations are generally known as linkage disequilibrium (LD) and are measured

either pair-wise, such as r
2, or multi-to-one (multi-marker). For any given set of SNPs, a variety of

algorithms have been proposed to identify a subset of tag SNPs by which the remaining SNPs can

be inferred. This paper focuses on finding that number of tag SNPs from which remaining SNPs

can be inferred through multi-allelic LD or pair-wise LD with a pre-defined r
2 threshold. We call

this the optimal tag SNP selection problem. Although this problem is theoretically NP-hard, it can

be formulated as an integer programming (IP) problem under a certain constraint, and the opti-

mal solution can be efficiently found by our newly developed IPMarker program. In addition, the

flexibility of the computational framework allows us to formulate and solve the problem of finding

common tag SNPs for multiple populations that have different LD patterns. Various datasets, in-

cluding ENCODE and the Major Histocompatiability Complex (MHC) region, were used to evaluate

the performance of IPMarker. We also extended IPMarker to the whole genome HapMap Phase I

data. Results showed that IPMarker significantly reduces the number of tag SNPs required when

compared to the most widely used program, Haploview, although a significant longer running time

is required. Thus, overall, genotyping a selected set of tag SNPs is the most cost-effective way to

conduct large-scale genome-wide association studies.
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1. Introduction. Single nucleotide polymorphisms (SNPs)[1] are widely used

as genetic markers for studies of population genetics and complex diseases. Through

the HapMap Project, more than three million common SNPs have been found in

the human genome by sequencing and comparing the chromosomes of hundreds of

individuals from multiple populations [2-5]. From these data, linkage disequilibrium

(LD), which is the association of alleles at two or more SNP loci, can be observed,

especially for SNPs proximally located on the human chromosome. As a result, once

researchers have genotyped a selected subset of SNPs, called tag SNPs, the alleles at

other SNP loci can be inferred through the neighboring tag SNPs [6-11]. This strategy

can significantly reduce the genotyping cost.

Many methods have been proposed for tag SNP selection with the aim of improv-

ing the power of inferring neighboring SNPs or minimizing the size of the tag SNP

set. Most of them are based on the pair-wise LD between two SNP loci [2, 5, 17, 28].

The pair-wise LD is generally measured by the r2 score which is equal to the square
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of the correlation coefficient between two SNP loci. Equation 1 shows the definition

of the r2 score over two loci A and B,

(1) r2 =
Cov(A, B)2

Var(A)Var(B)
=

(PAB − PAPB)2

PA(1 − PA)PB(1 − PB)
,

where PA is the probability of the major alleles at locus A and PB is the probability

at locus B.

In practice, tag SNPs are selected with some pre-defined r2 threshold, which

guarantees that at least one of the tag SNPs will be associated with another SNP

locus. Theoretically, the problem of finding the minimum set of tag SNPs with a

pre-defined r2 threshold is NP-hard, which can be proved by a reduction from the

“Set Cover” problem. Therefore, it is impossible to develop an algorithm to find

the optimal solution for every case in polynomial time. As a result, many heuristic

methods, including greedy, entropy maximization or principle component analysis [8,

10, 18-30], have been proposed to solve the problem in practice.

On the other hand, multiple efforts [10, 24, 26, 27, 30] have been made to extend

the pair-wise LD to the multi-allelic LD in order to increase the statistical power of

inference. That is, a combination of SNPs, also referred to as haplotypes, can be used

to infer the alleles of other SNP loci with a higher accuracy. Earlier works on “block-

based tagging” [12-17] are, in fact, based on multi-allelic LD. They first partition long

haplotypes into blocks using some LD measures and then select tag SNPs from each

haplotype block such that other SNPs can be predicted directly from the tag SNPs.

Table 1 shows an example of multi-allelic LD for four haplotypes consisting of three

SNPs. In this example, SNP A and SNP B together completely determine SNP C.

We define such a pattern as a 2-to-1 perfect LD. For comparison, SNP A or SNP B

alone can only determine SNP C with 80% accuracy.

Table 1

Four haplotypes, H1, H2, H3, and H4,with frequencies 0.4, 0.2, 0.2, and 0.2, respectively, are

observed for SNP A, SNP B and SNP C. 0 represents the major allele, and 1 is the minor allele.

SNP A and SNP B jointly determine SNP C.

