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We consider the problem of estimating a functional of a density of the type
�

φ( f , f 9, . . . , f (k), :):
The estimation of

�

φ( f , :) has already been studied by the author: starting from efficient estimators of
linear and quadratic functionals of f and its derivatives and using a Taylor expansion of φ, we
construct estimators which achieve the nÿ1=2 rate whenever f is smooth enough. Moreover, we show
that these estimators are efficient. We also obtain the optimal rate of convergence when the nÿ1=2 rate
is not achievable and when k . 0. Concerning the estimation of quadratic functionals, more precisely
of integrated squared density derivatives, Bickel and Ritov have already constructed efficient esti-
mators. Here we propose an alternative construction based on projections, an approach which seems
more natural.

Keywords: estimation of a density and its derivatives; projection methods; kernel estimators; Fourier
series; semi-parametric Cramér–Rao bound

1. Introduction

Let X 1, . . . , X n be i.i.d. random variables with common density f defined over a compact set
S of R. Our purpose is to estimate quantities of the type T ( f ) �

�

φ( f , f 9, . . . , f (k), :) where
f is assumed to belong to some Sobolev space of index s . k. This problem is motivated by
statistical applications. For example, let ^f n be a kernel estimator of the density f : ^f n(x) �
nhÿ1

Pn
i�1 K((x ÿ X i)=h): If f is a regular function, the optimal value of the parameter h in

order to minimize the mean integrated square error depends on integral functionals of the
type

�

( f (k))2, as shown in Deheuvels and Hominal (1980). The same type of functional
occurs in penalization estimation related to smoothness (see Wahba 1990). The knowledge of
�

( f (k))2 allows the original problem to be converted into a constrained estimation problem
(see Gu 1994). Moreover, the estimate of the Fisher information

�

( f 9)2
= f will give a value

for the Cramér–Rao bound in a translation model.
The estimation of integral functionals was first studied by Levit (1978), who constructed

efficient estimators of this kind of functional under regularity properties for the density f
which are not optimal. It is also worth mentioning the paper by Ibragimov et al. (1987)
which deals with differentiable functionals in Gaussian white noise. The problem of
estimating

�

( f (k))2 has already been studied by Bickel and Ritov (1988) and by Donoho
and Nussbaum (1990). The same results are obtained in these papers: if s . 2k � 1

4,
�

( f (k))2
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may be estimated at the semi-parametric rate nÿ1=2; if k , s < 2k � 1
4, the rate of con-

vergence has order nÿ4(sÿk)=(1�4s)
: Moreover, Bickel and Ritov show that their estimator is

efficient and that the nonparametric rate of convergence is optimal.
In this paper we generalize the results obtained in Laurent (1996) concerning the problem

of estimating
�

φ( f , :): Before stating our results, we shall explain how our methods work:
φ is assumed to be a smooth function. So, finding the Taylor expansion of φ up to terms of
second order provides an expression for T( f ) ÿ T ( ^f ), where ^f is a nonparametric
preliminary estimator of the density f, constructed with a small part of the n-sample. With
the remainder of the sample, we construct estimators of the terms, up to the second order,
which appear in the Taylor expansion. Some of these terms are linear functionals of f and
its derivatives while others are quadratic functionals of the type

�

f ( j) f ( j9) K j, j9( ^f ): So, a
crucial point in making our methods work will be the construction of estimators of
quantities of the type

�

f ( j) f ( j9)ψ where ψ is a fixed smooth function, since we shall work
conditionally to ^f . This will be the purpose of Section 2. The estimator of

�

f ( j) f ( j9)ψ that
we propose is based on the orthogonal projection of f on the Fourier basis. f and ψ are
supposed to be periodic functions defined on a compact set. For certain functionals, this
assumption of periodicity is necessary to achieve the rate of convergence that we obtain.
The main idea of the construction of the estimator is to take a linear combination of several
estimators of

�

f ( j) f ( j9)ψ in order to reduce the bias. The order of the expansion on the
Fourier basis will be determined by the usual trade-off between the bias term and the
variance. For the particular problem of estimating

�

( f (k))2 we obtain the same results as
Bickel and Ritov, and as Donoho and Nussbaum; moreover, the formulation of the estimator
is very simple.

Our main result is stated in Section 3, and may be summarized as follows. We can
construct an estimator ^Tn of T( f ) such that:

(i) if s . 2k � 1
4,

���

n
p

( ^Tn ÿ T ( f )) ! N (0, C( f , φ)) where N (0, σ 2) denotes the
normal distribution and nE( ^Tn ÿ T ( f ))2

! C( f , φ), with

C( f , φ)) �
�

X

k

j�0

(ÿ1) j(φ9j( f , f 9, . . . , f (k), :))( j)

2

4

3

5

2

f ÿ
X

k

j�0

�

φ9j( f , f 9, . . . , f (k), :) f ( j)

2

4

3

5

2

,

in which φ9j(x0, . . . , xk , t) � @φ(x0, . . . , xk , t)=@xj and (φ9j( f , f 9, . . . , f (k), :))( j) is the deri-
vative of order j of the function x 7! φ9j( f (x), f 9(x), . . . , f (k)(x), x);

(ii) if k . 0 and k , s < 2k � 1
4, then E( ^Tn ÿ T ( f ))2

� O(nÿ8(sÿk)=(1�4s)):

In case (i) C( f , φ) is the semi-parametric information bound for the problem of estimating
the smooth functional T ( f ) when f is assumed to belong to a set of regular functions of order
s as is shown in the Appendix. Hence our estimator is asymptotically efficient. On the other
hand, the rates which appear in (ii) cannot be improved for most functionals T ( f ), as shown
in Birgé and Massart (1995).

When k � 0 and s , 1
4 we do not obtain the optimal rate. Our estimator converges at the

rate nÿ3s=(1�2s)
: Actually, in this very case the remainder term in the Taylor expansion is

precisely of the order nÿ3s=(1�2s)
: So, it is necessary to do the Taylor expansion up to the
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third order and to estimate
�

f 3ψ: Kerkyacharian and Picard (1996) gave an estimator of
�

f 3ψ with the optimal rate of convergence nÿ4s=(1�4s)
:

This paper is organized as follows. In Section 2, we construct an estimator for the
quantity

�

f ( j) f ( j9)ψ: In Section 3, we propose an estimator for T ( f ): The proofs of the
theorems are postponed to Section 4.

2. Estimation of
�

f ( j)f ( j9)ψ

We will first set out some notation. The expression An � Bn will mean that ν1 <
An=Bn < ν2, where ν1 and ν2 are positive constants. We shall denote ( j, j9) by J and
�

f ( j) f ( j9)ψ by T J
ψ: For any function g defined over S � [ÿπ, π], we define:

i gi
1
� sup

x2S
jg(x)j, i giα � sup

x 6� y2S

jg(x)ÿ g(y)j

jx ÿ yjα
for 0 , α < 1:

Definition 1. Let s � p � α, where p 2 N and α 2 ]0, 1]: We shall denote by Fs,C the set of
densities f with support on S � [ÿπ, π] satisfying the following conditions:

(i) f ( l)(π) � f ( l)(ÿπ) for all l 2 f0, . . . , p ÿ 1g;
(ii) i f ( p)iα < C:

When necessary, the function f will be extended by periodicity. C k(S) will be the space of k-
times differentiable functions on S.

