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ON AN EIGENFLOW EQUATION AND ITS LIE ALGEBRAIC

GENERALIZATION∗

CHRISTIAN EBENBAUER†
AND ALESSANDRO ARSIE‡

Abstract. This paper deals with a dynamical system of the form Ȧ = [[N, A
T + A], A] +

ν[[AT
, A], A], where A is an n × n real matrix, N is a constant n × n real matrix, ν is a positive

constant and [A, B] = AB − BA. In particular, the purpose of this paper is to establish a sorting

behavior of the dynamical system and to represent it in a general Lie algebraic setting. Moreover,

some applications of the dynamical system are presented.
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1. Introduction. Brockett introduced in [6] the so-called double-bracket equa-

tion

Ḣ =[[N, H ], H ],(1.1)

where H is an n × n real symmetric matrix, N is a constant n × n real symmetric

matrix, and [A, B] = AB − BA. This dynamical system has several remarkable

properties. For example (1.1) can be used to sort lists or to diagonalize symmetric

matrices. In the recent paper [13], a dynamical system of the form

Ȧ =[[N, AT + A], A] + ν[[AT , A], A],(1.2)

where A is an n×n real matrix, N is a constant n×n real matrix, and ν is a positive

constant, has been introduced. The dynamical system (1.2) has similar properties as

(1.1), as will be shown in this paper, but it also diagonalizes and computes eigenvalues

of nonsymmetric matrices. In the case of A being symmetric, the self-commutator

[AT , A] vanishes and (1.2) reduces to (1.1). Thus, the flow in the space of nonsym-

metric matrices described by (1.2) can be considered as a generalization of the flow in

the space of symmetric matrices described by (1.1). Due to the ability to simultane-

ously compute all eigenvalues of nonsymmetric matrices, one may call (1.2) eigenflow

equation.

The motivation to design and study dynamical systems like (1.1) and (1.2) has sev-

eral roots. For example, solving computational problems with the help of continuous-
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time dynamical systems can be seen as a way to design and implement analog al-

gorithms. Analog algorithms and analog computation have been investigated in

various fields or research, including neuroscience, biology, informatics, mathemat-

ics [3,14,26,27,30]. One main research goal in this area is to build devices which can

perform massively parallel computations and/or which function with minimal power

supply. These are abilities which are mastered very well in living organisms, like in

the human brain, but which have not been successfully realized yet in terms of digital

computation. Analog computation is one alternative to digital computation, with

promising potentials to achieve this goal. Another reason stems from the wish to

obtain a new way to design numerical algorithms and to analyze their behavior and

the underlying geometry of these algorithms [2,9–12,17,29]. For example, in order to

apply ideas from the theory of dynamical systems and differential geometry, it is often

easier to study continuous algorithms rather then discrete algorithms, i.e. algorithms

which are described by differential equations rather then by difference equations.

The purpose of this paper is to analyze and to design dynamical systems of the

form (1.2). In particular, the purpose is to provide an abstract version of (1.2) in a

Lie algebraic setting and to establish a sorting property of (1.2) analogous to (1.1).

Moreover, some applications of (1.2) in the area of analog computation are presented.

The content of this paper is as follows: In Section 2, some preliminary results are

summarized. In Section 3, the dynamical system (1.2) as well as the underlying idea

behind (1.2) is generalized to a Lie algebraic setting. Moreover, an analogous sorting

behavior of (1.2) as known from (1.1) is established. In Section 4, applications of the

dynamical system (1.2) are discussed, including sorting roots of polynomials and the

spectral factorization of polynomials. Finally, a summary of the results is given in

Section 5.

Notation: Let A = (aij) = (A)ij ∈ R
n×n be a real n × n matrix. Then

λ(A) = {λ1, . . . , λn} denotes the spectrum of A and <A, B> = trace(AT B), ‖A‖2

F =

trace(AT A) the Frobenius norm, where trace(A) = a11 + . . . + ann and AT denotes

the transposed of A. Moreover, A∗ denotes the conjugate transposed of a complex

matrix A. N = diag(n1, . . . , nn) denotes a diagonal matrix with diagonal elements ni,

i = 1 . . . n and I, 0 denote an identity matrix respectively a zero matrix of appropriate

dimension. Furthermore, π ∈ Sn denotes a permutation of the set {1, . . . , n}. Let V be

a finite dimensional vector space over a field K, then gl(V ) (sl(V )) denotes the space

of all endomorphisms of V (with zero trace). Moreover, gln(R) (GLn(R), sln(R))

is the set of real n × n matrices (with nonzero determinant, with zero trace). Let

W : R
n → R be a continuously differentiable function, then ∇W denotes the gradient

(row vector) of W .
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2. Preliminaries. In the following, some auxiliary results are summarized. Con-

sider the dynamical system

(2.1) Ȧ = [U(A), A],

where A is a real n × n matrix, U : R
n×n → R

n×n is a continuous matrix-valued

function, and [A, B] = AB − BA is the commutator. One of the most important

properties of dynamical systems in Lax form, i.e. dynamical systems of form (2.1), is

the fact that they preserve the spectrum of A(t), i.e. the spectrum of A(t) is equal to

the spectrum of A(0) for any t ∈ [0, Tsup), where [0, Tsup) is the maximal interval of

existence of the solution A = A(t), see e.g. [25, 28, 32].

Theorem 1. The flow described by (2.1) is isospectral.

In order to analyze and design flows like (2.1), it is sometimes convenient to

consider U as a control input. In doing so, isospectrality means then that the spectrum

of A(t) is invariant under any feedback U = U(A) and (1.1) and (1.2) can be considered

as feedback systems defined by the control system (2.1) and by the feedbacks

U(A) = [N, A],(2.2)

U(A) = [N, AT + A] + ν[AT , A],(2.3)

respectively (see Fig. 1). Later on, this control systems point of view is used to

analyze the convergence behavior of vector fields of type (2.1) on Lie algebras.

A

A0

ν[AT ,A]

[N,AT + A]

Ȧ = [U,A]
U

Fig. 1. Equation (1.2) represented as feedback loop.

The following lemma is a standard result about invariant sets (see e.g. [24], Chap-

ter 2, Theorem 5.2).

Lemma 2. Let Ω(x(0)) denote the positive limit set (ω-limit set) of a bounded

solution x = x(t) of

ẋ = f(x),(2.4)
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where f : R
n → R

n is Lipschitz continuous. Then Ω(x(0)) is nonempty, compact,

connected, (positively and negatively) invariant with respect to (2.4), and it is the

smallest closed set that x = x(t) approaches as t → ∞, i.e. if x = x(t) converges to a

closed (compact) set which contains Ω(x(0)), then x = x(t) converges to Ω(x(0)).

The following lemma is Chetaev’s instability theorem [15,22].

Lemma 3. Let xE be an equilibrium point of (2.4) and let W : D → R be

a continuously differentiable function on a neighborhood D of x = xE, such that

W (xE) = 0. Suppose that the set U = {x ∈ D : ‖x−xE‖ < r, W (x) > 0} is nonempty

for every r > 0. If Ẇ (x) > 0 in U \ {xE}, then the equilibrium point x = xE is

unstable.

The next result is taken from [20] (Corollary 1) and states, roughly speaking,

that an equilibrium point xE in a positively invariant set E , where E itself is assumed

to be locally asymptotically stable, is locally asymptotically stable if and only if the

equilibrium point xE is locally asymptotically stable on E , which means ∀δ > 0 ∃ǫ > 0

such that if ‖x(0)−xE‖ ≤ ǫ and x(0) ∈ E then ‖x(t)−xE‖ ≤ δ and limt→∞ x(t) = xE .