Haplotype (freq) SNP A SNP B SNP C

H1(0.4) 0 0 0

H2(0.2) 0 1 0

H3(0.2) 1 0 0

H4(0.2) 1 1 1

The most notable work using pair-wise and multi-allelic LD for selecting tag SNPs

is a program called Haploview [26], the official tagging tool used in the International

HapMap project. However, as the number of possible haplotypes to be tested by

the LD statistic grows exponentially by the number of SNPs, Haploview slows down
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dramatically. Consequently, in order to gain efficiency, Haploview must operate under

several restrictions. Nonetheless, the improved prediction accuracy using multi-allelic

LD does offer a significant advantage in that fewer tag SNPs are needed to achieve

the same prediction accuracy by the increase in correlations among multiple SNPs.

Using the example shown in Table 1, if the r2 threshold is set as 0.9, we only need two

tag SNPs (SNP A and SNP B) using multi-allelic LD, but we need all three tag SNPs

if we only use pair-wise LD. Huang and Chao [30] formulated a multi-allelic LD based

on the tag SNP selection problem (MTMH) as follows: given a set of SNPs, find a

minimum subset of tag SNPs which defines a set of haplotypes completely predictive

of the alleles of all other SNPs. They divided this problem into three sub-problems,

and they solved each of them using exact and approximation algorithms.

Theoretically, we can extend the aforementioned 2-to-1 perfect LD to k-to-1 per-

fect LD. However, in actual practice, as k increases, identified k-to-1 associations will

also increase, but as a result of random chance because of the limited sample size.

Therefore, k-to-1 associations could have a counter-effect because of false associations,

and this could lead to increased errors in the inference of other SNPs. To reduce such

random associations, we consider associations in local regions and further restrict

them to the following two types: the 2-to-1 perfect LD and the pair-wise LD with a

pre-defined r2 threshold. We formulate these two types of LD into integer program-

ming and develop a program called IPMarker. Our computational framework can

easily incorporate k-to-1 associations if needed, but we find that this will significantly

increase the computational time and inference errors with little gain. In fact, our ex-

perimental results show that most cases having k-to-1 perfect LD can be recovered by

chaining multiple cases having 2-to-1 perfect LD. IPMarker is also extended to select

a common subset of tag SNPs for multiple populations. It is well known that different

populations have different LD patterns in the same genetic regions. Using common

tag SNPs to allow different LD associations in different populations will simplify the

genotyping processes for association studies with multiple populations [31].

2. Methods.

2.1. Algorithm for SNP Inference. We will only use the following two types

of LD for our tag selections: the 2-to-1 perfect LD and the pair-wise LD. We propose

the following two-step algorithm to infer other untyped SNPs using tag SNPs.

1. Use 2-to-1 perfect LD to determine a subset of untyped SNPs, and then

2. Use pair-wise LD to infer the remaining untyped SNPs using both the tag

SNPs and the determined SNPs (in Step 1).

2.2. Problem Definition. Based on the above algorithm, we formulate the

Di-Markers-Haplotype-Tagging (DMHT) problem as follows:

DMHT: Given a dataset S of m haplotypes over n SNPs and a pair-wise LD

threshold R, find a minimum subset of tag SNPs such that the remaining SNPs can
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be inferred through 2-to-1 perfect LD and pair-wise LD.

2.3. Association Graph. An association graph G is constructed to represent

the two kinds of LD. Each node in G represents a SNP or a combination of two SNPs.

There are three types of edges, one representing pair-wise LD and the other two

representing 2-to-1 perfect LD. In the example shown in Figure 1, node C1 represents

the combination of SNP1 and SNP2, and node C2 represents the combination of SNP3

and SNP5. There are three types of edges in G, as shown in Figure 1. A dash-line edge

represents the pair-wise LD between SNP6 and SNP7. The two hyper-directed edges,

(SNP1 + SNP2) → C1 and (SNP3 + SNP5) → C2, represent the combinations of

SNPs for C1 and C2. Three directed edges, C1 → SNP4, C1 → SNP5 and C2 → SNP6,

represent the perfect LD that a SNP can be determined completely by a combination

of two SNPs.

Fig. 1. An association graph for 7 SNPs. Two nodes, C1 and C2, are introduced to represent the

combinations of {SNP1, SNP2} and {SNP3, SNP5}. This graph includes three 2-to-1 associations,

{SNP1, SNP2}→ SNP4, {SNP1, SNP2}→SNP5, and {SNP3, SNP5} → SNP6, and one pair-wise

association between SNP6 and SNP7.