Let ( pi, i 2 N) be the orthonormal Fourier basis of L2([ÿπ, π]):

p0(x) �
1
������

2π
p , p2i(x) �

cos ix
���

π
p , p2iÿ1(x) �

sin ix
���

π
p for i . 0:

We set Sm f (x) �
Pm

i�0 ai( f ) pi(x) with ai( f ) �
�

fpi: When no confusion is likely, we shall
write ai instead of ai( f ):

We wish to estimate T J
ψ �

� π
ÿπ f ( j) f ( j9)ψ(x) dx: We assume that j < j9 , s, ψ 2 C j9(S)

and that ψ( l)(π) � ψ( l)(ÿπ) for all l 2 f0, . . . , j9ÿ 1g.
The problem of estimating

�

f 2ψ has already been studied in a more general framework,
including the multidimensional case in Laurent (1996). Moreover, in order to estimate
�

f 2ψ, we do not have to suppose that f and ψ are periodic functions since these
assumptions are used to carry out integration by parts. The construction of the estimator of
� π
ÿπ f ( j) f ( j9)ψ(x) dx will be of the same type. We recall that the estimator of

�

f 2ψ pro-
posed in Laurent (1996) is

^T00
ψ �

2
n(n ÿ 1)

X

m(n)

i�0

X

n

l1 6� l2�1

pi(X l1 ) pi9(X l2 )ψ(X l2 )

ÿ

1
n(n ÿ 1)

X

m(n)

i,i9�0

X

n

l1 6� l2�1

pi(X l1 ) pi9(X l2 )
�

pi pi9ψ:
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Let us write m instead of m(n): The bias of this estimator is equal to ÿ

�

(Sm f ÿ f )2ψ: We
shall look for a similar bias for the estimation of T J

ψ: More precisely, we wish the bias to be
equal to

ÿ

�π

ÿπ
((Sm f )( j)

ÿ f ( j))((Sm f )( j9)
ÿ f ( j9))ψ �

�π

ÿπ
( f ( j)(Sm f )( j9)

� f ( j9)(Sm f )( j))ψ

ÿ

�π

ÿπ
(Sm f )( j)(Sm f )( j9)ψ ÿ

�π

ÿπ
f ( j) f ( j9)ψ:

Indeed, by special properties of the Fourier basis, this bias will be equal to
ÿ

�

(Sm( f ( j)) ÿ f ( j))(Sm( f ( j9)) ÿ f ( j9))ψ: Moreover, when f is a regular function of order s,
the L2-norm of (Sm( f ( l)) ÿ f ( l)) is well controlled if l < s. Hence, the aim of this
construction is to provide an estimator with small bias, which will lead to the optimal rate of
convergence in most cases. The problem is to find an estimator with expectation

�π

ÿπ
( f ( j)(Sm f )( j9)

� f ( j9)(Sm f )( j))ψ ÿ

�π

ÿπ
(Sm f )( j)(Sm f )( j9)ψ:

Since f ( l)(π) � f ( l)(ÿπ) and ψ( l)(π) � ψ( l)(ÿπ) for all l 2 f0, . . . , j9ÿ 1g, repeated
integration by parts leads to

� π
ÿπ f ( j)(Sm f )( j9)ψ � (ÿ1) j

� π
ÿπ((Sm f )( j9)ψ)( j) f : It is therefore

easy to see that the estimator

^T J
ψ,1 �

1
n(n ÿ 1)

X

m

i�0

X

n

l1 6� l2�1

pi(X l1 )(ÿ1) j( p( j9)
i ψ)( j)(X l2 )

�

1
n(n ÿ 1)

X

m

i�0

X

n

l1 6� l2�1

pi(X l1 )(ÿ1) j9( p( j)
i ψ)( j9)(X l2 ) (2:1)

will have expectation
� π
ÿπ( f ( j)(Sm f )( j9)

� f ( j9)(Sm f )( j))ψ: To obtain the term
ÿ

� π
ÿπ(Sm f )( j)(Sm f )( j9)ψ, we propose the estimator

^T J
ψ,2 � ÿ

1
n(n ÿ 1)

X

m

i,i9�0

X

n

l1 6� l2�1

pi(X l1 ) pi9(X l2 )
�π

ÿπ
p( j)

i p( j9)
i9 ψ(x) dx: (2:2)

Theorem 1. Let X 1, X 2, . . . , X n be i.i.d. variables with density f belonging to the set Fs,C de-
fined by Definition 1, and let ψ belong to C j9(S) with j9 , s and satisfy ψ( l)(π) � ψ( l)(ÿπ) for
all l 2 f0, . . . , j9ÿ 1g: We wish to estimate T J

ψ �

� π
ÿπ f ( j) f ( j9)ψ, with j < j9:

Define ^T
J
ψ �

^T J
ψ,1 �

^T Jψ,2 , where ^T J
ψ,1 and ^T J

ψ,2 are given by (2.1) and (2.2) respectively,
with m � n2=(1�4s)

: Then:

(i) If s . j � j9� 1
4, and λ1 � sup l�0,:::, j9 iψ( l)i

1
, we obtain

E(^T J
ψ ÿ T J

ψ)2 <
C1λ2

1

n
: (2:3)

Assuming that î satisfies the same assumptions as ψ, let ^T J1
î be defined as ^T J

ψ, replacing
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( j, j9) by ( j1, j91) and ψ by î, and T J1
î �

� π
ÿπ f ( j1) f ( j91)î: Let s . sup ( j � j9� 1

4, j1 � j91 � 1
4),

j91 > j1 and

µ1 � sup [ sup
l�0,:::, j9

(iψ( l)i
1

, iψ( l)iα); sup
l�0,:::, j91

(iî( l) i
1

, iî( l)iα)];

then

jnE(^T J
ψ ÿ T J

ψ)(^T J1
î ÿ T J1

î ) ÿ ΛJJ1 ( f , ψ, î)j < C91µ2
1(mÿα

� m
1
2� j� j9 j1� j91ÿ2s), (2:4)

where

ΛJJ1 ( f , ψ, î) �
�

((ÿ1) j( f ( j9)ψ)( j)
� (ÿ1) j9( f ( j)ψ)( j9))((ÿ1) j1 ( f ( j91)î)( j1)

� (ÿ1) j91 ( f ( j1)î)( j91)) f ÿ 4
�π

ÿπ
f ( j) f ( j9)ψ

�π

ÿπ
f ( j1) f ( j91)î:

(ii) If s < j � j9� 1
4 and

λ2 � sup sup
l�0,:::, pÿ j

iψ( l) i
1
� iψ( l) iα

m1=6
sup

l�0,:::, j9

iψ( l) i
1

m( j� j9ÿs�1
4)^ l

 !

,

then

E(^T J
ψ ÿ T J

ψ)2 < C2λ2
2 n(ÿ8s�4 j�4 j9)=(1�4s)

: (2:5)

C1, C91 and C2 are absolute constants.

Comments

(1) If j � j9, s , 2 j � 1
4 and ψ is either positive on S or negative on S, the rate of

convergence is optimal (see Birgé and Massart 1995). Otherwise, we do not know
whether the optimal rate is n(ÿ8s�4 j�4 j9)=(1�4s) or not.

(2) For the estimation of θk �
�

( f (k))2 the expression for our estimator is very
simple:

^θk �
1

n(n ÿ 1)

X

m

i�0

X

n

l1 6� l2�1

qi(k) pi(X l1 ) pi(X l2 ),

where qi(k) �
� π
ÿπ( p(k)

i )2
� (ÿ1)k

� π
ÿπ p(2k)

i pi: Hence q2i(k) � q2iÿ1(k) � i2k for all i . 0,
q0(k) � 0 if k > 1, q0(0) � 1: It has the same properties as Bickel and Ritov’s estimator.

(3) In the next section, ψ is a random function depending on n. This explains why
we need bounds depending explicitly on ψ. In particular, the technical results (2.4) and
(2.5) are formulated in this way with a view to proving Theorem 2.

(4) The assumption of periodicity for f and its derivatives is necessary: suppose that
we want to estimate 2

� π
ÿπ ff 9: This is equal to f 2(π) ÿ f 2(ÿπ); hence, this problem is

the same as estimating the density at one point. Farell (1972) showed that the rate of
convergence for the problem of estimating the density at one point never achieves the
nÿ1=2 rate.
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3. Estimation of integrated functionals of f and its derivatives

3.1. MAIN RESULTS

The purpose of this section is to estimate T( f ) �
� π
ÿπ φ( f (x), f 9(x), . . . , f (k)(x), x) dx

efficiently when this is possible. Assuming that f 2 Fs,C defined by Definition 1, and k , s,
we also give the rates of convergence of the estimators when the nÿ1=2 rate is not achievable.
We would like to start with some preliminary estimator ^f of the density f constructed on a
small part of the initial sample and do a Taylor expansion of φ in a neighbourhood of
( ^f (x), . . . , ^f (k)(x), x): In order to give a sense to this expansion, we shall assume the
following:

Assumption A1. φ belong to C k�3(Ω) for some open set Ω and for all 0 < i < k,
f (i)(S) � [ai, bi] where ai, bi 2 R and

Qk
i�0[ai, bi] 3 S � Ω: For instance, if the functional

to be estimated is the entropy
�

f log ( f ) or the Fisher information
�

( f 9)2
= f , we assume that

f is bounded from below by some positive constant.