Lemma 4. Let xE be an equilibrium point of (2.4) and let D ⊂ R
n be a neighbor-

hood of xE . Assume that there exists a continuously differential function V : D → R

such that V (x) ≥ 0, V (xE) = 0, and V̇ (x) = ∇V (x)f(x) ≤ 0 on D. Then xE is

asymptotically stable if and only if xE is locally asymptotically stable on the largest

positively invariant set contained in E = {x ∈ D : V̇ (x) = 0}.
Notice that Lemma 4 is also useful in combination with Chetaev’s instability

theorem on invariant sets E , since an equilibrium point xE is asymptotically stable

if and only if xE is asymptotically stable on E . Hence, by showing instability on E
using Lemma 3, instability of the equilibrium point follows from Lemma 4.

3. Main Results.

3.1. The convergence behavior of (1.2). Brockett obtained the double-bra-

cket equation (1.1) by recasting a continuous-time steepest descent algorithm for

solving a least-squares matching problem in a Lie algebraic setting [6–8]. As already

mentioned, (1.1) has many interesting properties, including the ability to diagonal-

ize symmetric matrices, to sort lists, or to solve various combinatorial optimization

problems. The double-bracket equation is also related to other well-known dynamical

systems, like the Toda lattice flow or projected gradient flows, see [4, 5, 10]. The lit-

erature concerning the double-bracket equation and gradient flows has been rapidly

growing. For example, [17] provides a good introduction to the double-bracket equa-

tion and other dynamical systems, e.g. the QR flow or Oja’s flow, which can be used

to solve computational problems in an analog fashion (see also [2, 11]).

Notice that “to compute” or “to solve” by means of continuous-time dynami-

cal systems is here understood in the following way: Starting with a certain initial

condition (input data), the solution of the computation (output data) is given by
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the equilibrium point to which the flow converges. Thus, the computation process

(solving process, analog algorithm) is described by the flow of the dynamical system.

Since (1.1) can diagonalize symmetric matrices and compute its eigenvalues, it is

natural to search for a dynamical system which can do the same for nonsymmetric

matrices. This was the motivation which has led to the dynamical system (1.2). In

contrast to (1.1), the basic idea behind (1.2) is not based on a gradient flow (steepest

descent) argument but rather then on an orthogonality argument. However, (1.2) is

naturally related to (1.1), since for symmetric initial data, i.e. A(0) = A(0)T , the

flows defined by (1.1) and (1.2) are equivalent.

The next theorem summarizes the convergence behavior of (1.2) established in

[13].

Theorem 5. For any initial condition A(0) = A0 ∈ R
n×n, the solution A = A(t)

of (1.2) is well-defined for all t ≥ 0 and it converges to a set of normal matrices which

have the same spectrum as A0. Moreover, if N is a diagonal matrix with pairwise

distinct diagonals and if A0 is a matrix with eigenvalues λi = σi + iωi, i = 1 . . . n,

which have pairwise distinct real parts except for complex conjugate pairs1, then the

solution A = A(t) of (1.2) converges to an equilibrium point A(∞), i.e.

[A(∞)T , A(∞)] = 0,(3.1)

[N, A(∞)T + A(∞)] = 0.(3.2)

In particular, there exist n! (isolated) equilibrium points A(∞) and they are of the

form

(A(∞))ij =











σπ(i) if i = j

±ωπ(i) if i 6= j and σπ(i) = σπ(j)

0 else

,(3.3)

where (π(1), . . . , π(n)) is a permutation of (1, . . . , n).

Proof. The steps of the proof are as follows: Step 1: It is shown that any solution

A = A(t) of (1.2) satisfy [A(t)T , A(t)] → 0 for t → ∞, which means A(t) converges

to the set of normal matrices, that is the set of matrices which satisfy A = U∗ΛU ,

U∗U = I. Step 2: It is shown that [N, A(t)T + A(t)] → 0 for t → ∞. Step 3: It is

shown that there exist n! equilibrium points and (3.3) is satisfied.

Step 1: In a first step, it is shown that the derivative of the function

V (A) =‖A‖2

F −
n

∑

i=1

|λi|2 = trace(AT A) −
n

∑

i=1

|λi|2(3.4)

is monotonically decreasing along the flow (1.2) with the initial condition A(0) = A0 as

long as [A(t)T , A(t)] 6= 0. Notice that differentiating the sum of squares of eigenvalue

1That means two eigenvalues of the form a + ib, a or a + ib,a + ic, b 6= −c are not allowed.
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in (3.4) with respect to (2.1) is zero due to isospectrality. Moreover, it is easy to see

that (3.4) is zero if and only if A is normal, i.e. [AT , A] = 0, because ‖A‖2

F is the sum

of squares of singular values of A [19]. Differentiating (3.4) with respect to (2.1) and

using the facts trace(AB) = trace(BA), trace(AT ) = trace(A) one obtains:

V̇ (A) = − 2trace([AT , A][N, A + AT ]) − 2νtrace([AT , A]2).(3.5)

Now observe that trace([AT , A][N, A + AT ]) = 0. This follows from the fact that

[AT , A] is symmetric and [N, A + AT ] is skewsymmetric and the trace of a prod-

uct between a symmetric matrix and a skewsymmetric matrix is zero. Thus with

trace([AT , A]2) = ‖[AT , A]‖2

F ≥ 0 one gets

V̇ (A) = −2ν‖[AT , A]‖2

F < 0 as long as [AT , A] 6= 0.(3.6)

Therefore, all solutions A = A(t) of (1.2) converge into the set where the self-

commutator vanishes, i.e.

lim
t→∞

[A(t)T , A(t)] = 0.(3.7)

Notice that all solutions are bounded, since the derivative (3.6) coincide with the

derivative of (the positive definite and radially unbounded function) ‖A‖2

F along (2.1).

Step 2: In a second step, it is shown that the function

W (A) =
1

2
trace(N(A + AT ))(3.8)

is monotonically increasing along all solution A = A(t) of (1.2) starting in the posi-

tively invariant set defined by Nλ(A(0)) = {A ∈ R
n×n : λ(A) = λ(A(0)) ∧ [AT , A] = 0}

as long as [N, A(t)T + A(t)] 6= 0, i.e. the set of normal matrices which have the same

spectrum as A(0). Moreover, it is shown that any solution of A = A(t) of (1.2) con-

verges to an equilibrium point given by [A(∞)T , A(∞)] = 0, [N, A(∞)T +A(∞)] = 0.

First, notice that the set Nλ(A(0)) is positively invariant w.r.t. (1.2), because

d

dt
[AT (t), A(t)]|t=0 = [[U(A0), A0]

T , A0] + [AT
0
, [U(A0), A0]] = 0(3.9)

holds for [AT
0
, A0] = 0, A0 = A(0), and U(A) given by (2.3) In particular, (3.9)

follows from U(A0)
T = −U(A0) and the Jacobi identity, i.e. [A, [B, C]]+ [C, [A, B]]+

[B, [C, A]] = 0. Differentiating (3.8) with respect to (1.2) (i.e. (2.1),(2.3)) and using

trace(AB) = trace(BA), trace(AT ) = trace(A), [A, B] = −[B, A], [A, B]T = [BT , AT ]

one obtains:

Ẇ (A) =
1

2
trace(N [U, A]) +

1

2
trace(N [AT , UT ])

=
1

2
trace([A + AT , N ][N, A + AT ])

+νtrace([A, N ][AT , A]).

