
COMMUNICATIONS IN INFORMATION AND SYSTEMS c© 2007 International Press
Vol. 7, No. 2, pp. 195-206, 2007 006

SPECIAL SOLUTIONS TO SOME KOLMOGOROV EQUATIONS

ARISING FROM CUBIC SENSOR PROBLEMS∗

STEPHEN S.T. YAU† , RUXU DU‡ , AND LIXING JIA§

1. Introduction. Ever since the technique of the Kalman-Bucy filter was pop-

ularized, there has been an intense interest in developing nonlinear filtering theory.

Basically we have a signal or state process x = {xt} which is usually not observable.

What we can observe is a related process y = {yt}. The goal of nonlinear filtering is to

determine the conditional expectation of the form E[φ(xt) : ys, 0 ≤ s ≤ t] where φ is

any C∞ function or even better to compute the entire conditional probability density

ρ(t, x) of xt given the observation history {ys : 0 ≤ s ≤ t}. In practical applications,

it is preferable that the computation of conditional probability density be preformed

recursively in terms of a statistic θ = {θt}, which can be updated by using only the

latest observations.

In some cases, θt is computable with a finite system of differential equations driven

by y. This leads to the ideal notion of finite dimensional recursive filter. By definition

such a filter is a system:

dθt = α(θt)dt +

p∑

i=1

βi(θt)dyit

driven by the observation yit where yit is the i-th component of yt, i = 1, · · · , p;

together with an output map

E[φ(xt) : ys, 0 ≤ s ≤ t] = γ(θt).

In the 1960s and early 1970s, the basic approach to nonlinear filtering theory

was via “innovation methods” originally proposed by Kailath [Ka] and Frost and

Kailath [Fr-Ka] and subsequently rigorous developed by Fujisaki, Kallianpur, and

Kunita [F-K-K] in 1972. As pointed out by Mitter [Mi], the difficulty with this

approach is that innovation process is not, in general, explicitly computable (except
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in the well-known Kalman-Bucy case). In the late 1970s, Brockett and Clark [Br-

Cl], Brockett [Br] and Mitter [Mi] proposed the idea of using estimation algebras to

construct a finite-dimensional nonlinear filter. In 1983 Brockett proposed to classify

all finite dimensional estimation algebras. After many years hard work, Yau and his

coworkers have finally classified all finite dimensional estimation algebras of maximal

rank ([Ya-Hu1], [Ch-Ya], [Y-W-W]). In particular Yau and Hu [Ya-Hu1] proved that

the existence of finite dimensional estimation algebra of maximal rank will imply that

the drift term of the state dynamic is an affine vector field plus a gradient vector

field and the drift term of the observation dynamic is an affine vector field. In [Ya]

(see also [Ya-Hu2]) Yau gave sufficient conditions for existence of finite dimensional

nonlinear filter.

Despite the success of the classification of finite dimensional estimation algebras

of maximal rank, the problem of classification of non-maximal rank finite dimensional

estimation algebras is still wide open except for the case of state space dimension 2

which was finished by Wu and Yau [Wu-Ya] and some construction of non-maximal

rank finite dimensional algebras by Rasoulion and Yau [Ra-Ya]. Due to the difficulty

of the problem, Brockett suggested that one should understand the low dimensional

estimation algebras first. In [Ya-Ra], Yau and Rasoulian have classified estimation

algebras of dimension at most four. Recently, Chiou, Chiueh and Yau [C-C-Y] gave

a structure theorem for estimation algebras of dimension five. Using this structure

theorem, they have found a new class of finite dimensional estimation algebras.

Although it is an interesting and challenging problem to classify all finite dimen-

sional filters, it appears that from Yau’s previous woks, finite dimensional filter simply

does not exist for many practical situations. In [Ya-Ya1], Yau and Yau proved the

existence and decay estimates of the solution to the DMZ (Duncan-Mortensen-Zakai)

equation under the assumption that the drift terms f(x) and h(x) of the signal dy-

namic and observation dynamic respectively have linear growths. Later they [Ya-Ya2]

showed that the real-time solution of DMZ equation can be reduced to off-time so-

lution of Kolmogorov equation if f(x) and h(x) have linear growths. However, the

results of [Ya-Ya2] do not cover the cubic sensor problem which has received consider-

able attention in the past (see for examples [Ca-Ge], [Bu-Pa], [H-M-S], [Oc], [S-B-S],

and [Su]). Recently Yau and Yau [Ya-Ya3] finally proved that the real-time solution

of DMZ equation can be reduced to off-time solution of Kolmogorov equation if the

growth of the drift term of observation dynamic at infinity is faster than the growth

of the drift term of signal dynamic at infinity. Thus they have theoretically solved

the nonlinear filtering problems which one encounters in practical environments.