Since
Qk

i�0
~f (i)(S) 3 S is not almost surely included in Ω when ~f is a standard

preliminary estimator of f, such as a kernel or projection-based estimator, we shall have to
modify it in order to get a feel for φ( ^f (x), ^f 9(x), . . . , ^f (k)(x), x): Moreover, we will need
some periodicity conditions for ^f to carry out integration by parts. In order to control the
remainder term of the Taylor expansion, we will also require that the quantities
E(i ^f ( l)

ÿ f ( l)iq
q) achieve the optimal rate of convergence. More precisely, for f 2 Fs,C

satisfying Assumption A1, we will need a preliminary estimator ^f verifying the following
conditions:

Conditions A2

(a) ^f 2 C2k_ p(S), ^f ( l)(π) � ^f ( l)(ÿπ) for all l 2 f0, . . . , 2k ÿ 1g.
(b) ^f (i)(S) � [ai ÿ E, bi � E] for all i 2 f0, . . . , kg, where E . 0 satisfies

Qk
i�0[ai ÿ E,

bi � E] 3 S � Ω:

(c) E(i ^f ( l)
ÿ f ( l)iq

q) < γ1(q)nq( lÿs)=(1�2s)
1 for all l < p, and all 2 < q ,1,

(d) E(i ^f ( l)iq
1

) < γ2(q)(1 � nq( lÿs9)=(1�2s)
1 ) for all s9 , s and all 0 < l < 2k, q > 1,

(e) E(i ^f ( l)iq
α) < γ3(q)(1 � nq( l�αÿs9)=(1�2s)

1 ) for all s9 , s and 0 < l < 2k, q > 1,

where γ1(q), γ2(q), γ3(q) are absolute constants independent of f 2 Fs,C:

Such estimators exist. This is the purpose of Lemma 1.

Lemma 1. Suppose f 2 Fs,C satisfies Assumption A1. Let ~f be an estimator of f based on
projection methods constructed with the n1 last observations:

~f (x) �
1
n1

X

n

j�nÿn1�1

X

m1

i�0

pi(X j) pi(x),
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where m1 � n1=(1�2s)
1 : Let An be the event

An � f
~f (i)(S) � [ai ÿ E, bi � E], 8i 2 f0, . . . , kgg,

where E . 0 satisfies KE �

Qk
i�0[ai ÿ E, biω � E] 3 S � Ω, and let f 0 a density which

satisfies Conditions A2(a) and A2(b). We define

^f � ~f 1A n � f 01Ac
n
:

Then ^f satisfies Conditions A2, as will be shown in the Appendix.

For ^f satisfying Conditions A2, φ( ^f (x), ^f 9(x), . . . , ^f (k)(x), x) is well defined, and it is
legitimate to carry out a Taylor expansion of φ in a neighbourhood of ( ^f (x),
. . . , ^f (k)(x), x): We shall use the following notation for partial derivatives:

φ9j �
@φ
@ yj

(y0, . . . , yk�1), φ 0jj9 �
@

2φ
@ yj@ yj9

(y0, . . . , yk�1)

iφ( l)i
1
� sup

j1,:::, j l2f0,:::,kg
sup

( y0,:::, yk�1)2KE

jφ( l)
j1,:::, j l

(y0, . . . , yk�1)j:

The expansion of T( f ) using Taylor’s formula is

T ( f ) �
�

φ( ^f (x), . . . , ^f (k)(x), x) dx �
X

k

j�0

�

φ9j( ^f (x), . . . , ^f (k)(x), x)( f ( j)
ÿ

^f ( j))(x)

�

1
2

X

k

j�0

X

k

j9�0

�

φ 0jj9( ^f (x), . . . , ^f (k)(x), x)( f ( j)
ÿ

^f ( j))( f ( j9)
ÿ

^f ( j9))(x)� Γn,

where Γn is a remainder term which will be proved to be negligible compared to the linear
and quadratic terms. It is convenient to write T ( f ) as follows:

T( f ) �
�

G( ^f ) �
X

k

j�0

�

H j( ^f ) f ( j)
�

X

k

j, j9�0

�

K jj9( ^f ) f ( j) f ( j9)
� Γn,

where

G( ^f ) � φ( ^f , . . . , ^f (k), :) ÿ
X

k

j�0

φ9j( ^f , . . . , ^f (k), :) ^f j
�

1
2

X

k

j, j9�0

φ 0jj9( ^f , . . . , ^f (k), :) ^f ( j)
^f ( j9),

(3:1)

H j( ^f ) � φ9j( ^f , . . . , ^f (k), :) ÿ
X

k

j9�0

φ 0jj9( ^f , . . . , ^f (k), :) ^f ( j9), (3:2)

K jj9( ^f ) � K J ( ^f ) � 1
2φ 0jj9( ^f , . . . , ^f (k), :): (3:3)

We have to estimate two types of terms: H j �
� π
ÿπ H j( ^f ) f ( j), which is a linear functional of
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f; and T J (K J ( ^f )) �
� π
ÿπ K J ( ^f ) f ( j) f ( j9), which is a quadratic functional of the type we have

studied in Section 2.
Before stating the results, let us present some ideas about the estimation of these terms.

Since f ( l)(π) � f ( l)(ÿπ) for all l 2 f0, . . . , k ÿ 1g, and ^f ( l)(π) � ^f ( l)(ÿπ) for all
l 2 f0, . . . , 2k ÿ 1g, assuming that φ9j, and φ 0jj9, which are functions of k � 2 variables
are periodic, with respect to the last variable, as well as their partial derivatives up to order
k ÿ 1, we obtain by repeated integration by parts,

�π

ÿπ
H j( ^f ) f ( j)

�

�π

ÿπ
(ÿ1) j[H j( ^f )]( j) f :

Setting n2 � n ÿ n1, we can estimate H j by ^H j � 1=n2f
Pn2

l�1(ÿ1) j[H j( ^f )]( j)(X l) with the
data independent of ^f .

As to T J (K J ( ^f )) �
�

f ( j) f ( j9) K j( ^f ), its estimation has been studied in the previous
section. K J ( ^f ) is a random function based on the n1 last observations and T J (K J ( ^f )) has
to be estimated with the remainder of the n-sample, which leads to

^T J (K J ( ^f )) �
1

n2(n2 ÿ 1)

X

m

i�0

X

n2

l1 6� l2�1

pi(X l1 )(ÿ1) j( p( j9)
i K J ( ^f ))( j)(X l2 )

�

1
n2(n2 ÿ 1)

X

m

i�0

X

n2

l1 6� l2�1

pi(X l1 )(ÿ1) j9( p( j)
i K J ( ^f ))( j9)(X l2 )

ÿ

1
n2(n2 ÿ 1)

X

m

i,i9�0

X

n2

l1 6� l2�1

pi(X l1 ) pi9(X l2 )
�π

ÿπ
p( j)

i p( j9)
i9 K J ( ^f )(x) dx:

Theorem 2. Let X 1, X 2, . . . , X n be i.i.d. random variables with common density f belonging
to Fs,C defined by Definition 1. T( f ) �

�

φ( f (x), . . . , f (k)(x), x) dx is to be estimated with
k , s; let us assume that Assumption A1 holds and that φ9j, φ 0jj9, are 2π periodic with respect
to the last variable for all j, j9 2 f0, . . . , kg as well as their partial derivatives up to order
k ÿ 1.

Consider a preliminary estimator ^f of f satisfying Condition A2 and based on the n1 last
observations where n1 � n=log (n): Let

^Tn �

�π

ÿπ
G( ^f )�

X

k

j�0

1
n2

X

n2

l�1

(ÿ1) j[H j( ^f )]( j)(X l)

�

X

k

j, j9�0

X

m

i�0

2
n2(n2 ÿ 1)

X

n2

l1 6� l2�1

(ÿ1) j9 pi(X l1 )[K J ( ^f ) p( j)
i ]( j9)(X l2 )

ÿ

X

k

j, j9�0

X

m

i,i9�0

1
n2(n2 ÿ 1)

X

n2

l1 6� l2�1

pi(X l1 ) pi9(X l2 )
�π

ÿπ
p( j)

i p( j9)
i9 K J ( ^f ) dx,

where G, Hj, KJ are defined by (3.1), (3.2) and (3.3), and m � n2=(1�4s)
: The following

properties hold:
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(i) If s . 2k � 1
4, then

���

n
p

(^Tn ÿ T( f )) ! N (0, C( f , φ)) (3:4)

nE(^Tn ÿ T ( f ))2
! C( f , φ), (3:5)

where C( f , φ) is given by

C( f , φ) �
�π

ÿπ

X

k

j�0

(ÿ1) j(φ9j( f , . . . , f (k), :))( j)

2

4

3

5

2

f ÿ
X

k

j�0

�π

ÿπ
φ9j( f , . . . , f (k), :) f ( j)

2

4

3

5

2

:

(ii) If k . 0 and k , s < 2k � 1
4 then

E(^Tn ÿ T( f ))2
� O(nÿ8(sÿk)=(1�4s)):

Comment. When k . 0 and k , s < 2k � 1
4 , assuming that T is not degenerate, Birgé and

Massart (1995) have proved that the rate of convergence that we obtain is optimal; moreover,
in the semi-parametric case, the asymptotic variance is optimal, as will be shown in the
Appendix.