(3.10)
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Now, from (3.10) it follows that

Ẇ (A) = −1

2
trace([A + AT , N ]2) > 0 as long as [A + AT , N ] 6= 0(3.11)

and A ∈ Nλ(A0). From Lemma 2 and Step 1 it follows that Ω(A(0)) is a compact

and invariant set in Nλ(A0). As will be shown in Step 3, there exists a finite number

of isolated (equilibrium) points A(∞) which simultaneously satisfy V̇ (A) = 0 and

Ẇ (A) = 0. In order to show that Ω(A(0)) is an equilibrium point, make the following

observations.

Observation 1: If Ω(A(0)) is a single point, then it is an equilibrium point.

Observation 2: If Ω(A(0)) is contained in a level set of W , i.e. W (Ω(A(0))) =

m ∈ R, then Ω(A(0)) is a single point. Assume Ω(A(0)) is not a single point. Then,

since Ω(A(0)) is connected and since the points A(∞) (where Ẇ = 0) are isolated,

there exists a point P ∈ Ω(A(0)) such that Ẇ (P ) > 0. Hence W is increasing along a

solution passing through P , but on the other hand Ω(A(0)) is invariant and contained

in a level set of W . Contradiction.

Observation 3: See also Figure 2. Assume now Ω(A(0)) is not contained in a level

set of W , i.e. W (Ω(A(0))) = [m, m] ⊂ R, m < m and A1(∞), . . . , Ak(∞), k > 1,

are equilibrium points in Ω(A(0)) ordered in such a way that the following holds:

W (A1(∞)) = . . . = W (Am(∞)) > W (Am+1(∞)) ≥ . . . ≥ W (Ak(∞)). The claim

is that if a solution A = A(t) is sufficiently close to one of the equilibria Aj(∞),

j ≤ m, let’s say at t1 > 0, then A = A(t) cannot enter anymore a suitably chosen

neighborhood of W (Al(∞)), l ≥ m + 1, for t ≥ t1.

By (3.11), Ẇ > 0 on Nλ(A0)
\ {A1(∞), . . . , Ak(∞)}. Let B(ǫ) be a closed neigh-

borhood of Ω(A(0)) such that dist(B(ǫ), Ω(A(0))) ≤ ǫ. Notice that dist denotes the

(Hausdorff) distance between sets and B(ǫ) is a subset of the A0-isospectral set, i.e.

the ambient space of Nλ(A0)
is considered to be the set {B ∈ R

n×n : λ(B) = λ(A0)}
where (2.1) flows. Moreover, let Ui be open neighborhoods for Ai(∞) and let Ui(ǫ) =

B(ǫ) ∩ Ui. Denote with bj = infA∈Uj
W (A), and with bl = supA∈Ul

W (A). Choose

now ǫ and neighborhoods Ui, i = 1, . . . , k, such that minj=1...m bj > maxl=m+1...k bl

and such that

minA∈B(ǫ)\∪k
i=1

Ui(ǫ)Ẇ (A) ≥ δ

2
> 0(3.12)

holds for some δ > 0. Notice that it is always possible to choose ǫ and neighborhoods

Ui such that minj=1...m bj > maxl=m+1...k bl, since W is continuous and W (Aj(∞)) >

W (Al(∞)), j ≤ m, l ≥ m + 1. Moreover

min
A∈Ω(A(0))\∪k

i=1
Ui(0)

Ẇ (A) ≥ δ > 0(3.13)

can be always be satisfied, because Ω(A(0)) \ ∪k
i=1

Ui(0) is a compact set and Ẇ is

strictly positive on Ω(A(0)) \ ∪k
i=1

Ui(0). Hence, because W and Ẇ are continuous
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functions, (3.12) must be true for a sufficiently small ǫ. In other words, for ǫ sufficiently

small, the set {A : Ẇ (A) ≤ 0, A ∈ B(ǫ)} is contained in ∪k
i=1

Ui(ǫ).

Since Ω(A(0)) is the positive limit set, there exists a t1 > 0 such that A(t1) ∈
∪m

j=1
Uj(ǫ) and such that A(t) ∈ B(ǫ) for t ≥ t1, because of Lemma 2 (observe

that B(ǫ) is closed and compact). Moreover, there must exists a t2 > t1 such that

A(t2) ∈ ∪k
l=m+1

Ul(ǫ). However, this is impossible because whenever maxl=m+1...k bl <

W (A(t)) < minj=1...m bj , then Ẇ > 0 and therefore W (A(t)) ≥ minj=1...m bj for

t ≥ t1. But in order to reach some neighborhood Ul(ǫ), l ≥ m + 1, W (A(t)) <

maxl=m+1...k bl must hold. (This leads to a contradiction, because minj=1...m bj >

maxl=m+1...k bl.) Thus, Ω(A(0)) cannot contain equilibrium points A1(∞), . . . ,

Ak(∞), k > 1 with W (A1(∞)) = . . . = W (Am(∞)) > W (Am+1(∞)) ≥ . . . ≥
W (Ak(∞)).

Observation 4: Assume again Ω(A(0)) is not contained in a level set of W , i.e.

W (Ω(A(0))) = [m, m] ⊂ R, m < m and A1(∞), . . . , Ak(∞), k ≥ 0, are equilibrium

points in Ω(A(0)) but now W (A1(∞)) = . . . = W (Ak(∞)). Then there exist points

P1, P2 ∈ Ω(A(0)) such that W (P1) > W (P2). If k ≥ 1, choose P1 = A1(∞) or

P2 = A1(∞). Using the same arguments as in Observation 3, where P1, P2 play now

the role of Am(∞), Am+1(∞), one can conclude that points P1, P2 ∈ Ω(A(0)) such

that W (P1) > W (P2) holds, can not exist. Thus, Ω(A(0)) must be contained in a

level set W .

In summary, Observation 1 and 2 imply that Ω(A(0)) is a single equilibrium

point, if Ω(A(0)) is contained in a level set of W and Observation 3 and 4 assure that

Ω(A(0)) is indeed contained in a level set of W .

Therefore, one can finally conclude that

lim
t→∞

[N, A(t)T + A(t)] = 0.(3.14)

Thus, (3.7) together with (3.14) and the Observation 1-4 imply that any solution

A = A(t) converges to an equilibrium point defined by (3.1) and (3.2).

Step 3: In order to show that (3.3) holds, observe first that

[N, A(∞)T + A(∞)] = 0 ⇔ A(∞)T + A(∞) = 2D(3.15)

with D = diag(d1, . . . , dn) diagonal and N = diag(n1, . . . , nn), ni 6= nj, i 6= j. In

particular, ([N, A + AT ])ij = (aij + aji)(nj − ni) = 0 if and only if aij + aji = 0,

i 6= j. Thus, (3.14) implies that A(t)T + A(t) converges to a real diagonal matrix 2D.

Moreover, from (3.15) follows that

A(∞) = D + S,(3.16)

where S = (sij) is a skewsymmetric matrix. Due to (3.7), A(∞) is a normal matrix,
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i.e. A(∞) = U∗ΛπU , U∗U = I, Λπ diagonal. Hence, one obtains

2D =A(∞) + A(∞)T = A(∞) + A(∞)∗

=U∗(Λπ + Λ∗
π)U = 2U∗ℜ{Λπ}U.

(3.17)

Because of the isospectral property of (1.2) (Theorem 1), the diagonals of D are

the real parts of the eigenvalues of A(0), i.e. D = diag(d1, . . . , dn) = ℜ{Λπ} =

diag(σπ(1), . . . , σπ(n)). Thus, what is left is to reveal the structure of S in (3.16).

