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INVARIANTS OF PSEUDO-RANDOM NUMBER GENERATORS

CLYDE F. MARTIN∗ AND MARA D. NEUSEL∗

Abstract. Pseudo-random number generators of the form xn+1 = P (xn), yn = h(xn) are

ubiquitous in applications ranging from cryptology to statistics. Such systems have been studied

extensively in the control theory literature when xn ∈ R. In this paper we make a detailed study

of the invariants of such systems when the underlying field is the Galois field of two elements. We

consider various groups that act on such system.

1. Introduction. Repeatable pseudo-random number generators are ubiquitous

in the technical world. Most such generators can be reduced to the following setting.

Let V be the vector space of dimension n over the field with two elements F2 = {0, 1}.

A dynamical system with observation consists of two mappings

P = (P1, . . . , Pn) : V −→ V ∈ map(V, V ), and

h : V −→ F2 ∈ map(V, F2).

We denote the set of all such systems by A, i.e.,

(P, h) ∈ A = map(V, V ) × map(V, F2).

We call P the generator of the system (P, h). Let (P, h) ∈ A and v1 ∈ V some

initial value. Set

vi+1 = P (vi), and yi = h(vi) ∀i = 1, 2, · · · .

Thus we obtain a sequence of elements in V

v1, v2 = P (v1), v3 = P (v2), · · ·

generated by the map P . We call it the P -sequence and denote it by {P (vi)}i∈N.

Furthermore we obtain a sequence of field elements

yi(v1) = h(vi) ∀i ∈ N

denoted by

{yi(v1)}i∈N.

This sequence is called a system of pseudo-random numbers.

Once an initial point v1 is chosen the output sequence is a string of zeros and

ones uniquely determined by P and h. These systems have been extensively studied,

see, e.g., [9] and [11]. We follow the developments found in [13], [14], and [15].
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Background

Systems of the form xn+1 = P (xn), yn = h(xn) and ẋ = P (x), y = h(x) have been

studied extensively in the control theory and statistical literature. The literature of

hidden Markov chains, see [7], studies these systems when the underlying process is

stochastic. In the case that the mappings are linear is well understood. When the

mappings are nonlinear there is much that is unknown and this case is an active

area of research. The study of nonlinear observability has touched on issues that are

related to the goals of this paper. The papers [2], [4], [6], and [8] are relevant in that

they are studying systems evolving on groups. In the papers [3] and [12] observability

properties are used to study the underlying dynamics of the system. There the duality

between control and observation is an important feature. There is a rich literature

that studies properties of observable systems including invariants but almost all of

the literature assumes an underlying topology of the state space. In this paper, since

the state space is finite, we concentrate on the algebraic aspects.

If the map P : V −→ V is bijective then the vector space V can be written as a

disjoint union of subsets stabilized by P

V = V1 ⊔ · · · ⊔ Vl,

where

Vi = {vi,1, P (vi,1), P 2(vi,1), · · · }.

Thus the Vi’s constitute the orbits of the P -action on V . Moreover, the orbits of P

are periodic, since for some ki ∈ N

vi,1 = P ki(vi,1).

Thus we obtain a set of l periodic systems of pseudo-random numbers {yj(vi,j)}j∈N

for i = 1, . . . , l. We note that the period of a system of pseudo-random numbers is a

divisor of the period of the respective P -orbits.

If P is not bijective, then the situation is a bit more complicated, because the

orbits of P for different starting values can intersect nontrivially. This means that in

the case of nonbijective maps P we obtain sequences in V , and hence in F2, that are

eventually periodic. We illustrate this with the next example.

Example 1.1. Enumerate the elements of the vector space V by

v1, . . . , v2n−1, 0.

Define P : V −→ V by

P (vi) = vi+1, i mod 2n − 1 and P (0) = v1.
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If we choose vi as initial value, we obtain the periodic orbit

vi, vi+1, . . . , v2n−1, v1, . . . , vi−1.

However, if we choose 0 as initial value we obtain the sequence

0, v1, . . . , v2n−1, v1, . . . , v2n−1, . . . .

Thus this orbit is periodic starting with the second value.