3.2. FISHER INFORMATION ESTIMATION

As an example, let us give the precise expression of our estimator of
� π
ÿπ f 92

= f : Using the
Taylor expansion of φ( f ) in a neighbourhood of ( ^f , ^f 9), we obtain

�π

ÿπ

f 92

f
� ÿ

�π

ÿπ

^f 92

^f 2
f � 2

�π

ÿπ

^f 9

^f
f 9�

�π

ÿπ

^f 92

^f 3
f 2
�

�π

ÿπ

f 92

^f
ÿ 2
�π

ÿπ

^f 9

^f 2
ff 9� Γn

�

�π

ÿπ

^f 92

^f 2
ÿ 2

^f 0

^f

 !

f �

�π

ÿπ

^f 92

^f 3
f 2
�

�π

ÿπ

f 92

^f
ÿ 2
�π

ÿπ

^f 9

^f 2
ff 9� Γn:

We have to suppose that f is bounded from below by a positive constant (Assumption A1);
Condition A2(b) ensures that ^f is also bounded from below by a positive constant. The
estimator has the following expression:

^Tn �
1
n2

X

n2

l�1

^f 92

^f 2
ÿ 2

^f 0

^f

 !

(X l) �
X

1

j, j9�0

X

m

i�0

2
n2(n2 ÿ 1)

3
X

n2

l1 6� l2�1

(ÿ1) j9 pi(X l1 )[K j, j9( ^f ) p( j)
i ]( j9)(X l2 )

ÿ

X

1

j, j9�0

X

m

i,i9�0

1
n2(n2 ÿ 1)

X

n2

l1 6� l2�1

pi(X l1 ) pi9(X l2 )
�π

ÿπ
p( j)

i p( j9)
i9 K j, j9( ^f ),

where K0,0 �
^f 92

=

^f 3, K0,1 � K1,0 � ÿ
^f 9= ^f 2, K1,1 � 1= ^f : The remainder term Γn is
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bounded by the product of iφ(3) i
1

and quantities of the type E(i ^f ( l)
ÿ f ( l)iq

q) for l � 0, 1,
which are controlled by Condition A2(c). We obtain the following result. If s . 9

4,

lim
n!1

nE ^Tn ÿ

�π

ÿπ

f 92

f

 !2

�

�π

ÿπ

2 f 0

f
ÿ

f 92

f 2

 !2

f ÿ

�π

ÿπ

f 92

f

 !2

:

If 1 , s < 9
4,

E ^Tn ÿ

�π

ÿπ

f 92

f

 !2

� O(nÿ8(sÿ1)=(1�4s)):

4. Proofs

4.1. PROOF OF THEOREM 1

We recall that s � p � α, where p 2 N and α 2 ]0, 1]. The following lemmas will prove
useful.

Lemma 2 (Lorentz’s inequality).

sup
X

1

i�m�1

i2 p(a2
2i( f ) � a2

2iÿ1( f )), f 2 Fs,C

( )

<
C2

m2α

π2α�1

4α
ÿ 1

� �

sup
X

1

i�1

i2 p�2â(a2
2i( f ) � a2

2iÿ1( f )), f 2 Fs,C

( )

,
π2α�1C2

4αÿâ
ÿ 1

for all 0 , â , α:

This lemma is proved in Bary (1964 vol. 1, pp. 215–216).

Lemma 3.

sup fi f ( l) i
1

, l � 0, . . . , p, f 2 Fs,Cg,1:

See Bickel and Ritov (1988) for the proof.

In order to prove Theorem 1, we use the classical decomposition:

E(^T J
ψ ÿ T J

ψ)2
� (Bias (^T J

ψ))2
� var (^T J

ψ):

In the proofs, we shall write m for m(n) and assume that m is even.
We first examine the bias. We noticed above that

jBias (^T J
ψ)j �

�

�

�

�

�π

ÿπ
((Sm f )( j)

ÿ f ( j))((Sm f )( j9)
ÿ f ( j9))ψ

�

�

�

�

< iψi
1

�π

ÿπ
((Sm f )( j)

ÿ f ( j))2

� �1=2 �π

ÿπ
((Sm f )( j9)

ÿ f ( j9))2

� �1=2

:
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We claim that, since m is even

X

m

i�0

pi(x) p( j9)
i (y) � (ÿ1) j9

X

m

i�0

p( j9)
i (x) pi(y): (4:1)

This equality implies that Sm(g( l)) � (Sm g)( l), for all g 2 C l(S): Hence

jBias (^T J
ψ)j2 < iψi2

1

X

1

i�m�1

a2
i ( f ( j))

X

1

i�m�1

a2
i ( f ( j9)) � iψi2

1

X

1

i�m�1

qi( j)a2
i

X

1

i�m�1

qi( j9)a2
i ,

where q2i( j) � q2iÿ1( j) � i2 j for all i . 0. Since 0 < qi( j) < i2 j, we obtain

jBias (^T J
ψ)j2 < iψi2

1

X

1

i�m�1

i2 pa2
i i2 jÿ2 p

X

1

i�m�1

i2 pa2
i i2 j9ÿ2 p

:

From Lemma 2 and the fact that j ÿ p < 0 and j9ÿ p < 0, we derive

jBias (^T J
ψ)j2 � O(iψi2

1

(m2 j�2 j9ÿ4s)):

Here, and in the remainder of the proof, the Os are independent of ψ and its derivatives, and
of f 2 Fs,C: Since j < j9 < s, the bias is always a decreasing function of m.

Turning now to the variance, we have that ^T
J
ψ �

^T
J
ψ,1 �

^T
J
ψ,2 as defined by (2.1) and (2.2).

We shall first prove (2.3) and (2.5), so we just have to determine the order of magnitude of
var (^T J

ψ): We notice that ^T J
ψ can be written in the following form:

^T J
ψ �

1
n(n ÿ 1)

X

n

l1 6� l2�1

h jj9(X l1 , X l2 )

where h jj9 is symmetric. More precisely,

^T J
ψ,1 �

1
2n(n ÿ 1)

X

n

l1 6� l2�1

(H jj9
1 � H j9 j

1 )(X l1 , X l2 ) � (H jj9
1 � H j9 j

1 )(X l2 , X l1 )

where H jj9
1 (x, y) �

Pm
i�0 pi(x)(ÿ1) j( p( j9)

i ψ)( j)(y): Moreover,

^T J
ψ,2 � ÿ

1
2n(n ÿ 1)

X

n

l1 6� l2�1

(H jj9
2 � H j9 j

2 )(X l1 , X l2 )

with H jj9
2 (x, y) �

Pm
i,i9�0 pi(x) pi9(y)

� π
ÿπ p( j)

i p( j9)
i9 ψ: We notice that H jj9

2 (x, y) � H j9 j
2 (y, x): h jj9

is defined by

h jj9(x, y) � 1
2[H jj9

1 � H j9 j
1 )(x, y)� (H jj9

1 � H j9 j
1 )(y, x) ÿ (H jj9

2 � H j9 j
2 )(x, y)]:

^T J
ψ is thus a U-statistic; it follows from Hoeffding’s results concerning the computation of the

variance for U-statistics (see Hoeffding 1948; or Serfling 1980, p. 183) that

var (^T J
ψ) �

4(n ÿ 2)
n(n ÿ 1)

î1 �
2

n(n ÿ 1)
î2,

where î1 � var (�h jj9(X 1)), î2 � var (h jj9(X 1, X 2)), and �h jj9(x) � E(h jj9(x, X 2)):
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We will see that in case (i), when s . j � j9� 1
4, the main contribution to the variance is

made by the term 4î1=n, which can be viewed as a linear term. It is of order λ2
1=n: In case

(ii), the term (2=n(n ÿ 1))î2 is dominant, it is an increasing function of m, so the optimal
value of m makes the trade-off between this term and the square of the bias. In this case,
the rate 1=n is not achieved.