Observe first that the form (3.16) and the fact that A(∞) is a normal matrix imply

[A(∞)T , A(∞)] = 0 ⇔ [S, D] = 0 ⇔ sij(dj − di) = 0,(3.18)

because 0 = [A(∞)T , A(∞)] = [D − S, D + S] = 2[D, S] and ([D, S])ij = sij(dj − di).

Notice moreover that due to the assumption that A(0) has eigenvalues with pairwise

distinct real parts except for complex conjugate pairs, there does not exist three

pairwise distinct indices i, j, k such that di = dj = dk (σi = σj = σk). Thus,

one can distinguish between two cases: Case 1 (complex eigenvalue): If (A(∞))ii =

di = σπ(i) = dj for some i and j(6= i) in {1, ..., n}, then the only element in the

ith column/row and jth row/column of S which may not vanish is sij (sji = −sij).

In particular, for all k different from i and from j, (3.18) implies dj − dk 6= 0 and

di−dk 6= 0 and thus skj = 0 and ski = 0 for all k 6= i, j. Case 2 (real eigenvalue): If for

some i, di = σπ(i) 6= dk for all k 6= i then (3.18) implies that the ith column/row of S

vanishes. By writing down S = (sij) and by taking into account that the eigenvalues

of A(0) are identical with the eigenvalues of A(∞), it can be easily observed that

the non-vanishing entries in S must be equal to sij = ±ωπ(i). Thus, the structure of

A(∞) is given by (3.3).

Finally, notice that V̇ ( see (3.6)) and Ẇ (see (3.11)) is zero if and only if (3.1)

and (3.2) is satisfied. Moreover, under the assumptions made on N and A0, any

equilibrium point A(∞) must be of the form (3.3). Thus, taking into account that

the eigenvalues of A(∞) must coincide with the eigenvalues of A0, it can be observed

that there exists exactly n! different configurations A(∞) which satisfy (3.3). Since

there is only a finite number of equilibrium points, they must be isolated.

In case the eigenvalues of A(0) have not pairwise distinct real parts, then Theorem

5 does not say anything if the solution converges to an equilibrium point or not.

However, all solutions of (1.2) converge to Nλ(A0)
, see (3.7). Moreover, numerical

simulations support that all solutions converge to an equilibrium point and it seems

that similar arguments (Observation 1 to 4) also apply to this case. This is a future

research point. Furthermore, if the spectrum of A(0) is real, then (3.3) implies that

A(∞) is diagonal. Notice also that the assumption on A(0) having pairwise distinct

real parts is generically true. Hence, Theorem 5 states that for almost all initial

conditions A0 ∈ R
n×n, A(∞) is of the form (3.3) (see examples in Section 4). Thus,

to the authors best knowledge, (1.2) is the only available differential equation in
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W = trace((AT + A)N)

Ω
(A

0
)

Au

1(∞)

Ẇ > 0 on Nλ(A0) \ {As
1(∞), Au

1(∞), Au
2(∞), Au

3(∞)}

U1

Ẇ > 0

Au

2(∞)

b3

b2

b1

U3

U2

A(t)

V̇ < 0

Nλ(A0)

b1 − b2 > 0

Nλ(A0
)

U2(0)

Au

2(∞)

U2

U1

Au

1(∞)

Ẇ > 0

Ω(A0)

B(ǫ)

U1(0)Au

3(∞)

As

1(∞)

Fig. 2. Basic idea (top) and a detailed illustration (bottom) of Observation 3 in the proof of

Theorem 5 for m = 1. The ambient space in these figures is considered to be the A0-isospectral set.

the literature which allows to simultaneously compute (with guaranteed convergence)

all the eigenvalues for generically any real matrix. In [29] convergence for general

nonsymmetric matrices has been proved in the case of a real spectrum. If the spectrum

is complex, the QR flow proposed in [29] has almost periodic solutions. The proof of

Theorem 5, however, allows to obtain many other flows with the same convergence

properties as (1.2). For example, the assumption in (1.2) that ν is a positive constant

can be easily relaxed to ν = ν(t) ≥ ν0 > 0.

3.2. A sorting property of (1.2). The double-bracket equation (1.1) can be

seen as a dynamical system which solves the following optimization problem in an

analog fashion:

Θo = arg max
ΘT Θ=I

trace(NΘT H0Θ),(3.19)

where N = diag(n1, . . . , nn) is a real diagonal matrix with pairwise distinct diagonals

and H0 is a symmetric matrix with eigenvalues σi, i = 1 . . . n. A result which dates

back to von Neumann [31] (see also [6–8]) shows that the optimal solution Θo satisfies

(Θo)T H0Θ
o = diag(σπ(1) . . . σπ(n)), where the diagonals σπ(i) are arranged in such a

way that trace(N(Θo)T H0Θ
o) = n1σπ(1) + . . . + nnσπ(n) is maximized. Moreover,

the relation between (3.19) and (1.1) is the following: H(∞) = (Θo)T H0Θ
o for al-

most all initial data H0 = H(0) = H(0)T . Notice that a solution H = H(t) of (1.1)

may end up in n! different equilibrium points, which are given by the n! permutations

diag(σπ(1) . . . σπ(n)). However, as shown in [8], only one equilibrium point is asymptot-

ically stable, namely that equilibrium point H(∞) which maximizes trace(NH(∞)).
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Since the optimal equilibrium point is the only stable one, (1.1) solves (3.19) “almost

always”. Exceptional cases are for example if one starts with a diagonal matrix H0

(see [6–8] for details). The sorting behavior of (1.1) follows now from the fact that

solving (3.19) can be seen as a way of sorting lists (eigenvalues). For example, if

0 ≤ n1 < n2 < . . . < nn, then the eigenvalues of H(∞) = diag(σπ(1), . . . , σπ(n)) are

arranged in such a way that σπ(1) ≤ σπ(2) ≤ . . . ≤ σπ(n).

From the above considerations, it is natural to ask if the same sorting behavior

is still present in (1.2), i.e. is it true that an asymptotically stable equilibrium point

A(∞) maximizes trace(NA(∞))? In the following, it is shown that this is indeed the

case.

To prove the desired result, one needs the tangent space of a manifold which is

described by the intersection of an isospectral set, lets say defined by a matrix Y

(Y -isospectral manifold), with the set of normal matrices.

Lemma 6. Assume Y ∈ R
n×n complex diagonalizable. Then the intersection of

the Y -isospectral manifold with the set of normal matrices, i.e.

Nλ(Y ) ={B ∈ R
n×n : λ(B) = λ(Y ) ∧ [BT , B] = 0},(3.20)

is a manifold and the tangent space TANλ(Y ) at A ∈ R
n×n of Nλ(Y ) is given by

TANλ(Y ) = {[U, A] ∈ R
n×n : U = −UT ∈ R

n×n}.(3.21)

Proof. Notice that the algebraic variety of all normal matrices has singularities

and is not a manifold. However, the intersection of the set of normal matrices with

the Y -isospectral manifold defined by a real n × n normal matrix Y is a (compact

connected) embedded submanifold in the space of matrices. This follows from the fact

that if Y is a normal matrix, then every other normal matrix B with λ(B) = λ(Y )

can be written as B = ΘY ΘT , Θ orthogonal (see [18], p.105, Theorem 2.5.8). Hence

Nλ(Y ) = {B ∈ R
n×n : B = ΘY ΘT , Θ orthogonal},(3.22)

i.e. Nλ(Y ) is an orbit of the normal matrix Y under the action of the orthogonal group

by conjugation.