Note that chain inference is allowed through the 2-to-1 associations. For example,

the chaining of two 2-to-1 associations, {SNP1, SNP2}→ SNP5 and {SNP3, SNP5}

→ SNP6, leads to a 3-to-1 association, {SNP1, SNP2, SNP3} → SNP6. In this way,

2-to-1 associations can be extended to multi-to-one associations. In the second step,

the tag SNPs and the perfectly inferred SNPs are used to infer the alleles of the

remaining SNPs through the pair-wise LD (i.e., SNP 7 can be inferred from SNP 6).

2.4. Formulation of the Integer Programming Problem. We formulated

the DMHT problem as an integer programming problem (IP) problem. Assume that

we have n SNPs: SNP1, SNP2. . . SNPn. We define three kinds of binary variables,

{Ti}, {Pi}, and {Cj} as the following:

• T = {T1, T2. . . Tn}: Ti= 1 if SNPi is selected as a tag SNP. Otherwise, Ti

= 0.
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• C = {C1, C2, . . . }: Each Cj corresponds to a combination of two SNPs. Cj =

1 if both its members, say SNP1 and SNP2, are either selected as tag SNPs or

are perfectly determined. That is, each of its SNP members is either selected

as a tag SNP or determined by some combination k, with Ck= 1. The latter

case is based on the chain inference of 2-to-1 associations.

• P = {P1, P2, . . . , Pn}: Pi = 1 if SNPi is a tag SNP or can be determined

perfectly. This happens if SNPi is selected as a tag SNP, Ti= 1, or a “perfectly

determined” SNP by some combination where Ck= 1 and Ck → SNPi.

Note that the definitions of C and P are recursive, which accounts for the circles

in the association graph. We will discuss the circular structure of the association

graph later. Here, we define two types of symbols:

1. {S(1), S(2), . . . , S(n)}: S(i) is the set of SNPs whose pair-wise LD with SNPi

is above the pre-defined threshold R.

2. {K(1), K(2), . . . , K(n)}: K(i) is defined as the set of SNP combinations which

can determine SNPi using “2-to-1” perfect associations.

In Figure 1, DMHT is solved by selecting only SNP1, SNP2 and SNP3 as tag

SNPs. Correspondingly, T1 = T2 = T3 = 1, T4 = T5 = T6 = T7 = 0, and P1 = P2

= P3 = 1 and C1= 1 by definition. Through C1, SNP4 and SNP5 can be perfectly

determined; P4 = P5 = 1. Thus C2= 1 because T3= 1 and P5 =1. Through C2,

SNP6 can be determined, P6=1, and SNP 7 can be inferred from SNP6 through the

pair-wise LD, but P7 = 0.

The DMHT problem can be formulated as an integer programming problem as

follows:

Minimize
n∑

i=1

Ti(2)

Subject to

I. ∀Ck : Pk1 ≥ Ck, and Pk2 ≥ Ck, k = 1, 2, · · · , whereCk = {SNPk1, SNPk2}.

II. ∀Pi : Ti +
∑

Cj∈K(i)

Cj ≥ Pi, i = 1, · · · , n,

III. ∀SNPi :
∑

SNPj∈S(i)

Pj ≥ 1, i = 1, · · · , n,

IV. Binary Constraints: Ti, Ck, Pi = {0, 1}, i = 1, · · · , n, k = 1, 2, · · ·

The target function is to minimize the number of selected tag SNPs. There are

four types of inequalities in the IP formulation: I, II, III and IV. Type I inequalities

indicate that Ck = 1 if, and only if, all of its SNP members are determined. Type

II inequalities say that Pi= 1 only if SNPi is a tag SNP or it can be determined by

some combination. Type III inequalities force each SNP to be inferred by itself or

its neighboring SNPs through pair-wise LD. Type IV inequalities limit each variable
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to a binary value. The IP problem can be efficiently solved by integer programming

software [32]. In theory, integer programming is also NP-hard; however, in practice,

a combination of the linear programming solution plus rounding and a branch-and-

bound strategy can efficiently find the optimal or sub-optimal solution. Table 2 shows

the IP formulation of the example in Figure 1.

Table 2

The set of IP constraints for the example in Figure 1.