We first compute �h jj9(X 1):

E(H jj9
1 (x, X 2)) � E

X

m

i�0

pi(x)(ÿ1) j( p( j9)
i ψ)( j)(X 2)

" #

�

X

m

i�0

pi(x)
�

p( j9)
i ψ f ( j) integrating by parts.

�

X

m

i�0

(ÿ1) j9 p( j9)
i (x)

�

ψ f ( j) pi by (4:1):

� (ÿ1) j9S( j9)
m [ψ f ( j)](x):

By similar computations, we get

E(H jj9
1 (X 2, x)) � (ÿ1) j(Sm f ( j9)ψ)( j)(x)

E(H jj9
2 (x, X 2)) � (ÿ1) jSm[((Sm f )( j9)ψ)( j)](x):

Denote

Y jj9
1 � (ÿ1) j9S( j9)

m [ f ( j)ψ](X 1) (4:2)

Y jj9
2 � (ÿ1) j(Sm f ( j9)ψ)( j)(X 1) (4:3)

Y jj9
3 � ÿ(ÿ1) jSm[((Sm f )( j9)ψ)( j)](X 1) (4:4)

�h jj9(X 1) �
1
2

X

3

l�1

(Y jj9
l � Y j9 j

l ):

It follows that

î1 � var [�h jj9(X 1)] < E[(�h jj9(X 1))2] <
3
2

X

3

l�1

E[(Y jj9
l )2] � E[(Y j9 j

l )2]:

We will now bound from above the quantities E[(Y jj9
l )2] for l 2 f1, 2, 3g:

For E[(Y jj9
1 )2] we can write

E[(Y jj9
1 )2] �

�

[S( j9)
m [ψ f ( j)]]2 f :

If s . j � j9� 1
4 (case (i)) then p > j � j9 and f is j � j9 times continuously differentiable, so

we can write, using the fact that Sm(g( l)) � (Sm g)( l),

E[(Y jj9
1 )2] �

�

S2
m[(ψ f ( j))( j9)] f
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< i f i
1

i(ψ f ( j))( j9) i2
2 since Sm is a projection

< i f i
1

i
X

j9

l�0

j9
l

� �

ψ( l) f ( j� j9ÿ l) i2
2:

Since by Lemma 3, sup fi f ( l) i
1

, l � 0, . . . , p, f 2 Fs,Cg,1, we obtain

E[(Y jj9
1 )2] < C1λ2

1,

where C1 is independent of ψ and f 2 Fs,C:

If s < j � j9� 1
4 (case (ii)) then p < j � j9: If p � j � j9, as above, we can write

E[(Y jj9
1 )2] �

�

S2
m[(ψ f ( j))( j9)] f � O( sup

l�0,..., j9
iψ( l)i2

1

):

Moreover, by definition of λ2

sup
l�0,:::, j9

iψ( l) i2
1

< λ2
2 m2( j� j9ÿs�1

4)
:

Let us now consider the case where j � j9 . p: In this case we also have j � j9 > s: Using
the fact that Sm(g( l)) � (Sm g)( l), where g is l times continuously differentiable, we obtain:

E[(Y jj9
1 )2] �

�

(S( j� j9ÿ p)
m [(ψ f ( j))( pÿ j)])2 f

< i f i
1

X

m

i�0

i2 j�2 j9ÿ2 pb2
i by orthogonality of the pi and their derivatives,

where bi denotes the ith Fourier coefficient of the function (ψ f ( j))( pÿ j)
: We will evaluate the

α-norm of this function in order to apply Lemma 2.

(ψ f ( j))( pÿ j)
�

X

pÿ j

l�0

p ÿ j
l

� �

ψ( l) f ( pÿ l)
:

Using the fact that for any functions g, h, i ghiα < i gi
1

ihiα � ihi
1

i giα, we obtain

i(ψ f ( j))( pÿ j)iα <
X

pÿ j

l�0

p ÿ j
l

� �

(iψ( l)i
1

i f ( pÿ l) iα � iψ( l) iα i f ( pÿ l)i
1

):

� O( sup
l�0,:::, pÿ j

(iψ( l) i
1
� iψ( l) iα)� by Lemma 3.

By definition of λ2,

sup
l�0,:::, pÿ j

(iψ( l) i
1
� iψ( l)iα) < λ2 m1=6

:

From Lemma 2 and since j � j9 > s . p � â for all 0 , â , α, we derive

X

m

i�0

i2 j�2 j9ÿ2 pb2
i �

X

m

i�0

i2 j�2 j9ÿ2 pÿ2â i2âb2
i
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� O(m2 j�2 j9ÿ2 pÿ2â i(ψ f ( j))( pÿ j) i2
α)

� O(λ2
2 m1=3 m2 j�2 j9ÿ2s�1

2 mÿ

1
2�2(αÿâ)):

Since â is arbitrarily close to α, m1=3 mÿ1=2�2(αÿâ)
! 0: Collecting the above evaluations, we

obtain, for s < j � j9� 1
4,

E[(Y jj9
1 )2] < C2λ2

2(m2 j�2 j9ÿ2s�1
2):

Turning now to E[(Y jj9
2 )2], we have

E[(Y jj9
2 )2] �

�

[(Sm f ( j9)ψ)( j)]2 f < i f i
1

i(Sm f ( j9)ψ)( j) i2
2

� O[ sup
l�0,:::, j9

iψ( l) i2
1

i(Sm f )( j� j9ÿ1)i2
2]:

If s . j � j9� 1
4 (case (i)) then p > j � j9 and since f is p times continuously differentiable,

by Lemma 3 we get E[(Y jj9
2 )2] < C1λ2

1:

If s < j � j9� 1
4 (case (ii)) we shall consider two subcases. If j � j9ÿ l < p then

iSm( f ( j� j9ÿ l))i2
2 < 2π sup l�0,:::, p i f ( l) i2

1

, it follows that

E[(Y jj9
2 )2] � O( sup

l�0,:::, j9
iψ( l)i2

1

) � O(λ2
2 m2 j�2 j9ÿ2s�1

2):

If however, j � j9ÿ l > p � 1 > s, then

iψ( l)i2
1

i(Sm f )( j� j9ÿ l)i2
2 < iψ( l) i2

1

X

m

i�0

i2 j�2 j9ÿ2 l a2
i

< iψ( l) i2
1

X

m

i�0

i2 j�2 j9ÿ2 lÿ2 pÿ2â i2 p�2âa2
i for all 0 , â , α:

Since j � j9ÿ l > s . p � â, for all 0 , â , α, and by Lemma 2, we obtain

iψ( l) i2
1

i(Sm f )( j� j9ÿ l) i2
2 < iψ( l) i2

1

m2 j�2 j9ÿ2 lÿ2 pÿ2â
X

1

i�0

i2 p�2âa2
i

� O[(iψ( l)i
1

mÿ l)2 m2 j�2 j9ÿ2 pÿ2â]

� O[λ2
2 m2 j�2 j9ÿ2 pÿ2â]:

The above equality leads to E[(Y jj9
2 )2] < C2λ2

2(m2 j�2 j9ÿ2s�1
2):

All that is left is E[(Y jj9
3 )2],

E[(Y jj9
3 )2] �

�

[Sm(Sm f ( j9)ψ)( j)]2 f < i f i
1

i(Sm f ( j9)ψ)( j) i2
2,

and the computation of this term has just been done above.
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Of course, the above results hold for E[(Y j9 j
l )2], l � 1, 2, 3. It follows that

î1 <
C1λ2

1 s . j � j9� 1
4

C2λ2
2(m2 j�2 j9ÿ2s�1

2) s < j � j9� 1
4:

(

(4:5)
(4:6)

We now bound î2:

î2 � var (h jj9(X 1, X 2)) < E(h2
jj9(X 1, X 2))

< 3E[(H jj9
1 (X 1, X 2))2

� (H j9 j
1 (X 1, X 2))2

� (H jj9
2 (X 1, X 2))2]:

The inner bracketed terms will be evaluated separately, beginning with E[(H jj9
1 (X 1, X 2))2]:

E[(H jj9
1 (X 1, X 2))2] �

��

X

m

i�0

pi(x)( p( j9)
i ψ)( j)(y)