By Proposition 8.1 in [17] (see p.355ff) it follows that this orbit is an embedded

submanifold in the space of matrices. Moreover, from (3.22) directly follows that

the tangent vectors at A are of the form [U, A], U = −UT , i.e. for a smooth curve

Θ = Θ(t), Θ(0) = I, t ∈ (−ǫ, +ǫ), Θ̇(t) = U(t)Θ(t), U(t) = −U(t)T , one obtains

Ḃ(t)|t=0 = [U(0), A] ∈ TANλ(Y ) for B(t) = Θ(t)AΘ(t)T .

Theorem 7. Let N = diag(n1, . . . , nn) be a real diagonal matrix with pairwise

distinct diagonals, i.e. ni 6= nj, i 6= j, and let A(0) = A0 be a matrix with eigenvalues

λi = σi + iωi, i = 1 . . . n, which have pairwise distinct reals parts except for complex

conjugate pairs. Then 2m out of n! equilibrium points are locally asymptotically sta-

ble, where m is the number of conjugate complex pairs of eigenvalues. All the other



158 CHRISTIAN EBENBAUER AND ALESSANDRO ARSIE

equilibrium points are unstable. The locally asymptotically stable equilibrium points

are (strict) global maxima of the function trace(NA) on Nλ(A0)
, i.e. if A(∞) is locally

asymptotically stable, then trace(NA(∞)) = n1σπ(1) + . . . + nnσπ(n) ≥ trace(NA) for

all A ∈ Nλ(A0)
.

Proof. The claims in the theorem are proved in 2 steps. Step 1: An equilibrium

point A(∞) which does not maximize trace(NA(∞)) on Nλ(A0)) is unstable. Step

2: An equilibrium point A(∞) which maximizes trace(NA(∞)) on Nλ(A0) is locally

asymptotically stable. There exist 2m locally asymptotically stable equilibrium points.

Step 1: It is shown that if an equilibrium point A(∞) on Nλ(A0) does not maximize

trace(NA(∞)) = n1σπ(1) + . . . + nnσπ(n), then A(∞) is not a local maximum of the

function

W (A) =
1

2
trace(N(A + AT ))(3.23)

on Nλ(A0). Since Ẇ is positive definite in a neighborhood on Nλ(A0), because the

equilibrium points are isolated, it follows by Chetaev’s instability theorem (Lemma

3) that A(∞) is unstable on Nλ(A0) and thus by Lemma 4 unstable.

It is shown now that the gradient of W : Nλ(A0) → R vanishes at A(∞) and that

the Hessian is negative semidefinite only if A(∞) maximizes trace(NA(∞)).

The directional derivative of W is given by

dW (A) =
1

2
trace(N(A′ + A′T ))(3.24)

with A′ ∈ TA(∞)Nλ(A0), i.e.

dW (A) =trace(N [U, A])(3.25)

with U = −UT . Because of A(∞) = D+S, D diagonal, S skewsymmetric, [N, D] = 0,

and [N, S] symmetric, dW vanishes at A(∞):

dW (A(∞)) =trace(N [U, D + S]) = 0.(3.26)

The quadratic form associated to the Hessian of W is given by

d2W (A) =trace(N [U, A′]) = trace(N [U, [U, A]]).(3.27)

Hence, one obtains d2W (A(∞)) = trace(N [U, [U, D + S]]).

d2W (A(∞)) = trace(N([U, [U, D]]) = trace([N, U ][U, D]).(3.28)

Notice that [N, U ] is symmetric and by direct calculation one obtains ([N, U ])ij =

uij(ni − nj), i ≤ j. Analogous, ([U, D])ij = −uij(di − dj), i ≤ j. Therefore,

d2W (A(∞)) = −
∑

i<j

(ni − nj)(di − dj)u
2

ij .(3.29)
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Thus, in order for (3.29) to be negative semidefinite,

(ni − nj)(di − dj) ≥ 0(3.30)

must hold. Condition (3.30) is called similarly ordered and implies that trace(ND),

D = diag(d1, . . . , dn) = diag(σπ(1), . . . , σπ(n)) is maximized [16], see also [6–8]. For

example, in case n1 > n2 > . . . > nn, d1 ≥ d2 ≥ . . . ≥ dn follows immediately from

(3.30). In other words, if (3.30) is not satisfied, i.e. W (A(∞)) is not a maximum,

then A(∞) is unstable.

Step 2: It is shown that all equilibrium points A(∞) which maximize trace

(NA(∞))(= trace(ND)) on Nλ(A0) are locally asymptotically stable. Notice first that

the maxima on Nλ(A0) are indeed equilibrium points. Suppose Ao
1
(∞), . . ., Ao

s(∞),

s ≤ n! are distinct equilibrium points which all satisfy (3.30) and consequently

W (Ao
1
(∞)) = . . . = W (Ao

s(∞)). Now, let Γ ∈ Nλ(A0), Γ 6= Ao
i (∞), i ∈ {1 . . . s},

be a real normal matrix i.e. Γ = U∗ΛπU , U∗U = I, Λπ diagonal. Then the eigen-

values of ΓT + Γ = 2U∗ℜ{Λπ}U are 2ℜ{Λπ}. Therefore, for ΓT + Γ not diagonal, it

follows that

W (Γ) =
1

2
trace(N(ΓT + Γ)) <

1

2
trace(N(Ao

i (∞)T + Ao
i (∞))) = W (Ao

i (∞)),(3.31)

because W is maximized only if ΓT + Γ is diagonal [31] (see also (3.19), [6, 8]). On

the other hand, if ΓT + Γ is diagonal, then Γ must coincide with an equilibrium point

because ΓT + Γ diagonal and Γ ∈ Nλ(A0) implies that Γ has the same structure (eq.

(3.3)) as an equilibrium point Ai(∞), i ∈ {1, . . . , n!} (same arguments as in the proof

of Theorem 5 - see (3.18) and below). Hence, the maxima of (3.23) on Nλ(A0)
are

Ao
1
(∞), . . . , Ao

s(∞).

Consequently, there exists a small neighborhood U ⊂ Nλ(A0) of Ao
i (∞) such that

ΓT + Γ is not diagonal for any Γ ∈ U \ {Ao
i (∞)}, and hence W (Γ) < W (Ao

i (∞)) for

all Γ ∈ U \ {Ao
i (∞)}. Therefore, W has a strict maximum at Ao

i (∞) (i.e. W (A) −
W (Ao

i (∞)) is negative definite in the neighborhood U) and since Ẇ is positive definite

on U , it follows that Ao
i (∞) is an asymptotically stable equilibrium point on Nλ(A0)

and by Lemma 4 (use V given by (3.4) where E = Nλ(A0) and the domain D of V

as well as the ambient space of E is considered to be the A0-isospectral manifold), an

asymptotically stable equilibrium point on the A0-isospectral manifold.

Finally, to count the number of stable equilibrium points, consider (3.3). Since

for an asymptotically stable equilibrium point the diagonal of A(∞) is fixed due to

(3.30), the number of asymptotically stable equilibrium points is given by the number

of equilibrium points generated by switching the sign of the imaginary parts (±ωπ(i)).

It can be easily seen that the number of possible configurations is 2m, where m is the

number of conjugate complex pairs of eigenvalues.
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Remark 8. Notice that in Theorem 7 locally asymptotically stability of an equi-

librium point refers to an locally asymptotically stable equilibrium point on the A0-

isospectral manifold where (1.2) flows. Notice also that if A(0) has a real spectrum,

then there exists only one stable equilibrium point, analogous to the double-bracket

equation [6–8]. However, if A(0) has complex conjugate eigenvalues, then there exist

several stable equilibrium points. For example, for a 3×3 matrix A(0) with eigenvalues

a ± bi, c, c > a and N = diag(1, 2, 3) two of six equilibrium points, i.e.