For practical reason it is desired to have a generator P that generates a sequence of

fundamental prime period p that is as large as possible. To accomplish this we assume

that p = 2n − 1 is a prime number. Such a prime is a Mersenne prime. The first few

are given by n = 2, n = 3, n = 5, n = 7, n = 13, n = 17, n = 19, n = 31, n = 61, and

n = 89.

To achieve this P has to cyclicly permute 2n − 1 elements in the vector space V .

As the example above shows the map P still could be noninvertible. In this case, the

period might start at the second value. However, in either case, we obtain a system

of pseudo-random numbers with a periodic orbit of length 2n − 1.

In this paper we primarily study systems with a periodic orbit of length 2n − 1

in general and leave the detailed study of the other cases to the subsequent paper

[16]. In Section 2 we present a short proof of the classical result that systems with

fundamental period 2n − 1 can be linearized. This proof can be easily generalized to

the general case of systems (P, h) with invertible generator P but possibly smaller

orbits. We note that linear recurring systems have been extensively studied in [11].

In particular we are interested in systems with observable output sequences:

We denote the set of output sequences of the system (P, h) by

D(P, h) = {{yi(v1)}i∈N : v1 ∈ V }

where v1 is the chosen initial data. A system (P, h) is called observable if the set

D(P, h) is in one-to-one correspondence to V . We will see in Section 3 that systems

with fundamental P -orbit of length 2n − 1 are observable if and only if the map h

is not periodic. This has several generalizations to systems with smaller P -orbits or

with invertible generators P .

In Section 4 we see that for a map g : V −→ V preserving the P -orbits the

systems (P, h) and (gPg−1, hg−1) have upto cyclic shift the same output sequences.

Thus they are simultaneously observable. In Sections 5 and 6 we show that every

system (P, h) can be generated by polynomial functions.

2. Systems with Period 2n−1. We call two systems (P, h), (Q, k) ∈ A equiv-

alent if they have the same periodic output sequences of length at least two (with

possibly different starting values). We denote by A/ ∼ the associated set of equiva-

lence classes.
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In this section we show that for a system (P, h) with a maximal periodic orbit of

length 2n − 1 there exists an equivalent system with invertible linear generator.

Let (P, h) be a system with a maximal periodic P -orbit of length 2n − 1

v1, v2 = P (v1), . . . , v2n−1 = P (v2n−2) = P 2n−2(v1), P (v2n−1) = v1,

for vi ∈ V . Since the output mapping h : V −→ F2 is defined by setting values of

h(v) ∈ F2,

there are 22n

distinct output functions h.

Theorem 2.1. Let (P, h) have a periodic P -orbit of length 2n − 1. Then there

exists a system (P , h) such that

• P is invertible.

• P (0) = 0.

• V = V \ 0 ⊔ {0} is a subdivision of V into irreducible orbits.

• (P , h) is equivalent to (P, h).

Proof. The orbit of P is an ordered set which we denote by [v1, . . . , v2n−1]. Assume

it does not contain zero, then we define

P (v) =





0 if v = 0,

P (v) otherwise.

Furthermore, setting h(v) = h(v). leads to a system (P , h) with the same output

sequence of period 2n − 1, but invertible generator.

If the orbit [v1, . . . , v2n−1] of P does contain 0 ∈ V , say vi0 = 0, we can reduce to

the preceding case in the following way: Let v0 ∈ V be the element not contained in

the periodic orbit of P above. Then set

P (v) =





0 if v = 0,

P (0) if v = v0,

v0 if v = vi0−1,

P (v) otherwise.

Thus we obtain the system (P , h), so that P has orbits V \ {0} and {0} as desired

and

h(v) =






h(0) if v = v0,

h(v0) if v = 0,

h(v) otherwise.

Thus the System (P , h) has the same periodic output sequence. Moreover, by con-

struction the map P is invertible.
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Thus we can assume without loss of generality that a system with maximal period

2n − 1 is generated by an invertible map P : V −→ V . The next result shows that we

even can assume that P is linear1. We give a proof for the sake of completeness.

Theorem 2.2. Let (P, h) be a system such that its generator P has fundamental

period 2n − 1. Then there is an equivalent system (L, hL) with an invertible linear

generator L.