In view of Yau-Yau’s theoretical solution to the nonlinear filtering problem, it

is natural for us to ask how to solve the Kolmogorov equation associated to the
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signal observation model in nonlinear filtering theory. In this paper we consider the

Kolmogorov equation arising from the cubic sensor problem. Let f(x) = ax+b be the

drift term of the state dynamic and h(x) = h0x
3 + h1x

2 + h2x + h3 be the drift term

of the observation dynamic. Here a, b, h0, h1, h2 and h3 are constants. Thus there

is a 6 dimensional family of Kolmogorov equations with parameters a, b, h0, h1, h2

and h3. We shall show that there is a 4 dimensional subfamily of these Kolmogorov

equations which admit closed form solution.

In section 2, we shall recall the basic filtering problem. In section 3, we review the

reduction from robust DMZ equation to Kolmogorov equation. In section 4, we shall

consider the 7 dimensional family of Kolmogorov equations arising from the cubic

sensor problem. It is interesting to find solutions of these Kolmogorov equations

because the solutions of these Kolmogorov equations will give us the best predictions

of the signals without observation data available.

2. Basic Filtering Problem. The filtering problem considered here is based

on the following signal observation model in Ito form:

(2.1)

{
dx(t) = f(x(t))dt + g(x(t))dv(t) x(0) = x0

dy(t) = h(x(t))dt + dw(t) y(0) = 0

in which x, v, y and w are, respectively,Rn,Rp,RmandRm valued processes and v

and w independent, standard Brownian processes. We further assume that n = p; f ,

g, and h are vector-valued, orthogonal matrix-valued and vector-valued C∞ smooth

functions. We shall refer to x(t) as the state and y(t) as the observation at time t.

Let ρ(t, x) denote the conditional probability density of the state given the ob-

servation {y(s): 0≤ s ≤ t}. It is well known that ρ(t, x) is given by normalizing a

function σ(t, x) that satisfies the following DMZ equation in Fisk-Stratonovich form:

(2.2)





dσ(t, x) = L0σ(t, x)dt +
m∑

i=1

Liσ(t, x)dyi(t)

σ(0, x) = σ0(x)

where

L0 =
1

2

n∑

i=1

∂2

∂x2
i

−

n∑

i=1

fi(x)
∂

∂xi

−

n∑

i=1

∂fi

∂xi

(x) −
1

2

m∑

i=1

h2
i (x),

and for i = 1, . . . , m, Li is the zero-degree differential operator of multiplication by

hi and σ0 is the probability density of the initial point x0.

Davis introduced a new unnormalized density

(2.3) u(t, x) = exp

(
−

m∑

i=1

hi(x)yi(t)

)
σ(t, x)



198 S. T. YAU, RUXU DU, AND LIXING JIA

He reduced (2.2) to the following time-varying partial differential equation which

is called robust DMZ-equation

(2.4)






∂u
∂t

(t, x) = L0u(t, x) +
m∑

i=1

yi(t) [L0, Li] u(t, x)

+ 1
2

m∑
i,j=1

yi(t)yj(t) [[L0, Li] , Lj] u(t, x)

u(0, x) = σ0(x)

where [A , B] is the Lie bracket of the operators A and B. It is easy to show that (2.4)

is equivalent to the following time-varying partial differential equation:

(2.5)




∂u
∂t

(t, x) = 1
2

n∑
i=1

∂2u
∂x2

i

(t, x) +
n∑

i=1

(
−fi(x) +

m∑
j=1

yj(t)
∂hj

∂xi
(x)

)
∂u
∂xi

(t, x)

−

[
n∑

i=1

∂fi

∂xi
(x) + 1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(t)∆hi(x)

+
m∑

i=1

n∑
j=1

yi(t)fi(x)
∂hj

∂xi
(x) − 1

2

m∑
i,j=1

n∑
k=1

yi(t)yj(t)
∂hi

∂xk
(x)

∂hj

∂xk
(x)

]
u(t, x)

u(0, x) = σ0(x).