" #2

f (x) f (y) dx dy

< i f i2
1

��

X

m

i,i9�0

pi pi9(x)( p( j9)
i ψ)( j)(y)( p( j9)

i9 ψ)( j)(y) dx dy

< i f i2
1

X

m

i�0

�

[( p( j9)
i ψ)( j)]2 for orthonormality

< i f i2
1

X

m

i�0

�

X

j

l, l9�0

j
l

� �

j
l9

� �

p( j� j9ÿ l)
i p( j� j9ÿ l9)

i ψ( l)ψ( l9)
:

Since i p( l)
i i

1
< i l our expression has order

O
X

j

l, l9�0

X

m

i�0

i2 j�2 j9ÿ lÿ l9iψ( l) i
1

iψ( l9) i
1

2

4

3

5

� O m1�2 j�2 j9
X

j

l�0

mÿ l iψ( l) i
1

 !2
2

4

3

5

:

Turning to E[(H jj9
2 (X 1, X 2))2], we have that

E[(H jj9
2 (X 1, X 2))2] �

X

m

i,i9,i1,i91�0

�

pi pi1 f

�

pi9 pi91 f

�

p( j)
i p( j9)

i9 ψ
�

p( j)
i1 p( j9)

i91
ψ

�

��

X

m

i,i9�0

�

p( j)
i p( j9)

i9 ψ
� �

pi(x) pi9(y)

 !2

f (x) f (y) dx dy

< i f i2
1

X

m

i,i9�0

�

p( j)
i p( j9)

i9 ψ
�

p( j)
i p( j9)

i9 ψ by orthonormality

< i f i2
1

��

X

m

i�0

p( j)
i (z) p( j)

i (t)

 !

X

m

i9�0

p( j9)
i9 (z) p( j9)

i9 (t)

 !

ψ(z)ψ(t) dt dz:

By the Cauchy–Schwarz inequality, this expression is bounded by
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i f i2
1

iψi2
1

��

X

m

i�0

p( j)
i (z) p( j)

i (t)

 !2

dt dz

��

X

m

i9�0

p( j9)
i9 (z) p( j9)

i9 (t)

 !2

dt dz

2

4

3

5

1=2

:

Moreover, by orthogonality of the p( j)
i ,

��

X

m

i�0

p( j)
i (z) p( j)

i (t)

 !2

dt dz <
X

m

i�0

i4 j < m1�4 j
:

It follows that E[(H jj9
2 (X 1, X 2))2] < i f i2

1

iψi2
1

m1�2 j�2 j9
: Hence we obtain

î2 <
C1λ2

1 m1�2 j�2 j9 s . j � j9� 1
4

C2λ2
2 m1�2 j�2 j9 s < j � j9� 1

4:

(

(4:7)
(4:8)

We recall that

var (^T J
ψ) �

4(n ÿ 2)
n(n ÿ 1)

î1 �
2

n(n ÿ 1)
î2:

From (4.5) and (4.7) we obtain, possibly enlarging C1, that

if s . j � j9�
1
4

then var (^T J
ψ) < C1λ2

1
1
n
�

m1�2 j�2 j9

n2

� �

:

From (4.6) and (4.8) we obtain, possibly enlarging C2, that

if s < j � j9�
1
4

then var (^T J
ψ) < C2λ2

2

m2 j�2 j9ÿ2s�1
2

n
�

m1�2 j�2 j9

n2

� �

:

We recall that Bias2 (^T J
ψ) � O(iψi2

1

m2 j�2 j9ÿ4s) and that m � n2=(1�4s), which is the value of m
minimizing the sum Bias2 (^T J

ψ) � var (^T J
ψ): Hence

E(^T J
ψ ÿ T J

ψ)2 < C1
λ2

1

n
s . j � j9� 1

4

C2λ2
2 n(ÿ8s�4 j�4 j9)=(1�4s) s < j � j9� 1

4:

8

<

:

This completes the proof of (2.3) and (2.5). We shall now prove (2.4).
We first notice that when s . sup ( j � j9� 1

4, j1 � j91 � 1
4) then j � j9 < p and j1 �

j91 � p: We recall that

^T J
ψ �

1
n(n ÿ 1)

X

n

l1 6� l2�1

h jj9ψ(X l1 , X l2 ),

where h jj9ψ is symmetric. We now write h jj9ψ instead of h jj9 since ^T J
ψ is an estimator of

�

f ( j) f ( j9)ψ while ^T
J1

î estimates
�

f ( j1) f ( j91)î: Since

E(^T J
ψ ÿT2

ψ)(^T J1
î ÿT J1

î ) � Bias (^T J
ψ) Bias (^T J1

î ) � cov (^T J
ψ, ^T J1

î )

we shall use the following lemma:
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Lemma 4. Let T and U be U-statistics respectively defined by

T �

1
n(n ÿ 1)

X

n

j 6�k�1

a(X j, X k), U �

1
n(n ÿ 1)

X

n

j 6�k�1

b(X j, X k)

where a and b are symmetric. Then

cov (T , U) �
4(n ÿ 2)
n(n ÿ 1)

î3 �
2

n(n ÿ 1)
î4

where î3 � cov [a(X 1), �b(X 1)], î4 � cov [a(X 1, X 2), b(X 1, X 2)], a(x) � E[a(x, X 2)] and
�b(x) � E[b(x, X 2)]:

This equality is a generalization for the covariance of U-statistics of Hoeffding’s formula for
the variance. The proof is immediate and will be omitted (for more details, see Laurent
1993). It follows from Lemma 4 that

nE(^T J
ψ ÿT J

ψ)(^T J1
î ÿ T J1

î ) � nBias (^T J
ψ) Bias (^T J1

î ) �
4(n ÿ 2)

n ÿ 1
î3 �

2
n ÿ 1

î4,

where î3 � cov [�h jj9ψ(X 1), �h j1, j91,î(X 1)], î4 � cov [h jj9ψ(X 1, X 2), h j1, j91î(X 1, X 2)] and �h jj9ψ(x)
� E(h jj9ψ(x, X 2)]: Using the results obtained in the first part of the proof, we obtain

njBias (^T J
ψ) Bias (^T J1

î )j < C91iψi
1

iîi
1

nm j� j9� j1� j91ÿ4s < C91µ2
1 m

1
2� j� j9� j1� j91ÿ2s

since n � m
1
2�2s

: We want to prove that (2=(n ÿ 1))î4 is bounded by a similar quantity.

î4 < (E(h2
jj9ψ(X 1, X 2))1=2(E(h2

j1 j91î(X 1, X 2)))1=2
:

From (4.7), which is actually an upper bound for E(h2
jj9ψ(X 1, X 2)), we derive, possibly

enlarging C91:

2
n ÿ 1

î4 < C91
µ2

1

n
m1� j� j9� j1� j91

� C91µ2
1 m

1
2� j� j9� j1� j91ÿ2s

:

It follows that the asymptotic covariance ΛJJ1 ( f , ψ) can only come from the term
(4(n ÿ 2)=(n ÿ 1))î3: Since, jî3j < C91µ2

1 (this result follows from the computation of î1), to
show (2.4), we just have to prove that j4î3 ÿ ΛJJ1 ( f , ψ, î)j < C91µ2

1 mÿα
:

We recall that

�h jj9ψ(X 1) �
1
2

X

3

l�1

(Y jj9
l � Y j9 j

l )

where Y jj9
l , l � 1, 2, 3, are defined by (4.2), (4.3) and (4.4). We have to keep in mind that

Y jj9
l depends on ψ while Y j1 j91

l depends on î.