Proof. If the generator P has maximal period 2n − 1 then by the preceding

Theorem 2.1 we can assume that P cyclicly permutes the nonzero elements of the

vector space V and P (0) = 0.

The general linear group GL(n, F2) has order

(2n − 1)(2n − 2) · · · (2n − 2n−1).

It is a doubly transitive permutation group on V \ 0 containing an element L ∈

GL(n, F2) of cycle length (and hence order) 2n−1. Such an element is called a Singer

cycle. See Satz 7.3 in Section II.7 of [10].

Thus by adjusting the map h : V −→ F2 we obtain a System (L, hL) with the

same output sequence.

The following generalization for individual periodic orbits of length p is straight-

forward:

Corollary 2.3. Let (P, h) be a system such that P has a periodic orbit of period

p, [v1, . . . , vp], with output sequence of period [y1, . . . , yp]. Then there is a system

(L, hL) with an invertible linear generator L and with a periodic output sequence of the

same period [y1, . . . , yp] if and only if the general linear group GL(n, F2) contains an

element of order kp for some k ∈ N.

On the other hand, if P is invertible then we can generalize the above result as

follows:

Corollary 2.4. Let (P, h) be a system such that P is invertible. Let

V = V1 ⊔ · · · ⊔ Vl

be a subdivision of the vector space V into disjoint periodic P -orbits. Then there is

an equivalent system (L, hL) with an invertible linear generator L if and only if there

exists an element L ∈ GL(n, F2) such that V decomposes into periodic L-orbits

V = V ′
1 ⊔ · · · ⊔ V ′

l

with |V ′
i | = |Vi|.

Remark 2.5. Since any linear form fixes the origin we obtain in the setting of

the preceding corollary that necessarily one of the orbits Vi has length one.

1The first author was made aware of this result by J. Rosenthal.
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We note that the advantage of linear maps L, in contrast to arbitrary maps P , is

that they are predictable, in the sense that if the values L(v1), . . . , L(vk) are known

and the set {v1, . . . , vk} contains a basis of V , then L is known, and hence its entire

orbits.

3. Observability. A system (P, h) is said to be observable if there is a one-to-

one mapping from initial data to output sequences. Let

D(P, h) = {{yi(v1); v1}
∞
i=1 : v1 ∈ V }

be the set of output sequences. Thus observability is the condition that the vector

space V is in one-to-one correspondence with D.

In this section we present criteria for observability of systems (P, h) such that

either P is invertible or the fundamental period of P has length 2n − 1.

In general the question of which systems are observable is quite complex. However,

for linear systems there is a direct answer which is classic.

Theorem 3.1. Let A : V −→ V be a linear map and let h : V −→ F, h(v) = cv

for some c ∈ Fn. The system (A, h) is observable if and only if

det




c

cA

...

cA
n



6= 0.

For polynomial systems there is no general characterization of observability, see

for example [5]. Indeed, in this case the answer depends on the ground field as the

next example shows.

Example 3.2. Let V = F. Define a system (P, h) by

P : V −→ V , v 7→ v

and

h : V −→ F, v 7→ v
3 − 1.

If the ground field F = R is the real numbers then this system is observable, because

cube roots are unique. However, if F = C is the field of complex numbers, this is no

longer true and the system is no longer observable.

For arbitrary systems with fundamental period of prime length 2n − 1 we obtain

a similarly easily checked criteria.

Theorem 3.3. Let (P, h) have a periodic P -orbit of length p = 2n − 1. Further

assume that 2n − 1 is prime. The system is observable if and only if h is not constant

on V \ {0}.
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Proof. Since the period of P is a multiple of the period of the random number

sequence, and since p = 2n−1 is prime, we have that the sequence of random numbers

has either period one or period 2n − 1. In the first case h is constant while in the

second case the system is observable.

As a corollary we have the following.

Corollary 3.4. Let (P, h) be a system with invertible P . Let V = V1 ⊔ · · · ⊔ Vl

be a subdivision into irreducible P -orbits. Assume that |Vi| = 1 or prime. Then the

system is observable if and only if h discriminates between the orbits of P and is not

constant on any of these.