3. Reduction from robust DMZ equation to Kolmogorov equation. The

fundamental problem of nonlinear filtering theory is how to solving the robust DMZ

equation (2.5) in real time and in memoryless manner. In this section, we shall

describe our algorithm which achieves this goal for a large class of filtering system

with arbitrary initial distribution by reducing it to solve Kolmogorov equation. Our

algorithm is based on the following observation.

Proposition 3.1. For any τ1, τ2 with τ1 < τ2, u(t, x) satisfies the following

Kolmogorov equation

(3.1)
∂ũ

∂t
(t, x) =

1

2
∆ũ(t, x)−

n∑

i=1

fi(x)
∂ũ

∂xi

(t, x)−

(
n∑

i=1

∂fi

∂xi

(x) +
1

2

m∑

i=1

h2
i (x)

)
ũ(t, x)

For τ1 ≤ t ≤ τ2 if and only if

u(t, x) = e
−

mP
i=1

yi(τ2)hi(x)
ũ(t, x)
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satisfies the robust DMZ equation with observation being fixed at y(τ1)

(3.2)

∂u
∂t

(t, x) = 1
2∆u(t, x) +

n∑
i=1

(
−fi(x) +

m∑
j=1

yj(τ2)
∂hj

∂xi
(x)

)
∂u
∂xi

(t, x)

−

(
n∑

i=1

∂fi

∂xi
(x) + 1

2

m∑
i=1

h2
i (x) − 1

2

m∑
i=1

yi(τ2)∆hi(x) +
m∑

i=1

n∑
j=1

yi(τ2)fj(x) ∂hi

∂xj
(x)

− 1
2

n∑
k=1

m∑
i,j=1

yi(τ2)yj(τ2)
∂hi

∂xk
(x)

∂hj

∂xk
(x)

)
u(t, x)

Proof. It is straight forward to show that

e

mP
i=1

yi(τ1)hi(x)


− ∂

∂t
+

1

2
∆ +

n∑

i=1


−fi(x) +

m∑

j=1

yj(τ2)
∂hj

∂xi


 ∂

∂xi

−

(
n∑

i=1

∂hi

∂xi

(x) +
1

2

m∑

i=1

h2
i (x) −

1

2

m∑

i=1

yi(τ2)∆hi(x)

+

m∑

i=1

n∑

j=1

yi(τ2)fj(x)
∂hi

∂xj

(x)

−
1

2

n∑

k=1

m∑

i,j=1

yi(τ2)yj(τ2)
∂hi

∂xk

∂hi

∂xk







u(t, x)(3.3)

= −
∂ũ

∂t
(t, x) +

1

2
∆ũ(t, x) −

n∑

i=1

fi(x)
∂ũ

∂xi

(t, x)

−

(
n∑

i=1

∂fi

∂xi

(x) +
1

2

m∑

i=1

h2
i (x)

)
ũ(t, x)

Proposition (3.1) follows immediately from (3.3).

We remark that (3.2) is obtained from robust DMZ equation by freezing the ob-

servation y(t) to y(τ1). Basing on Proposition (3.1), we shall formulate our algorithm

to solve robust DMZ equation and in the appendix of [Ya-Ya3] it is shown that the

solution of out algorithm approximate the solution of robust DMZ equation very well

in L1 sense.

Suppose that u(t, x) is the solution of robust DMZ equation and we want to

compute u(τ, x). Let Pk = {0 = τ0 < τ1 < τ2 < . . . < τk = τ} be a partition of [0, τ ].

Let ui(t, x) be a solution of the following partial differential equation for τi−1 ≤ t ≤ τi.
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(3.4)





∂ui

∂t
(t, x) = 1

2∆ui(t, x) +
n∑

l=1

(
−fl(x) +

m∑
j=1

yj(τi)
∂hj

∂xl
(x)

)
∂ui

∂xl
(t, x)

−

(
n∑

l=1

∂fl

∂xl
(x) + 1

2

m∑
l=1

h2
l (x) − 1

2

m∑
j=1

yj(τi)∆hj(x)

+
m∑

j=1

n∑
l=1

yj(τi)fl(x)
∂hj

∂xl
(x)

− 1
2

n∑
p=1

m∑
j,l=1

yj(τi)yl(τi)
∂hj

∂xp
(x) ∂hl

∂xp
(x)

)
ui(t, x)

ui(τi−1) = ui−1(τi−1, x).

Define the norm of the partition Pk by |Pk| = sup
1≤i≤k

{|τi − τi−1|}. In [Ya-Ya2], we

proved that in L1 sense

(3.5) u(τ, x) = lim
|Pk|→0

uk(τ, x).