4 cov (�h jj9ψ(X 1), �h j1 j91î(X 1)) �
X

3

l, l9�1

cov ((Y jj9
l � Y j9 j

l ), (Y j1 j91
l9 � Y j91 j1

l9 )):

We claim that for all l, l9 2 f1, 2, 3g2
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jcov ((Y jj9
l � Y j9 j

l ), (Y j1 j91
l9 � Y j91 j1

l9 )) ÿ E ll9ΛJJ1 ( f , ψ, î)j < C91µ2
1 mα (4:9)

where

E ll9 � ÿ1 if (l, l9) � (1, 3), (2, 3), (3, 1), (3, 2)

E ll9 � 1 if (l, l9) � (1, 1), (2, 2), (3, 3), (1, 2), (2, 1):

Of course, this concludes the proof of (2.4). Since, the proof employs standard arguments, we
content ourself with sketching it (a complete proof for the case l � 1, and l9 � 3, is given in
Laurent 1993). To prove (4.9) in the case l � 1, and l9 � 3 for example, we have bound from
above by C91µ2

1 mÿα quantities of the type
�

�

�

�

�

Sm(( f ( j9)ψ)( j))Sm((Sm f ( j91)î)( j1)) f ÿ

�

( f ( j9)ψ)( j)( f ( j91)î)( j1) f

�

�

�

�

:

Introducing auxiliary terms, this quantity is bounded by

C91µ1[iSm((Sm f ( j91)î)( j1)) ÿ Sm(( f ( j91)î)( j1))i2 � iSm(( f ( j91)î)( j1)) ÿ ( f ( j91)î)( j1)i2]:

We bound this term from above by C91µ2
1 mÿα using the fact that for any function g,

iSm(g)ÿ gi2 � O(i giα mÿα) by Lemma 2. This concludes the proof of Theorem 1.

4.2. PROOF OF THEOREM 2

Before proving properties (i) and (ii), we first control the remainder term Γn:

jΓnj <
1
6

iφ(3) i
1

X

k

j, j9, j 0�0

�

j f ( j)
ÿ

^f ( j) i f ( j9)
ÿ

^f ( j9)i f ( j 0)
ÿ

^f ( j 0)
j(x) dx:

Hence,

E(Γ2
n) � O sup

jj9 j 0

E
�

j
^f ( j)

ÿ f ( j)
j j
^f ( j9)

ÿ f ( j9)
j j
^f ( j 0)

ÿ f ( j 0)
j

� �2
" # !

:

Using the generalized Hölder inequality and Cauchy–Schwarz, we get

E(Γ2
n) � O( sup

j�0,:::,k
E(i ^f ( j)

ÿ f ( j) i6
6)):

Using Condition A2(c), which ensures that the quantities E(i ^f ( l)
ÿ f ( l)iq

q) achieve the
optimal rate of convergence, we see that E(Γ2

n) � O(nÿ6(sÿk)=(1�2s)
1 ) where n1 � n=(log (n)):

Thus:

if s . 2k �
1
4

then E(Γ2
n) � o

1
n

� �

; (4:10)

if
1
4

, s < 2k �
1
4

then E(Γ2
n) � o(nÿ8(sÿk)=(1�4s)): (4:11)

This proves that in both cases the remainder term is negligible. We are now in a position to
prove properties (i) and (ii).
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Taking case (ii) first, we first look at the order of magnitude of E(^Tn ÿ T( f ))2 in order to
obtain the rate of convergence in the nonparametric case, that is when s < 2k � 1

4:

^Tn ÿ T( f ) is composed of a sum of a linear term, a quadratic term, and the remainder term
Γn:

^Tn ÿ T( f ) �
X

k

j�0

1
n2

X

n2

l�1

(ÿ1) j(H j( ^f ))( j)(X l) ÿ
�π

ÿπ
H j( ^f ) f ( j)

� �

�

X

k

j, j9�0

(^T J (K J ( ^f )) ÿ T J (K J ( ^f ))) � Γn:

The expectation of the square of the linear term is

O
1
n2

sup
j2f0,:::,kg

E(i H j( ^f ))( j) i2
1

)

" #

:

As to the evaluation of the quadratic term, we shall apply the results of Section 2. In Section
2, we studied the properties of estimators of

� π
ÿπ f ( j) f ( j9)ψ: Here, ψ is the random function

K J ( ^f ) and T J (K J ( ^f )) is estimated independently of ^f . Therefore, working conditionally on
^f , we can apply the results of Section 2. ^T J (K J ( ^f )) will now be denoted by ^T J for short.

We have to determine the order of magnitude of E(i(K J ( ^f ))( l) i2
1

) and E(iK J ( ^f ))( l) i2
α) for

l 2 f1, . . . , kg in order to apply Theorem 1. We recall that K J ( ^f ) � 1
2φ 0jj9( ^f , . . . , ^f (k), :);

(K J ( ^f ))( l) is the derivative of order l of the function x 7! 1
2φ 0jj9( ^f (x), . . . , ^f (k)(x), x):

It involves a sum of term of type
P l

i�1 φ(2�i)
jj9 j1,:::, ji

( ^f , . . . , ^f (k), :) ^f ( j1�n1) 3 � � � 3
^f ( ji�ni)1n1�

:::

�ni� l where the indices j1, . . . , ji belong to f0, 1, . . . , kg. Since
φ 2 C k�3(KE), iφ(2�i) i

1
,1 for all i 2 f1, . . . , kg and we have to determine the order

of magnitude of E(i ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni) i2
1

) and E(i ^f ( j1�n1)3 � � � 3^f ( ji�ni)i2
α), where

n1 � � � � � ni � l: Put h � nÿ1=(1�2s)
1 for short. By Condition A2(d) of Hölder’s inequality,

it follows that

E(i ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni) i2
1

) � O[(h2(s9ÿ j1ÿn1)
� 1) 3 � � � 3 (h2(s9ÿ jiÿni)

� 1)]

for all s9 , s:
Let k , s9 , s, since f

Pi
ν�1 nν � l and jν < k, we obtain

E(i ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni) i2
1

) � O(h2(s9ÿkÿ l)
� 1): (4:12)

As to the evaluation of the α-norm, E(i ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni)i2
α), we use the equality

( ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni))(x) ÿ ( ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni))(y)

�

X

iÿ1

i0�0

Y

iÿi0

i1�1

^f ( ji1�ni1 )(x)
Y

i

i1�iÿi0�1

^f ( ji1�ni1 )(y)

2

4

3

5

0

@

ÿ

Y

iÿi0ÿ1

i1�1

^f ( ji1�ni1 )(x)
Y

i

i1�iÿi0

^f ( ji1�ni1 )(y)

3

5

2

4

1

A

:
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This leads to

i ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni)iα <
X

i

i0�1

Y

i1 6�i0

i ^f ( ji1�ni1 ) i
1

 !

i ^f ( ji0�ni0 ) iα:

It follows from (4.12) that

E
Y

i1 6�i0

i ^f ( ji1�ni1 ) i2
1

1
f

P

i1 6�i0 ni1� lÿni0g
� � O(h2(s9ÿkÿ l�ni0 )

� 1):

 

Moreover, by Condition A2(e) we obtain

E(i ^f ( j1�n1) 3 � � � 3 ^f ( ji�ni)i2
α) � O

X

i

i0�1

(h2(s9ÿkÿ l�ni0 )
� 1)(h2(s9ÿkÿαÿni0 )

� 1)

" #

� O(h2(s9ÿkÿαÿ l)
� 1):

So,

E(i(K J ( ^f ))( l)i2
1

) � O(1 � h2(s9ÿkÿ l)),

E(i(K J ( ^f ))( l) i2
α � O(1 � h2(s9ÿkÿ lÿα)):

By similar arguments, we can see that for all j 2 f0; . . ., kg,

E(i H j( ^f ))( j)i2
1

) � O(h2s9ÿ4k
� 1):

Hence, the expectation of the square of the linear term has order O((h2s9ÿ4k
� 1)=n2) �

O(nÿ8(sÿk)=(1�4s)
� nÿ1), since s9 is arbitrary close to s and n=n2 ! 1:

We can now apply the results of Theorem 1 to obtain the order of magnitude of
E(^T J

ÿ T J )2
: Since s < 2k � 1

4 we have to consider two cases corresponding to cases (i)
and (ii) of Theorem 1. First, if j � j9� 1

4 , s, then

sup
l�0,:::, j9

E(i(K J ( ^f ))( l)i2
1

) � O(h2(s9ÿkÿ j9)) � O(h2s9ÿ4k) since j9 < k:

Hence, by Theorem 1,

E(^T J
ÿ T J )2 < C1

h2s9ÿ4k

n2
< C1 nÿ8(sÿk)=(1�4s)

:

Second, if j � j9� 1
4 > s we have to evaluate the order of magnitude of E(λ2

2) for all j, j9. We
want to prove that E(λ2

2) � O(h2 jÿ2k): To do this, we shall prove that

sup
l�0,:::, pÿ j

E
i(KJ ( ^f ))( l) i2

1

� i(K J ( ^f ))( l) i2
α

m1=3

" #

� O(h2 jÿ2k); (4:13)

sup
l�0,:::, j9

E
i(K J ( ^f ))( l) i2

1

m(2 j�2 j9ÿ2s�1
2)^2 l

" #

� O(h2 jÿ2k): (4:14)
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To prove (4.13), we observe that, for all l � 0, . . . , p ÿ j,

E
i(K J ( ^f ))( l) i2

1

� i(K J ( ^f ))( l)i2
α

m1=3

" #

� O
h2(s9ÿkÿ p� jÿα)

m1=3

� �

� O(h2 jÿ2k)(h2s9ÿ2 pÿ2α mÿ1=3):

Since s9 is arbitrarily close to s � p � α we get limn!1
h2s9ÿ2 pÿ2α mÿ1=3

� 0: Thus (4.13) is
proved.