The corollary is reminiscent of the seminal result of D. Aeyels, [1].

We note that for observability mainly the output sequence matters. Thus we can

drop the assumption on the primality of the orbit lengths, replace it by a suitable

condition on the map h and obtain the following result.

Theorem 3.5. Let (P, h) be a system with maximal periodic P -orbit of length

2n − 1. Then this system is observable if and only if the output sequence {h(vi)}i∈N

has fundamental period 2n − 1.

Proof. By Theorem 2.2 the system (P, h) is equivalent to a system (L, hL) with L ∈

GL(n, F2). Thus the 2n − 1 periodic sequences of P are in one-to-one correspondence

to the sequences of period 2n − 1 of L. Furthermore, the additional orbit of P of

period 2n−1 (if P is not bijective), resp. of period one (if P is bijective), corresponds

to the orbit {0} of L. Thus the set of all output sequences of (P, h) is in one-to-one

correspondence to the output sequences

D(L, hL)

where L ∈ GL(n, F) is a Singer-cycle, and hL : V −→ F2 is a suitable map. Thus hL is

not periodic on the ordered set [v1, P (v1), . . . , P
2n−2(v1)] if and only if |D(L, hL)| =

2n = |V |.

Similarly to Corollaries 2.3 and 2.4 we have the following:

Corollary 3.6. Let (P, h) be a system with invertible P . Let V = V1⊔· · ·⊔Vl be

a subdivision into irreducible P -orbits. Assume that there is an element L ∈ GL(n, F)

and a map hL such that the system (L, hL) is equivalent (P, h). Then the system is

observable if and only if h discriminates between the orbits of P and is not periodic

on any of these.

4. G-Equivalent Systems. Let G be the group of all invertible mappings on V

G = {g : V −→ V , vi 7→ g(vi)},

where the group composition is given by composition of maps. We note that since

G consists of all permutations of elements in V , it is abstractly isomorphic to the

symmetric group on 2n letter, Σ2n .
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In this section we study the action of G on set of all systems A given by

G ×A −→ A, (P, h) 7→ (gPg−1, hg−1).

Proposition 4.1. Let (P, h) ∈ A with invertible P . Let

V = V1 ⊔ · · · ⊔ Vl

be a subdivision of the vector space into disjoint P -orbits. If g ∈ G preserves the orbits

then the two systems (P, h) and (gPg−1, hg−1) are equivalent.

Proof. Let vi,1 ∈ Vi. Set |Vi| = di. Thus the system (P, h) has output sequences

with period

h(vi,1), h(vi,2), . . . , h(vi,di
)

for any i = 1, . . . , l. By assumption we have that

gvi,1 ∈ Vi.

If we choose gvi,1 as the starting value then the system (gPg−1, hg−1) has gPg−1-

sequence

gvi,1, gvi,2, gvi,3, . . . , gvi,di

and output sequence

h(g−1gvi,1) = h(vi,1),

h(g−1gPg−1gvi,1) = h(P (vi,1)) = h(vi,2),

· · ·

h(g−1gPg−1gvi,di−1
) = h(P (vi,di−1

)) = h(vi,di
)

as desired.

Remark 4.2. We cannot subdivide V into P -orbits if P is not bijective. However,

in this case we can phrase the preceding result “orbitwise”: Let V1 ⊆ V be a P -orbit,

and let g ∈ G act on V1. Then the output sequences of (P, h) and (gPg−1, hg−1)

associated to the orbit V1 are identical upto a cyclic shift.

The preceding result motivates the following definition.

Definition 4.3. Let V• = {V1, . . . , Vl} be a subdivision of the vector space V into

l disjoint subsets. Denote by GV•
⊆ G the subset of all invertible maps g : V −→ V

that preserve V•, i.e.,

g(Vi) = Vi i = 1, . . . , l.
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It is easily seen that GV•
≤ G forms a subgroup. It is the largest subgroup of G acting

on the set A(V•) of all systems (P, h) such that V• is a subdivision of V into periodic

P -orbits.

Remark 4.4. The group GV•
acts also on the set of all systems (P, h) such that

V• is a subdivision of V into blocks fixed by P . In this case the Vi’s might not be

orbits, but unions of orbits. Furthermore, GV•
might not be the largest subgroup of G

acting on the set of these systems.