I II III IV

P1 ≥ C1; P2 ≥ C1 T1 ≥ P1; T2 ≥ P1 For i = 1 to 5 For i = 1 to 7

P3 ≥ C2; P5 ≥ C2 T3 ≥ P3; C1+ T4 ≥ P4 Pi ≥ 1 For j = 1, 2

C1+ T5 ≥ P5 P6 + P7 ≥ 1 Ti, Pi and Cj= 0 or 1

C2+ T6 ≥ P6

2.5. Cycles and Cycle Breaking. Unfortunately, this IP formulation may

encounter problems when a cycle formed by chaining multiple 2-to-1 associations in

the association graph exists. Figure 2 shows an example where a cycle is formed by

SNP1, C1, SNP2, C2, SNP3, and C3. The IP solution does not return the correct

solution. To solve this problem, a modified depth first search (DFS) algorithm can

be used to break all cycles. In the DFS, we remove one edge each time we explore

a new edge that causes a cycle. Note that breaking all of the cycles by removing a

minimum number of edges is an NP-hard problem and thus has no polynomial time

solution. In addition, removing the minimum number of edges does not guarantee

finding a minimum set of tag SNPs. Therefore, we applied several cycle-breaking

heuristics and found that the DFS-based cycle removal method combined with IP

performs extremely well in practice.

Fig. 2. The integer programming solver will set the binary variables T4= T5= T6 = 1 and

C1= C2= C3 = 1 to minimize the target function. However, at least one SNP out of SNP1, SNP2

and SNP3 must be selected as the tag SNP.
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Theorem. The IP returns the optimal solution to the DMHT problem if there is

no cycle in the association graph.

Proof. If there are cycles in the association graph, the solutions returned by the

IP may not be correct as we have shown in Figure 2. However, if IP returns a correct

solution, then it is optimal.

2.6. Selecting Common Tag SNPs for Multiple Populations. The LD

patterns vary in different populations. This inspires us to select a common set of tag

SNPs and apply different LD associations in different populations to infer the alleles of

untyped SNPs. The IP formulation is similar to the previous one, but each population

has its own Type I, II, and III inequalities. The following is an example of the IP

formulation for two populations, where P(1) and C(1) are parameters for population

1, P(2) and C(2) for population 2, and K(1) , S(1) and K(2), S(2) are pre-calculated.

This formulation can be easily extended to multiple populations.

Minimize

n∑

i=1

Ti(3)

Subject to

Population (1) :

P
(1)
k1

≥ C
(1)
k and P

(1)
k2

≥ C
(1)
k , k = 1, 2, ...

Ti +
∑

C
(1)
k

∈K(1)(i)

C
(1)
k ≥ P

(1)
i , i = 1, ..., n

∑
SNPj∈S(1)(i)

P
(1)
j ≥ 1, i = 1, ..., n

Population (2) :

P
(2)
k1

≥ C
(2)
k and P

(2)
k2

≥ C
(2)
k , k = 1, 2, ...

Ti +
∑

C
(2)
k

∈K(2)(i)

C
(2)
k ≥ P

(2)
i , i = 1, ..., n,

∑
SNPj∈S(2)(i)

P
(2)
j ≥ 1, i = 1, ..., n.

2.7. Scaled up for the Whole Chromosome. To manage whole genome hap-

lotype data, SNPs are divided into different sizes of non-overlapping blocks. The

conventional LD span is about 400kb – 500kb, as now used in Haploview [27]. This

genome distance roughly covers about 200 SNPs in HapMap Phase I data [2]. We

do not use longer LD spans because errors increase as the LD decreases. We have

also attempted other strategies to handle the whole genome data, i.e., dividing the
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Table 3

Performance of IPMarker on different datasets.

whole genome into overlapping fragments, but the results do not show significant

improvement.

3. Experimental Results.

3.1. Datasets. The following datasets are used in this study:

1. Phased ten ENCODE regions with minor allele frequency (MAF) > 5% (478

haplotype samples with 9,523 common SNPs)

2. Phased Major Histocompatibility Complex (MHC) SNP data [33] (478 haplo-

type samples with an average of 6,298 SNPs in four populations)

3. Phased central European human Chromosome data selected from phase I

HapMap data (Chromosomes 2, 4, 6, 8 and 10 from 180 haplotypes with 271,337

SNPs per haplotype)

We first remove SNPs that have the same distribution as others. This simple fil-

tering process significantly reduces the number of SNPs in the datasets. For example,

it reduces the size of the ENCODE data down to about 1/2 to 1/3 of the original size.