Ao
1
(∞) =







a b 0

−b a 0

0 0 c






, Ao

2
(∞) =







a −b 0

b a 0

0 0 c






,(3.32)

are asymptotically stable since trace(NAo
1
) = trace(NAo

2
) is maximal in these two

cases.

Summarizing, Theorem 7 allows to interpret (1.2) as a dynamical system which

solves the following optimization problem:

T o = arg max
T∈GLn(R)

trace(NT−1A0T )

s.t.
[

(T−1A0T )T , T−1A0T
]

= 0

(3.33)

with A(0) = A0 as in Theorem 7 and A(∞) = (T o)−1A0T
o asymptotically stable.

3.3. A Lie algebraic setting for (1.2). In the following, a Lie algebraic gen-

eralization of (1.2) is derived. In order to give a Lie algebraic interpretation of

the flow described by (1.2), first we will restrict to the case of semisimple Lie al-

gebras [1,21,23]. By definition, a semisimple Lie algebra over a field of characteristic

zero, like the real or complex fields, is a Lie algebra with the property that its Killing

form β(A, B) = trace(adAadB) is nondegenerate.

Recall also that for a semisimple Lie algebra g the adjoint representation ad : g →
gl(g), A 7→ adA(.) = [A, .] is faithful, so it enables to realize the abstract Lie algebra

g as a concrete Lie algebra of matrices, once a basis for g has been chosen.

Definition 9. Consider a semisimple Lie algebra g over the real field. A decom-

position of g into direct sum of subspaces

(3.34) g = t ⊕ p,

such that

[t, t] ⊂ t, [t, p] ⊂ p, [p, p] ⊂ t(3.35)

and such that the Killing form

β(A, B) = trace(adAadB) =

{

negative definite on t

positive definite on p
(3.36)
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is called Cartan decomposition. The projections from g to p and t are denoted by πp

and πt, respectively.

Notice that the Killing form is non-degenerate on g and t is a subalgebra of g,

while p is not. Moreover, t and p are mutually orthogonal with respect to the Killing

form.

To elucidate the relationship with the flow (1.2), consider the specific exam-

ple of g = sln(R), n ≥ 2, i.e. the semisimple Lie algebra of real n × n matrices

with zero trace. In this case, it is easy to see that the Cartan decomposition is

given by the set t = son(R) of skewsymmetric matrices and the set p of symmetric

matrices with zero trace. Moreover, the commutation relations among t and p are

nothing else then a restatement of the well-known commutation relations between

symmetric and skewsymmetric matrices, i.e. [skew, sym] = sym, [sym, sym] = skew,

[skew, skew] = skew. Since these commutation relations are fundamental in the anal-

ysis of the flow (1.2), it is no surprise that the setup of a Cartan decomposition for a

real semisimple Lie algebra is the right framework in order to generalize (1.2).

In a first step, it is necessary to clarify what is an appropriate analog of a

transposition of a matrix in a semisimple Lie algebra. Consider matrices A and

B in sln(R) and consider the transposition map (.)T . It is immediate to see that

[A, B]T = [BT , AT ], so T is an anti-automorphism of real matrix Lie algebras of order

2, since ((A)T )T = A.

For a real semisimple Lie algebra g one can define the following map:

Lemma 10. Given a real semisimple Lie algebra g with a Cartan decomposition

t ⊕ p. Then the map τ : g → g given by

τ(A) = πp(A) − πt(A)(3.37)

satisfies τ([A, B]) = [τ(B), τ(A)], i.e. τ is an anti-automorphism of g of order 2.

Notice that τ is essentially a Cartan involution. Observe also that t and p are

eigenspaces for τ , with eigenvalues −1 and 1 respectively. Using τ one can endow g

with an Euclidean scalar product, which is later used to define Lyapunov functions in

a proper way:

Lemma 11. Given a real semisimple Lie algebra g with a Cartan decomposition

t ⊕ p and let τ be given by (3.37). Then the pairing (., .) : g × g → R given by

(3.38) (A, B) = trace(adτ(A)adB)

is an Euclidean scalar product.

Before discussing how the operator τ is a generalization of the transpose operator

(.)T acting on matrices, an intrinsic definition of the transposition is given: Given

a linear map L : V → W between to Euclidean scalar product vector spaces (V, <

., . >V ) and (W, < ., . >W ). The transpose LT : W → V is defined as the unique linear
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map such that < LT (w), v >V =< w, L(v) >W for any v ∈ V , w ∈ W . Therefore,

to define the transposition of a vector space endomorphism, it is necessary to endow

the vector space with a scalar product (unless one introduces the dual of the vector

space).

Lemma 12. Let g be a real semisimple Lie algebra with a Cartan decomposition

t ⊕ p and a scalar product (3.38). Then, the following diagram is commutative:

g � _

ad

��

τ(.)
// g � _

ad

��

gl(g)
(.)T

// gl(g)

(3.39)

i.e. for any A ∈ g, adτ(A) = (adA)T , where the transposition is defined consid-

ering g equipped with (3.38). Moreover, adA is symmetric if and only if A ∈ p; it is

skewsymmetric if and only if A ∈ t.

The preceding lemmas can be found in standard books about Lie theory (see

e.g. [1,21,23]). Using the results established above, one can generalize the isospectral

flow studied in the previous section. Consider the following vector field on g:

ȧdA = ad[U(A),A],(3.40)

where A ∈ g, U : g → g. Notice that ad[U(A),A] = [adU(A), adA]. Notice also, since g is

a Lie algebra, the flow described by equation (3.40) will evolve in g, whenever U(A) ∈
g. Observe that (3.40) represents an evolution on g, but it is a matrix differential

equation like (2.1) due to the adjoint representation. One of the most important

properties of (3.40) is that it preserves the spectrum of any solution adA = adA(t)

(see Theorem 1). However, in the following an intrinsic form of (3.40) is considered,

namely:

Ȧ = [U(A), A],(3.41)

where A ∈ g, U : g → g, g is a real semisimple Lie algebra with a Cartan decomposition

t ⊕ p and a scalar product (3.38). By intrinsic is meant that while (2.1) is a matrix

differential equation, (3.41) is a differential equation in a finite-dimensional vector

space over R (Lie algebra) and the elements A ∈ g are vectors and not linear operators

per se. However, the isospectrality property of (3.41) is intrinsic, in the sense that

any realization of (3.41) as a matrix differential equation, for example through the

adjoint representation ad : g → gln(R), i.e. (3.40), is isospectral. Notice also that

(3.41) can be rewritten as

πp(Ȧ) = [πt(U(A)), πp(A)] + [πp(U(A)), πt(A)]

πt(Ȧ) = [πt(U(A)), πt(A)] + [πp(U(A)), πp(A)]
(3.42)
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with A = πp(A)+πt(A), U(A) = πp(U(A))+πt(U(A)). This will help in the following

to simplify the calculations in the upcoming proofs for Theorem 13, 14.