Remark 4.5. By definition the set A(V•) consists only of systems (P, h) with

invertible P . If P is not invertible, then the union of the subsets in V• might not be

the entire space V . Conversely, if V1 ∪ · · · ∪ Vl = V then A(V•) consists of systems

with invertible generator.

Theorem 4.6. Consider the action of GV•
on A(V•). Let (P, h) ∈ A(V•). Then

the GV•
-orbit of (P, h) consists precisely of all systems (Q, k) ∈ A(V•) that have upto

cyclic shift the same output sequences.

Proof. The preceding Proposition 4.1 shows that any two elements in one GV•
-

orbit have upto cyclic shift the same output sequence.

Conversely, let (P, h) and (Q, k) be systems in A(V•). Let (P, h) have an orbit

with initial value v1 and output sequence {yi(v1)}i and let the system (Q, k) have an

orbit with initial value w1 with output sequence {ηi(w1)}i. Assume that they differ

by a cyclic shift:

yi(v1) = ηi+m(w1)

for some fixed m. Then choose an element g : V −→ V ∈ G such that

g(wi+m) = vi ∀i.

We can do that simultaneouly for all orbits since they are disjoint and g is an arbitrary

bijective function from V to itself.

We obtain

gQg−1(vi) = gQ(wi+m) = g(wi+m+1) = vi+1 = P (vi)

and

h(vi) = k(wi+m) = k(g−1
vi).

Thus (P, h) and (Q, k) lie in the same GV•
-orbit.

The preceding result is not the converse to Proposition 4.1, because the GV•
-orbit

of a system (P, h) in A(V•) consists of systems that have exactly the same output

sequences of length one. Furthermore, we note that not all equivalent systems of

(P, h) are in A(V•), since they might have different P -orbits. However, the preceding

result tells us that GV•
acts on A(V•)/ ∼ and there it acts trivially. In other words the
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equivalence classes of elements in A(V•) contain the GV•
-orbits on A(V•), to be precise

an equivalence class contains all GV•
-orbits whose output sequences differ only on the

orbits of length one. It thus allows us to count the number of systems equivalent to

some given (P, h) as we illustrate with the next example.

Example 4.7. Let (P, h) be a system with fundamental period 2n − 1. Thus

V = V \ {0} ⊔ {0} is a decomposition of the vector space V into disjoint minimal

orbits. By Theorem 2.2 (P, h) is linearizable. There are (2n − 2)! possible functions

P : V −→ V with the same fundamental orbits. Thus there are (2n − 2)!(22n

− 4)

systems (P, h) with an output sequence of fundamental period 2n − 1, since we have

to subtract the ones with a map h constant on V \ 0. Moreover each equivalence class

of these contains 2(2n − 1)! elements. Thus there are

(2n − 2)!(22n

− 4)

2(2n − 1)!
=

22n−1

− 2

2n − 1

equivalence classes. For, e.g., n = 2 this gives 2 classes represented by the two output

sequences

0, 0, 1 and 0, 1, 1.

For n = 3 we find 18 classes represented by

0, 0, 0, 0, 0, 0, 1 0, 0, 0, 0, 0, 1, 1 0, 0, 0, 0, 1, 0, 1

0, 0, 0, 1, 0, 0, 1 0, 0, 0, 0, 1, 1, 1 0, 0, 0, 1, 0, 1, 1

0, 0, 1, 0, 0, 1, 1 0, 1, 0, 0, 0, 1, 1 0, 0, 1, 0, 1, 0, 1

and their negatives.

5. Normalization: P as a Polynomial Function. In this section we want to

present what we want to call the normalization of the system (P, h).

Let (P, h) be a system of period p = 2n − 1, and consider the output sequence

{yi(v1)}i∈N,

where

yi(v1) = h(P i−1(v1)).

Denote by V̂ the n-dimensional vector space over the field with 2n elements, F2n . In

this section we show how to construct polynomial functions Fi

F = (F1, . . . , Fn) : V̂ −→ V̂

such that for some some starting value w1 ∈ V̂

(∗) yi = xn(F i−1(w1)).
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The new system (F, xn) is called the normalization of the system (P, h).