3.2. Performance of IPMarker. A software package lp solved[32] is called by

IPMarker to solve the integer programming problem. The r2 threshold is set as 0.8

and 1.0 in all tests. Table 3 shows the SNP density, the number of SNPs, the number

of tag SNPs found by IPMarker, and the compression ratio, which is the ratio of the

number of tag SNPs over the total number of SNPs, on the haplotype data from EN-

CODE, MHC and the five selected human chromosomes from the central European

population. As expected, the compression ratio decreases as the SNP density in-

creases. Both the ENCODE data and the MHC data have higher SNP densities than

the human chromosome data, while, at the same time, they show lower compression

ratios.

3.3. Comparison between IPMarker and Haploview. IPMarker is com-

pared with Haploview using the ENCODE (Table 4), the MHC (Table 5) and the

phase I HapMap human chromosome data (Table 6) as the test data. Under the
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Table 4

Number of tag SNPs selected by IPMarker and Haploview on ten ENCODE datasets (CEU).

same r2threshold and LD span, IPMarker selected significantly fewer tag SNPs than

Haploview 4.0, especially given high LD regions as input. The tradeoff for this better

optimization is a significantly longer running time.

Table 4 compares the results of 10 ENCODE regions between Haploview and

IPMarker. With r2=1.0, IPMarker selects a total of 2,049 tag SNPs from 9,795 SNPs,

about 25% fewer than the 2,705 tag SNPs found by Haploview using the multi-allelic

LD. With a lower r2 threshold of 0.8, IPMarker reduces the number of tag SNPs down

to 1,611, or 78.6% of the 2,049 tag SNPs found using r2=1.0. It is 14.4% less than

the tag SNPs found by Haploview under the same threshold.

In Table 4, note that both Haploview and IPMarker demonstrate that significantly

fewer tag SNPs will be needed if we use multi-allelic LD with r2=1.0 rather than pair-

wise LD with r2=1.0. Haploview reduces the 3,414 tag SNPs found by the pair-wise

LD method down to 2,725 (or 80.6%), while IPMarker has a bigger reduction at 60%.

Figure 3 compares the results of the MHC dataset between Haploview and IP-

Marker. The SNP density of the MHC data is about 1.27 kb per SNP. Under the

threshold r2= 1.0, IPMaker selects an average of 1,510 tag SNPs for each of the four

populations, about 18.5% fewer tag SNPs than the number required by Haploview

using multi-allelic LD. By relaxing the r2 threshold to 0.8, the number of tag SNPs

found by IPMarker reduces to 1,152. Again, we observe a big reduction in the number
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Table 5

Number of tag SNPs (×103) selected by IPMarker and Haploview on five HapMap chromosome

datasets.

of tag SNPs using multi-allelic LD.

Fig. 3. Comparison of the number of tag SNPs found by IPMarker and Haploview on the MHC

dataset.

Table 5 shows the results of five human chromosomes from the HapMap phase

I dataset using Haploview and IPMarker. IPMarker consistently selects significantly

fewer tag SNPs than Haploview under the same criteria. On average, IPMarker

selects 16% fewer tag SNPs than Haploview with r2= 1.0, and 6% fewer tag SNPs

with r2 ≥ 0.8. Note that both block sizes of 200 and 800 SNPs have been used

in Haploview, but the results are similar. Again, we observe a big reduction in the

number of tag SNPs using multi-allelic LD as opposed to pair-wise LD.

3.4. Evaluation of Prediction Power. We perform a 20-fold cross validation

to assess the prediction error rate using the tag SNPs. That is, we use 95% of the

samples to find tag SNPs and use the remaining 5% of the samples for the following

test. If the selected tag SNPs in these test samples are genotyped, we then asked how

well they could be used to predict untyped SNPs. The accuracy of the prediction is
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evaluated by comparing the real alleles with the predicted alleles in the test dataset.

The error rate is defined as the ratio of the number of prediction errors over the total

number of SNPs in the test, including both the genotyped tag SNPs and the untyped

SNPs. Thus, the error rate is proportional to the number of prediction errors and

does not depend on the number of tag SNPs or the number of untyped SNPs. For

comparison, we also implement a method to select tag SNPs using only pair-wise LD

in IPMarker using a similar IP formulation.