Therefore it remains to describe an algorithm to compute uk (τk, x). By Proposition

3.1, u1 (τ1, x) can be computed by u1 (τ1, x) where u1 (t, x) for 0 ≤ t ≤ τ1 satisfies

the following Kolmogorov equation

(3.6)





∂ũ1

∂t
(t, x) = 1

2∆ũ1 (t, x) −
n∑

j=1

fi (x) ∂ũ1

∂xi
(x)

−

(
n∑

j=1

∂fi

∂xi
(x) + 1

2

m∑
j=1

h2
j (x)

)
ũ1 (t, x)

ũ1 (0, x) = σ0 (x) e

mP
j=1

yj(τ1)hj(x)

.

In fact, by the uniqueness of the solution of Kolmogorov equation, we have

(3.7) u1(t, x) = ũ1(t, x), 0 ≤ t ≤ τ1

In general, Proposition 3.1 tells us that for i ≥ 2, ui(τi, x) can be computed by

ui(τi, x) where ui(t, x) for τi−1 ≤ t ≤ τi satisfies the following Kolmogorov equation

(3.8)



∂ũi

∂t
(t, x) = 1

2∆ũi(t, x) −
n∑

j=1

fj(x) ∂ũi

∂xj
(t, x) −

(
n∑

j=1

∂fj

∂xj
(x) + 1

2

m∑
j=1

h2
j(x)

)
ũi(t, x)

ũi(τi−1, x) = e

mP
j=1

(yj(τi)−yj(τi−1))hj(x)

ũi−1(τi−1, x)

where the last initial condition comes from

ũi(τi−1, x) = ui(τi−1, x)e

mP
j=1

yj(τi)hj(x)

= ui−1(τi−1, x)e

mP
j=1

yj(τi)hj(x)

= e

mP
j=1

(yj(τi)−yj(τi−1))hj(x)

ũi−1(τi−1, x).
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In fact, we have

(3.9) ui(τi, x) = e
−

mP
j=1

yj(τi)hj(x)

ũi(τi, x).

In the view of (2.3), (3.5) and (3.9), we have the following theorem.

Theorem 3.2. The unnormalized density σ can be computed via solution u of

Kolmogorov equation (3.8). More specifically,

(3.10) σ(τ, x) = lim
|Pk|→0

ũk(τk, x)

Proof.

σ(τ, x) = u(τ, x) exp

(
m∑

i=1

hi(x)yi(τ)

)
by (2.3)

= lim
|Pk|→0

uk(τ, x) exp

(
m∑

i=1

hi(x)yi(τ)

)
, by (3.5)

where Pk = {0 = τ0 < τ1 < . . . < τk = τ}.

In view of (3.9), we have

σ(τ, x) = lim
|Pk|→0

e
−

mP
i=1

yj(τk)hj(x)
ũk(τ, x)e

mP
i=1

hi(x)yi(τ)

= lim
|Pk|→0

ũk(τ, x)

Observe that in our algorithm at step i, we only need the observation at time τ i

and τ i−1. We do not need any other previous observation data. Observe also that the

Kolmogorov equation (3.8) is uniform for all time steps and it depends on observation

y(t) only via initial condition.

4. Finite dimensional computation of certain Kolmogorov equations.

In this section, we shall consider the filtering system (2.1) with n = 1 and affine drift

(4.1) f(x) = ax + b

and nonlinear observation

(4.2) h(x) = h0x
3 + h1x

2 + h2x + h3

where a, b, h0, h1, h2, andh3 are constants. This is the famous cubic sensor problem

and it is well known that there is no finite dimensional filter for this problem. The

Kolmogorov equation associated to this cubic sensor problem is of the following form:

(4.3)





∂u
∂x

(t, x) = 1
2

∂2u
∂x2 (t, x) − f(x)∂u

∂x
(t, x) − (∂f

∂x
(x) + 1

2h2(x))u(t, x)

= 1
2

∂2u
∂x2 (t, x) − (ax + b)∂u

∂x
(t, x)

−[a + 1
2 (h0x

3 + h1x2 + h2x + h3)2]u(x, t)

u(0, x) = σ0(x)
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The solution of (4.3) will give us the best predict of the signal without any obser-

vation. Notice that equation (4.3) consists of 6 parameters a, b, h0, h1, h2, and h3.

We shall show that there is a 4-dimensional subfamily of equation (4.3) which admits

closed form solution.