Recall now that (1.2) can be considered as feedback system given by the control

system (2.1) and the feedback (2.3). An important point of the feedback (2.3) is, that

the two feedback components [N, AT + A] and [AT , A] are orthogonal, in the sense

that the first component is skewsymmetric while the second one is symmetric. This is

important (but not necessary) in order to establish the convergence behavior stated in

Theorem 5. In order to emphasize this fact, the generalization of Theorem 5 is carried

out in two steps, first by specifying the symmetric component of the feedback only

(Theorem 13), and then by specifying also the skewsymmetric component (Theorem

14). In particular, in a first step, the feedback for (3.41) is chosen to be

(3.43) U(A) = πt(U(A)) + ν[τ(A), A],

where ν is a positive constant. Notice that

πp(U(A)) = ν[τ(A), A] = 2ν[πp(A), πt(A)] ∈ p.(3.44)

It is shown in Theorem 13 that this choice of feedback implies that the solution

of (3.41),(3.43) will converge into the set of normal elements, i.e. [τ(A), A] = 0,

independently of the choice of πt(U(A)). In a second step, the πt-component of the

feedback (3.43) is specified as

πt(U(A)) = [N, πp(A)],(3.45)

where N is a fixed element belonging to p. With this feedback, an analogous conver-

gence result as derived in Theorem 5 is established in Theorem 14.

Theorem 13. For any initial condition A(0) = A0 ∈ g , the solution A = A(t)

of (3.41),(3.43) converges to the set of normal elements, i.e.

lim
t→∞

[τ(A(t)), A(t)] = 0.(3.46)

Proof. Consider the following semidefinite function on g:

V (A) = (πt(A), πt(A)).(3.47)

First, it is shown that V is monotonically decreasing under the flow of (3.41),

(3.43), as long as the element A = A(t) is not normal. Taking the time derivative of

(3.47) along A = A(t), one gets

V̇ (A) = 2(πt(Ȧ), πt(A)).(3.48)

Now, using (3.42) and (3.44), it follows that

(3.49) V̇ (A) = −4ν
(

[πp(A), πt(A)], [πp(A), πt(A)]
)

< 0.
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This inequality is true as long as A is not normal, i.e. [τ(A), A] = 2[πp(A), πt(A)] 6= 0,

due to the fact that (., .) is a (positive definite) scalar product on g. Therefore,

since the function (3.47) is bounded from below by zero, all bounded solutions of

(3.41),(3.43) converges to the set of normal elements (use Lemma 2), i.e.

(3.50) lim
t→∞

[τ(A(t)), A(t)] = 0.

Finally, in order to prove that the limit (3.50) is well-defined for any initial condition,

even though the function V is only semidefinite, one can reason as follows. Suppose
(

A(t), A(t)
)

→ ∞, for t → Tsup, where Tsup is the supremum of the maximal interval

of existence of a solution for (3.41),(3.43), that is suppose that the solution A = A(t)

will blow up in finite time. On the other hand, it is clear from what has been proved

so far that V stays bounded as t → Tsup. Now, rewrite V as

V (A) = (τ(A) − A, τ(A) − A)(3.51)

and this is equal to

V (A) = trace(adτ(τ(A)−A)adτ(A)−A)

= 2(A, A) − trace((adA)2) − trace((adτ(A))
2).

(3.52)

Observe that trace((adA)2) is constant, since the time evolution of adA is isospec-

tral, and the same is true for the term trace((adτ(A))
2), because adτ(A) = (adA)T by

Lemma 12. Therefore, the proper function (A, A) has to remain bounded and thus

the solution exists for any future time.

Theorem 14. If the spectrum of adN is distinct and the spectrum of adA0
has

pairwise distinct real parts, then the solution A = A(t) converges to an equilibrium

point A(∞) with

[τ(A(∞)), A(∞)] = 0,(3.53)

[N, πp(A(∞))] = 0(3.54)

and λ(adA0
) = λ(adA(∞)).

Proof. Notice that (3.53) and (3.54) define an equilibrium point. Since Theorem

13 implies (3.53), it remains to show (3.54), i.e.

lim
t→∞

[N, πp(A(t))] = 0.(3.55)

To show this, consider the function

W (A) = (η, πp(A))

and its time derivative along the flow described by (3.41):

Ẇ (A) = (N, πp(Ȧ)).(3.56)
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Now, using (3.42), (3.43), and (3.45), it follows that

(3.57) Ẇ (A) = ([N, πp(A)], [N, πp(A)]) + 2ν([N, πt(A)], [πt(A), πp(A)]).

From the Theorem 13 follows that any solution A = A(t) exists for all t ≥ 0 and it

is bounded (in the norm induced by the scalar product introduced in g). Moreover,

it has been shown in Theorem 13 that any solution converges to the invariant set of

normal elements N = {A ∈ g : [τ(A), A] = 2[πt(A), πp(A)] = 0}, hence the positive

limit set Ω(A0) lies in N . Furthermore, for solutions A = A(t) in N , it follows from

(3.57) that

Ẇ (A) = ([N, πp(A)], [N, πp(A)]) > 0,(3.58)

whenever [N, πp(A)] 6= 0. Finally, using the same arguments as in the proof of Theo-

rem 5 (see equation (3.9) to equation (3.14)), it can be shown that the set of normal

elements {A ∈ g : [τ(A), A] = 2[πt(A), πp(A)] = 0} is invariant and that any solution

A = A(t) satisfies

lim
t→∞

[N, πp(A(t))] = 0.(3.59)

Notice that the equations (3.53) and (3.54) have a finite number of solutions because

of the facts the a semisimple Lie algebra has a faithful adjoint representation and

that any real Lie algebra g can be realized as a Lie subalgebra of gln(R) (Ado’s

Theorem, [21], Ch. VI). Furthermore, notice that the assumption that adN must be

diagonal is not necessary, because it can be always reduced to the diagonal case.

Remark 15. In the setup of a real semisimple Lie algebra with general elements

N and A0, the element A(∞) in Theorem 14 cannot be further specified. But by

making further assumptions, sharper statements are possible, like in Theorem 5, which

can be considered as a special case of Theorem 13 and 14 with g = sln(R).

Remark 16. Obviously, Theorem 5 applies to general matrices with nonzero trace

(A0 is an element in gln(R) but not in sln(R)). Since gln(R) is not semisimple, it is

natural to ask to what extent is it possible to generalize the previous results to non-

semisimple Lie algebras? One basic idea is to shift the trace, for example by S(A0) =

A0 − n−1trace(A0)I. Then S(A0) ∈ sln(R) and A(∞) = S(A(∞)) + n−1trace(A0)I.

This Ansatz can be used to establish analogous results for non-semisimple Lie algebras.

First, observe that if g is semisimple, then ad : g →֒ sl(g), because trace(adA) = 0 for

any A ∈ g as is immediate to see. Therefore, any semisimple Lie algebra is isomorphic

to a Lie subalgebra of sln, for some n. On the other hand, any real Lie algebra g can

be realized as a Lie algebra of matrices (Ado’s Theorem, [21], Ch. VI). Let g by any

real Lie algebra, and consider a faithful representation ρ : g → gl(V ), where V is a

real vector space. Observe that the trace map gives a fibration: trace : gl(V ) → R,

sending a matrix ρ(A) to the value of its trace. Moreover, sl(V ) is simply the inverse
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image of 0 and it is a hyperplane in gl(V ). Instead, La := trace−1(a) is not a Lie

algebra, it is a hyperplane and it is a translate of sln (any matrix A with trace a will

translate sln to trace−1(a)). Lets call s−a the translation sending La to L0 = sl(V ).

Now the equation

ρ̇(A) = [ρ(U(A)), ρ(A)](3.60)

is isospectral, so if A0 is the initial condition, then the corresponding flow evolves in

Ltrace(A0)
. Using the translation s−trace(A0) the flow can be also translated to L0 which

is a semisimple Lie algebra and where the previous construction applies. Notice that

in the case of a non-semisimple Lie algebra g, more data are required: the choice of

a faithful representation ρ and the choice of the initial condition that will determine

the translation to L0.