Table 6 shows the prediction error rates using the multi-allelic LD and the pair-

wise LD on the MHC data. Under the same r2 threshold, the prediction error rates

of the method using the multi-allelic LD are always higher than those using only

the pair-wise LD: 0.44% vs. 0.11%, respectively, for r2= 1.0 and 0.83% vs. 0.57%,

respectively, for r2 ≥ 0.8. This is because the number of tag SNPs selected using

multi-allelic LD is much less than the number achieved by using pair-wise LD. The

consequence is that many more untyped SNPs are predicted by the multi-marker

tagging method, which drives up the prediction errors. However, with a comparable

number of tag SNPs, multi-allelic LD has a lower prediction error rate. For example,

with r2= 1.0, IPMarker finds an average of 1,509 tag SNPs using multi-allelic LD,

compared to the 1,593 tag SNPs selected with the pair-wise LD with r2 ≥ 0.8, but the

average prediction error rate for the multi-allelic LD is 0.44%, better than 0.57% for

the pair-wise LD. As another example, with r2 ≥ 0.8, IPMarker finds an average of

1,136 tag SNPs using multi-allelic LD, compared to the 1,252 tag SNPs found by the

pair-wise LD with r2 ≥ 0.7, but the average prediction error rate for the multi-allelic

LD is 0.83%, better than 1.13% for the pair-wise LD. This line of evidence shows that

multi-allelic LD methods have a higher prediction power than those of pair-wise LD.

3.5. Selecting a Common Set of Tag SNPs for Multiple Populations. In

many association studies, it is important to determine whether the tag SNPs selected

from one or a limited number of sample populations, such as those genotyped in

the HapMap project, can be used in the populations being studied without losing

significant prediction power.

Table 7 shows the prediction error rates in all pair-wise inter-population tests

using tag SNPs selected on the basis of the LD in one population (rows) to predict

alleles of other SNPs in another population (columns). It is clear that the intra-

population prediction error rate (always < 0.5%) is much smaller than the inter-

population prediction error rate (always > 6 %). Therefore, the results discourage

using tag SNPs selected from one population to be used in another population.

A better strategy is to mix haplotype data samples from all populations, treating

them as if they were from one population, and then applying an algorithm to select a

common set of tag SNPs, which can be used to design a single SNP chip for all studies

involving multiple populations. Since tag SNPs are selected to capture the common
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Table 6

Number of tag SNPs (x 103) selected by IPMarker and Haploview on five HapMap chromosome

datasets.

Table 7

Prediction error rates using tag SNPs selected in one population (rows) to predict untyped SNPs

in another population (columns) using r
2= 1 and 2-to-1 perfect LD.

Testing

Training

CEU JPT HCB YRI

CEU 0.42% 7.23% 6.26% 7.74%

JPT 9.32% 0.47% 4.85% 10.34%

HCB 7.34% 4.39% 0.38% 8.37%

YRI 6.73% 7.52% 6.93% 0.47%

LD patterns in the mixed populations, we call this the “mixing” approach. In this

paper, we propose anther approach called the “splitting” approach that selects a com-

mon set of tag SNPs, but infers untyped SNPs using different LD patterns in each

population separately. The “splitting” approach requires knowing the population for

each sample in order to apply the proper LD pattern. In fact, in most association

studies, such information is known. Table 8 shows the comparison of these two ap-

proaches on two populations of the MHC data using IPMarker. The result shows that

for any two populations, the “splitting” approach selects an average of 37.5% fewer

tag SNPs than the “mixing” approach, but the average prediction error rate is only

slightly higher, 0.47% vs. 0.33%.

3.6. Running Time. With the r2 threshold equal to 1.0, IPMarker runs as fast

as Haploview. Nevertheless, the running time becomes slower for smaller thresholds.

It is also clear that the high LD regions need a longer running time. For most of

the 200 SNP fragments in the HapMap Phase I data, the optimal IP solution can be

found within 10 minutes, while some other fragments take hours. Thus, the running

time of selecting tag SNPs for the whole chromosome takes about 40-70 hours on a

desktop computer.
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Table 8

Comparisons of the “mixing” approach (results on the left of “/”) and the “splitting” approach

(results on the right of “/”) for two populations (one in the column and one in the row) on the

MHC data.

4. Conclusion. With the rapid development of sequencing techniques [34], ma-

ny scientists think that selecting tag SNPs for genotyping is not necessary. However,

we argue that genotyping SNPs on a genome-wide scale [35] still costs much less than

sequencing the whole genomes. With accumulated haplotype information and tech-

niques for designing a dense genotyping array, tag SNPs provide a cost-effective way

to capture most of the information needed in a large-scale association study, espe-

cially in a well-studied sub-population. Using programs like Phase[36, 37] to directly

evaluate genotype data is certain to be the direction of the future. The source code

and the preliminary documents are available at http://code.google.com/p/ipmarker.
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