Theorem 4.1. Consider the Kolmogorov equation (4.3) arising from cubic sensor

problem. Suppose h0 > 0 and a, b, h0, h1, h2, and h3 satisfy the following two algebraic

equations:

(4.4)
1

2
(a−h2)

2−
h1

h0
(h1h2+bh0−h0h3−h1h2)−

3

2
h0−a(a−h2)+bh1−

1

2
h2

2−h1h2 = 0

(4.5)
h2

h0
(h1h2 + bh0 − h0h3 − h1h2) − h1 − b(a − h2) − h2h3 = 0

Then (4.3) admits the following finite dimensional solution

(4.6) u(t, x) = ec0x4+c1x3+c2x2+c3x+c4

where

c0 = −
1

4
h0(4.7)

c1 = −
1

3
h1(4.8)

c2 =
1

2
(a − h2)(4.9)

c3 =
1

h0
(h1h2 + bh0 − h0h3 − h1h2)(4.10)

(4.11)
c4 = [ 1

2h2

0

(h1h2 + bh0 − h0h3 − h1h2)
2 + 1

2 (a − h2)

− b
h0

(h1h2 + bh0 − h0h3 − h1h2) −
1
2h2

3 − a]t + c4(0)

Proof. We first differentiate (4.6) with respect to t. We have

(4.12)
∂u

∂t
(t, x) = (

dc0

dt
x4 +

dc1

dt
x3 +

dc2

dt
x2 +

dc3

dt
x +

dc4

dt
)ec0x4+c1x3+c2x2+c3x+c4

We next differentiate (4.6) with respect to x twice. We have

∂u

∂x
(t, x) = (4c0x

3 + 3c1x
2 + 2c2x + c3)e

c0x4+c1x3+c2x2+c3x+c4

(4.13)

∂2u
∂x2 (t, x) = [(4c0x

3 + 3c1x
2 + 2c2x + c3)

2 + 12c0x
2 + 6c1x

+2c2]e
c0x4+c1x3+c2x2+c3x+c4

= [16c2
0x

6 + 24c0c1x
5 + (9c2

1 + 16c0c2)x
4 + (8c0c3 + 12c1c2)x

3

+(4c2
2 + 6c1c3 + 12c0)x

2 + (4c2c3 + 6c1)x

+c2
3 + 2c2]e

c0x4+c1x3+c2x2+c3x+c4
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(4.14)

f(x)∂ũ
∂x

= (ax + b)(4c0x
3 + 3c1x

2 + 2c2x + c3)e
c0x4+c1x3+c2x2+c3x+c4

= [4ac0x
4 + (3ac1 + 4bc0)x

3 + (2ac2 + 3bc1)x
2

+(ac3 + 2bc2)x + bc3]e
c0x4+c1x3+c2x2+c3x+c4

(4.15)

(∂f

∂x
+ 1

2h2(x))u(t, x) = [a + 1
2 (h0x

3 + h1x
2 + h2x + h3)

2]ec0x4+c1x3+c2x2+c3x+c4

= [12h2
0x

6 + h0h1x
5 + (1

2h2
1 + h0h2)x

4 + (h0h3 + h1h2)x
3

+(1
2h2

2 + h1h3)x
2 + h1h3x + 1

2h2
3

+a]ec0x4+c1x3+c2x2+c3x+c4

From (4.13), (4.14) and (4.15), we have

(4.16)
1
2

∂2u
∂x2 − f(x)∂u

∂x
− (∂f

∂x
(x) + 1

2h2(x))ũ

= [(8c2
0 −

1
2h0)x

6 + (12c0c1 − h0h1)x
5 + (9

2 c2
1 + 8c0c2 − 4ac0 −

1
2h2

1 − h0h2)x
4

+(4c0c3 + 6c1c2 − 3ac1 − 4bc0 − h0h3 − h1h2)x
3 + (2c2

2 + 3c1c3 + 6c0 − 2ac2

−3bc1 −
1
2h2

2 − h1h3)x
2 + (2c2c3 + 3c1 − ac3 − 2bc2 − h2h3)x

+(1
2c2

3 + c2 − bc3 −
1
2h2

3 − a))]ec0x4+c1x3+c2x2+c3x+c4

Comparing (4.12) and (4.16), we obtain the following equations

8c2
0 −

1

2
h2

0 = 0(4.17)