Summarizing, Theorem 13 and 14 establish the convergence behavior of the flow

described by

πp(Ȧ) = [[N, πp(A)], πp(A)] + 2ν[[πp(A), πt(A)], πt(A)]

πt(Ȧ) = [[N, πp(A)], πt(A)] + 2ν[[πp(A), πt(A)], πp(A)],
(3.61)

N ∈ p, for an abstract Lie algebra g endowed with a Cartan decomposition t ⊕ p.

Notice that for [πp(A), πt(A)] = 0, πp(Ȧ) = [[N, πp(A)], πp(A)], which is the double-

bracket equation. Moreover, the results in this subsection provide a framework for

several variations of flows of this type.

4. Applications.

4.1. Sorting Eigenvalues and Roots of Polynomials. Consider the polyno-

mial

p(x) = x5 − 9x4 + 41x3 − 103x2 + 128x − 78(4.1)

with the corresponding companion matrix

A(0) =

















9 −41 103 −128 78

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

















.

The roots of the polynomial p (eigenvalues of A(0)) are 3, 1± i, 2± 3i. Using Matlab,

numerical integration (ode15s) of (1.2) with ν = 1 and N = diag(1, 2, 3, 4, 5) yields:

A(5) =

















1.00 −1.00 0.00 0.00 0.00

1.00 1.00 0.00 0.00 0.00

0.00 0.00 1.99 −2.99 0.00

0.00 0.00 2.99 1.99 0.00

0.00 0.00 0.00 0.00 3.00

















,
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and with N = diag(1, 3, 5, 4, 2):

A(5) =

















1.00 0.00 0.00 0.00 1.00

0.00 1.99 0.00 2.99 0.00

0.00 0.00 3.00 0.00 0.00

0.00 −2.99 0.00 1.99 0.00

−1.00 0.00 0.00 0.00 1.00

















.

In both cases, one can observe the sorting property established in Theorem 7, and in

both cases trace(NA(5)) = 32, which is the maximal value.

4.2. Polynomial Spectral Factorization. In the following polynomial spec-

tral factorization problem, a sorting property of (1.2) is utilized which is not exactly

captured in Theorem 7. However, since it may be of interest in certain applications,

it is presented here and may be considered as a pointer for further investigations of

(1.2). Polynomial spectral factorization has many applications in control and estima-

tion theory (e.g. systems identification). The basic task is to factorize a polynomial

with spectral constraints (separation of roots). In particular, consider an even monic

polynomial with real coefficients and with no purely imaginary roots:

p(x) = x2n + a2n−2x
2n−2 + . . . + a2x

2 + a0.(4.2)

Then the spectral factorization of p is a decomposition of the form

p(x) = (−1)nq(x)q(−x),(4.3)

where the so-called spectral factor

q(x) = xn + bn−1x
n−1 + . . . + b1x + b0(4.4)

has roots in the open left half plane only. In order to obtain q, one can utilize the

dynamical system (1.2) in the following way. If

N =

[

c1In 0

0 c2In

]

,(4.5)

c1 < c2, is defined in this block diagonal form and if A(0) is the companion matrix

defined by (4.2), then

A(∞) =

[

A1(∞) 0

0 A2(∞)

]

.(4.6)

Due to the sorting property of (1.2), the trace of A1(∞) is minimized. In particular,

from (3.2) follows that

A(∞) =

[

−P1 0

0 P2

]

+

[

S1 S2

−ST
2

S3

]

(4.7)
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with P1, P2 symmetric and S1, S3 skewsymmetric. Analogous arguments along the

lines of the proof of Theorem 7 (Lemma 6) (diagonal matrices become now block-

diagonal matrices), lead to the condition (instead of condition (3.29)) that trace

(Y T
2

Y2P2 + Y2Y
T
2

P1) ≥ 0 in order that (4.7) is a stable equilibrium point (see con-

dition (3.28) where D = diag(−P1, P2) and Y2 is the (1,2)-block of Y ). Since A(∞)

is normal, the eigenvalues of −P1, P2 are the real parts of the eigenvalues of A0.

Assume now P1 has a negative eigenvalue σ with the corresponding eigenvector u,

then also P2 has the negative eigenvalue σ with the corresponding eigenvector v,

because the real parts are symmetric distributed w.r.t. the imaginary axis. There-

fore, with Y2 = uvT , one would get trace(Y2P2Y
T
2

+ Y T
2

P1Y2) < 0. Hence, both

P1 and P2 in (4.7) must be positive definite in order that (4.7) is a stable equilib-

rium point. Moreover, from (3.1) follows that −P1S2 − S2P2 = 0 or equivalently

(−P−1

2
⊗ P1 − I)vec(S2) = 0 which implies that S2 must zero, since −P−1

2
⊗ P1 is

negative definite. This means a stable equilibrium point A(∞) has indeed the form

(4.6) and the trace of A1(∞) is the sum of the n smallest real parts of the eigen-

values of A(0). Thus, the spectrum of the normal matrices A1(∞) and A2(∞) lie in

the open left half plane and in the open right half plane respectively. Hence, since

p(x) = det(xI2n −A(0)) = det(xI2n −A(∞)) = det(xIn − A1(∞))det(xIn − A2(∞)),

one obtains q(x) = det(xIn−A1(∞)), (−1)nq(−x) = det(xIn−A2(∞)). For example,

for a polynomial p(x) = x6 − 2x4 − 5x2 − 6 with

A(0) =























0 2 0 5 0 6

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0























(4.8)

one obtains

A1(4) =







−1.36 0.01 −0.97

0.97 −0.70 −0.52

−0.11 1.10 −0.7






, A2(4) =







1.41 −0.53 0.78

0.69 0.44 −0.78

0.64 0.89 0.96






(4.9)

and thus the spectral factor is q(x) = det(xI3 − A1(4)) = x3 + 2.82x2 + 2.97x + 2.45.

5. Summary. In this paper, dynamical systems of the form (1.2) has been an-

alyzed and generalized. Firstly, a sorting property has been established analogous

to the double-bracket equation. In particular, the sorting property is a consequence

of the fact that the function trace(NA) is maximized by (1.2) under the constraint

of A being normal. Secondly, a generalization of (1.2) in a Lie algebraic setting has

been established. In particular, introducing a transposition operator and an Euclid-

ian scalar product on a semisimple Lie algebra with a Cartan decomposition, (1.2)
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has been generalized to a flow in a Lie algebra that converges to a certain canonical

element. The use of a Cartan decomposition clearly reveals the underlying idea in

(1.2), namely the orthogonality between the symmetric and skewsymmetric feedback

components. Moreover, it allows to design other type of flows, which might be useful

in various contexts.

There are several open questions left for future research. For example, due to the

use of the Cartan decomposition, it is worthwhile to carry out a Lie group interpre-

tation (symmetric spaces) of the results established here. Other open questions are

the study of the convergence behavior of (1.2) if the equilibria are not isolated, the

discretization of (1.2), a generalization to the infinite-dimensional case, the structure

preserving properties of (1.2) for special eigenvalue problems, as well as further ques-

tions concerning properties of (1.2), e.g. the evolution of G = G(t) ∈ SLn(R) defined

by Ġ = UG, U = U(GA0G
−1) ∈ sln(R) given by (2.3), G(0) = I2. In particular, it is

easy to see that G(∞) delivers the corresponding eigenvectors for A0.

The authors would like to thank the anonymous referees for their very helpful

comments.
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