Remark 5.1. We pause to explain the difference between polynomials and poly-

nomial functions. A polynomial in n variables over F2 is of the form

γ +

n∑

i=1

αixi +
∑

j 6=k

βjkxjxk,

(where γ, αi, βjk ∈ F2) because a2 = a for any element a ∈ F2. In contrast, a

polynomial function in n variables over any field F

f ∈ F[x1, . . . , xn],

is a polynomial in F[x1, . . . , xn] (where F denotes the algebraic closure of F) such that

f(v) ∈ V = Fn
2 for all v ∈ V . In particular, if F = F2 we have that

f(x1, . . . , xn)2 6= f(x1, . . . , xn)

as polynomial functions: they take the same values on any v ∈ V = Fn
2 , but for values

from, say, F
n
4 they are different.

Proposition 5.2. Let (P, h) be a system with periodic output sequence of fun-

damental period p = 2n − 1 with output sequence {yi(v1)}
∞
i=1. Let V̂ = F

n
2n be the

n-dimensional vector space over the field F2n . Then there exists a polynomial function

F = (F1, . . . , Fn) : V̂ −→ V̂

together with an initial value w1 ∈ V̂ such that the system (F, xn) has the same output

sequence as (P, h).

Proof. Pick 2n − 1 pairwise distinct elements w′
1, . . . , w

′
2n−1 in the vector space

F
n−1
2n . These exist since the order of the vector space is given by

|Fn−1
2n | = (2n)n−1 = 2n(n−1) ≥ 2n − 1.

Then set

wi = (w′
i, yi) ∈ V̂ .

Then we need that

Fj(wi) = (wi+1)j mod 2n − 1, ∀j = 1, . . . , n, i = 1, . . . , 2n − 1.

These are 2n − 1 conditions on the function Fj , for j = 1, . . . , n. Thus we need

(at least) this many parameters for each Fj . Since the vector space of homogeneous

polynomial functions of degree d over any field F has dimension given by

dimFF[V ](d) =

(
n + d − 1

d

)
,
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a nonhomogeneous polynomial function of degree d has

1 +

(
n

1

)
+

(
n + 1

2

)
+ · · · +

(
n + d − 1

d

)

parameters. Let dj be the degree of Fj . Thus if

(◦) 1 +

(
n

1

)
+

(
n + 1

2

)
+ · · · +

(
n + dj − 1

dj

)
≥ 2n − 1

for all j, there exists a function F as desired. Since two different polynomial functions

of degree 2n − 1 have different values already in F2n we let F1, . . . , Fn have degree

d1 = · · · = dn = 2n − 1.

Then the inequality (◦) is satisfied. By construction the orbit length of F is 2n − 1.

Remark 5.3. In the preceding proof we could have chosen the degree d to be

smaller. However, d = 2n − 1 works even when the functions F1, . . . , Fn are homoge-

neous since
(

n + 2n − 2

2n − 1

)
≥ 2n − 1.

We illustrate this result with an example.

Example 5.4. Let V = F2
2 be the two-dimensional vector space over the field of

two elements. Let (P, h) be the system given by

P (x1, x2) = (x1 + x2, x1) and h(x1, x2) = x1 + x2.

Then the vector space V has two disjoint orbits

{(0, 0)} and {(0, 1), (1, 0), (1, 1)}.

The latter has output sequence 1, 1, 0. In order to find a suitable F we extend the

ground field to F4 = {0, 1, α, α2}. Then we set

w
′
1 = 0, w

′
2 = 1, and w

′
3 = α.

Thus

w1 = (0, 1), w2 = (1, 1), and w3 = (α, 0).

By our result it is enough to check homogeneous polynomial functions of degree two.

We find that the two polynomials

F1(x1, x2) = α2x1x2 + x2
2

F2(x1, x2) = α2x2
1 + αx1x2 + x2

2
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have an orbit

{(0, 1), (1, 1), (α, 0)}

with the desired output sequence 1, 1, 0. In this case we have that
(

n + d − 1

d

)
= 3 = 2n − 1,

i.e., the above solution is unique among homogeneous polynomial functions of degree

two. However, if we would allow to use inhomogeneous polynomials of degree two, or

polynomials of higher degree, then we would find more polynomial functions F with

the required properties.