12c0c1 − h0h1 = 0(4.18)

dc0

dt
=

9

2
c2
1 + 8c0c2 − 4ac0 −

1

2
h2

1 − h0h2(4.19)

dc1

dt
= 4c0c3 + 6c1c2 − 3ac1 − 4bc0 − h0h3 − h1h2(4.20)

dc2

dt
= 2c2

2 + 3c1c3 + 6c0 − 2ac2 − 3bc1 −
1

2
h2

2 − h1h2(4.21)

dc3

dt
= 2c2c3 + 3c1 − ac3 − 2bc2 − h2h3(4.22)

dc4

dt
=

1

2
c2
3 + c2 − bc3 −

1

2
h2

3 − a(4.23)

(4.17) ⇒ c0 = −
1

4
h0(4.24)

(4.18) and (4.24) ⇒ c1 = −
1

3
h1(4.25)

(4.19), (4.24) and (4.25) ⇒

0 = 9
2 (− 1

3h1)
2 + 8(− 1

4h0)c2 − 4a(− 1
4h0) −

1
2h2

1 − h0h2

⇒ c2 = 1
2 (a − h2)

(4.26)

(4.20), (4.26), (4.25) and (4.24) ⇒

(4.27)

0 = 4(− 1
4h0)c3 + 6(− 1

3h1)[
1
2 (a − h2)]

−3a(− 1
3h1) − 4b(− 1

4h0) − h0h3 − h1h2

⇒ c3 = 1
h0

(h1h2 + bh0 − h0h3 − h1h2)
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(4.21), (4.27), (4.26), (4.25) and (4.24) ⇒

(4.28)

0 = 2[12 (a − h2)]
2 + 3(− 1

3h1)[
1
h0

(h1h2 + bh0 − h0h3 − h1h2)]

+6(− 1
4h0) − 2a[ 12 (a − h2)] − 3b(− 1

3h1) −
1
2h2

2 − h1h2

= 1
2 (a − h2)

2 − h1

h0
(h1h2 + bh0 − h0h3 − h1h2)

− 3
2h0 − a(a − h2) + bh1 −

1
2h2

2 − h1h2

(4.22), (4.27), (4.26), (4.25) and (4.24) ⇒

(4.29)

0 = 2[12 (a − h2)][
1
h0

(h1h2 + bh0 − h0h3 − h1h2)] + 3[− 1
3h1]

−a[ 1
h0

(h1h2 + bh0 − h0h3 − h1h2)] − 2b[ 12 (a − h2)] − h2h3

= −h1

h0
(h1h2 + bh0 − h0h3 − h1h2) − h1 − b(a − h2) − h2h3

(4.23), (4.24), (4.25), (4.26) and (4.27) ⇒

dc4

dt
= 1

2 [ 1
h0

(h1h2 + bh0 − h0h3 − h1h2)]
2 + 1

2 (a − h2)

−b[ 1
h0

(h1h2 + bh0 − h0h3 − h1h2)] −
1
2h2

3 − a

⇒ c4 = [ 1
2h2

0

(h1h2 + bh0 − h0h3 − h1h2)
2 + 1

2 (a − h2)

− b
h0

(h1h2 + bh0 − h0h3 − h1h2) −
1
2h2

3 − a]t + c4(0)

Theorem 4.2. Consider the Kolmogorov equation (4.3) arising from cubic sen-

sor problem. Suppose h0 < 0 and a, b, h0, h1, h2, and h3 satisfy the following two

algebraic equations:

(4.30)
1

2
(a−h2)

2 +
h1

h0
(−h1h2 + bh0 +h0h3 +h1h2)+

3

2
h0−a(a+h2)− bh1−

1

2
h2

2−h1h2 = 0

(4.31)
h2

h0
(−h1h2 + bh0 + h0h3 + h1h2) + h1 − b(a + h2) − h2h3 = 0

Then (4.3) admits the following finite dimensional solution

(4.32) u(t, x) = ec0x4+c1x3+c2x2+c3x+c4

where

c0 =
1

4
h0(4.33)

c1 =
1

3
h1(4.34)

c2 =
1

2
(a + h2)(4.35)

c3 =
1

h0
(−h1h2 + bh0 + h0h3 + h1h2)(4.36)

c4 = [ 1
2h2

0

(−h1h2 + bh0 + h0h3 + h1h2)
2 + 1

2 (a + h2)

− b
h0

(−h1h2 + bh0 + h0h3 + h1h2) −
1
2h2

3 − a]t + c4(0)
(4.37)

Proof. The proof is similar to those given to Theorem 4.1.
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