Thus the disadvantage of the normalization of a system (P, h) is that it is usually

not unique, cf. Section 2 where we constructed an equivalent system (L, hL) with linear

invertible generator. However, the following result shows that we can find polynomial

functions F for any periodic P -orbit structure, cf. Corollary 2.4 where this was not

always possible.

Theorem 5.5. Let (P, h) be an arbitrary system with l fundamental periodic

P -sequences. Then there exists a polynomial function

F = (F1, . . . , Fn) : V̂ −→ V̂

together with initial values wi1 ∈ V̂ , i = 1, . . . , l, such that the system (F, xn) has the

same periodic output sequences as (P, h).

Proof. Let F2n be the field with 2n elements. By assumption

V1 ∪ · · · ∪ Vl ⊆ V

Let |Vi| = si. Thus there are s = s1 + · · · + sl = |V1| + · · · + |Vl| ≤ |V | = 2n different

elements in these orbits. Pick s pairwise distinct elements w′
1,1, . . . , w

′
l,sl

in the vector

space F
n−1
2n . These exist since the order of the vector space is given by

|Fn−1
2n | = (2n)n−1 = 2n(n−1) ≥ 2n ≥ s.

Then set

wi,ji
= (w′

i,ji
, yi,ji

) ∈ V̂ .

Then we need that

Fk(wi,ji
) = (wi,ji+1)k mod 2n − 1, ∀k = 1, . . . , n, i = 1, . . . , l, ji = 1, . . . , si.

These are s conditions on the functions Fk, for k = 1, . . . , n. Thus we need (at least)

this many parameters for each Fk.

Let dk be the degree of Fk. As in the preceding result we can find polynomial

functions Fk if we choose suitably high degrees.
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6. More on Normalizations. In this section we want to introduce a second

method to represent a system (P, h) by polynomial functions. This time we need just

two polynomial functions (and not n), but we need to change the vector space once

more. We start with an example.

Example 6.1. Assume that p = 2n − 1 is prime and let (P, h) be a system with

fundamental output period 2n − 1. Let Fp be the prime field with p elements. Let

Fp = {w′
1, . . . , w

′
p}. Set wi = (w′

i, yi) ∈ F2
p for i = 1, . . . , p. We need two polynomial

functions F1 and F2 on F2
p such that

F1(w
′
i, yi) = w

′
i+1, and

F2(w
′
i, yi) = yi+1.

This gives 2n − 1 conditions for both functions. If we assume that F1 and F2 are

homogeneous then there is exactly one solution to this problem if deg(F1) = deg(F2) =

2n − 2. (If the degrees are larger there are of course more than one solution.)

So, again we simulate the system (P, h) by polynomial functions. The advantage

here is that we need only two functions. The disadvantage is that even though the

output is again a string of zeros and ones, the input is not a vector in Fn
2 but in F2

p.

Denote by Ṽ = F2
2n the vector space of dimension two over F2n .

Theorem 6.2. Let (P, h) be an arbitrary system with l fundamental periodic

P -sequences. Then there exists a polynomial function

F = (F1, F2) : Ṽ −→ Ṽ

together with initial values wi1 ∈ Ṽ , i = 1, . . . , l, such that the system (F, xn) has the

same periodic output sequences as (P, h).

Proof. Let V1, . . . , Vl ⊆ V be the periodic P -sequences of length si, i = 1, . . . , l.

Denote by s = s1+· · ·+sl. Then choose s different elements w′
i,ji

∈ F2n for i = 1, . . . l,

ji = 1, . . . , si. (Note that s ≤ 2n.) Let yi,ji
be the jith output of sequence i. Then

set

wi,ji
= (w′

i,ji
, yi,ji

).

We obtain the following s conditions on the polynomial functions F1 and F2

F1(w
′
i,ji

, yi,ji
) = w

′
i,ji+1, and

F2(w
′
i,ji

, yi,ji
) = yi,ji+1.

As in the example above there is a solution to this system of equations for suitably

high degree polynomials F1 and F2.
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