To prove (4.14) we first assume that 2 j � 2 j9ÿ 2s � 1
2 < l: Then we have to show that,

for all l < j9,

E
i(KJ ( ^f ))( l) i2

1

m(2 j�2 j9ÿ2s�1
2)

 !

� O(h2 jÿ2k):

From the above evaluations of E(i(K J ( ^f ))( l)i2
1

), we derive

E
i(KJ ( ^f ))( l) i2

1

m(2 j�2 j9ÿ2s�1
2)

 !

� O
1 � h2s9ÿ2kÿ2 l

m(2 j�2 j9ÿ2s�1
2)

� �

� O(h2 jÿ2k)(h2kÿ2 j mÿ2 jÿ2 j9�2sÿ 1
2
� h2s9ÿ2 jÿ2 l mÿ2 jÿ2 j9�2sÿ 1

2):

Since j < k, s < j � j9� 1
4, h ! 0 and m ! �1, we obtain h2kÿ2 j mÿ2 jÿ2 j9�2sÿ 1

2
! 0:

Moreover, for all l < j9,

h2s9ÿ2 jÿ2 l mÿ2 jÿ2 j9�2sÿ 1
2 < h2s9ÿ2 jÿ2 j9 mÿ2 jÿ2 j9�2sÿ1

2 < (mh)2sÿ2 jÿ2 j9 h2s9ÿ2s mÿ1=2
:

Using the fact that mh ! �1 and that s < j � j9� 1
4, the above expression is bounded by

(mh)1=2 h2s9ÿ2s mÿ1=2
� h

1
2�2s9ÿ2s which converges towards zero since s9 is arbitrarily close to

s.
To conclude the proof of (4.14) we have to consider the case of l . 2 j � 2 j9ÿ 2s � 1

4,
and show that E(i(K J ( ^f ))( l) i2

1

=m2 l) � O(h2 jÿ2k):

E
i(K J ( ^f ))( l) i2

1

m2 l

 !

� O((h2s9ÿ2kÿ2 l
� 1)mÿ2 l)

� O(h2 jÿ2k)(h2s9ÿ2 j(mh)ÿ2 l
� h2kÿ2 j mÿ2 l)

� O(h2 jÿ2k) since mh ! �1 and h ! 0:

Expression (4.14) is thus proved.
Finally, if s < 2k � 1

4, by Theorem 1 we obtain

E
X

k

j, j9�0

^T J
ÿ T J

0

@

1

A

2
0

B

@

1

C

A
� O

X

k

j, j9�0

h2 jÿ2k n(ÿ8s�4 j�4 j9)=(1�4s)
� nÿ8(sÿk)=(1�4s)

0

@

1

A
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� O( sup
j�0,:::,k

(hn2=(1�4s))2 j hÿ2k n(ÿ8s�4k)=(1�4s)
� nÿ8(sÿk)=(1�4s))

� O(nÿ8(sÿk)=(1�4s)) since hn2=(1�4s)
� mh ! �1:

Collecting the above evaluations and the computation of the remainder and linear terms, we
get in case (ii),

E(^Tn ÿ T ( f ))2
� O(nÿ8(sÿk)=(1�4s)):

Turning to case (i), let s . 2k � 1
4: We are now going to prove asymptotic efficiency. We

define

R �

���

n
p

^Tn ÿ T( f ) ÿ
1
n2

X

n2

l�1

X

k

j�0

(ÿ1) j(φ9j( f , . . . , f (k), :))( j)(X l) �
�

φ9j( f , . . . , f (k), :) f ( j)

2

4

3

5

:

Of course, to ensure that both (3.4) and (3.5) hold, it is enough to show that E(R2) ! 0:
Introducing auxiliary terms, we notice that R � R1 � R2, where

R1 �
���

n
p

"

^Tn ÿT( f )

ÿ

1
n2

X

n2

l�1

X

k

j�0

(ÿ1) j(φ9j( ^f , . . . , ^f (k), :))( j)(X l) ÿ
�π

ÿπ
φ9j( ^f , . . . , ^f (k), :) f ( j)

1

A

0

@

3

5

and

R2 � ÿ

���

n
p

X

k

j�0

1
n2

X

n2

l�1

(ÿ1) j(φ9j( f , . . . , f (k), :)ÿ φ9j( ^f , . . . , ^f (k), :))( j)(X l)

" #

�

���

n
p

X

k

j�0

�π

ÿπ
φ9j( f , . . . , f (k), :) f ( j)

ÿ

�π

ÿπ
φ9j( ^f , . . . , ^f (k), :) f ( j)

� �

:

We want to prove that both E(R2
1) and E(R2

2) ! 0: Plugging the expressions for ^Tn and T( f )
into R1 we obtain

R1 �
���

n
p

X

n

j, j9�0

ÿ2
n2

X

n2

l�1

(ÿ1) j(K J ( ^f ) ^f ( j9))( j)(X l) � 2
�π

ÿπ
K J ( ^f ) ^f ( j9) f ( j)

" #

�

���

n
p

X

k

j, j9�0

(^T J
ÿ T J )� Γn

2

4

3

5

:

Because of (4.10), we just have to prove that the expectation of the square
of

���

n
p Pk

jj9�0(^LJ
ÿ LJ

�
^T J

ÿT J ) converges to zero, where LJ
� 2

�

K J ( ^f ) ^f ( j9) f ( j) and
^LJ

� (2=n2)
Pn2

l�1(ÿ1) j(K J ( ^f )( ^f ( j9)))( j)(X l): We will first evaluate nE(
Pk

j, j9�0
^LJ

ÿ LJ )2 and
nE(
Pk

j, j9�0
^T J

ÿ T J )2, and then we will show that the sum of these terms is asymptotically
the opposite of the covariance term 2nE(

Pk
j, j9�0

^LJ
ÿ LJ )(

Pk
j, j9�0

^T J
ÿT J ):
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First, then, we have that

nE[(^LJ
ÿ LJ )(^LJ1

ÿ LJ1 )j ^f ] � 4
n

n2

�π

ÿπ
(ÿ1) j� j1 (K J ( ^f ) ^f ( j9))( j)(K J1 ( ^f ) ^f ( j91))( j1) f

ÿ 4
n

n2

�π

ÿπ
K J ( ^f ) ^f ( j9) f ( j)

�π

ÿπ
K J1 ( ^f ) ^f ( j91) f ( j1)

:

The expectation of this expression converges towards the same expression with f instead of
^f . So,

lim
n!1

nE
X

k

j, j9�0

^LJ
ÿ LJ

0

@

1

A

2
2

6

4

3

7

5
�

X

k

j, j9, j1, j91�0

ΛJJ1 ( f , K J ( f ), K J1 ( f ))

where ΛJJ1 ( f , ψ, î) is defined in Theorem 1.
Next, since s . 2k � 1

4, for all j, j9 2 f0, . . . , kg, s . j � j9� 1
4; therefore, by Theorem 1,

jnE((^T J
ÿ T J )(^T J1

ÿ T J1 )j ^f ) ÿ ΛJJ1 ( ^f , K J ( ^f ), K J1 ( ^f ))j < C91µ2
1(mÿα

� m
1
2� j� j9� j1� j91ÿ2s),

where

µ1 � sup [ sup
l�0,:::, j9

(iK J ( ^f ))( l)i
1
� i(K J ( ^f ))( l) iα); sup

l�0,:::, j91

(i(K J1 ( ^f ))( l) i
1
� i(K J1 ( ^f ))( l)iα)�:

As already proved, E(µ2
1) � O(h2s9ÿ4kÿ2α

� 1): Since s9 is arbitrarily close to s � p � α and
s . 2k � 1

4, we obtain p > 2k and limn!1
E(C91µ2

1(mÿα
� m

1
2� j� j9� j1� j91ÿ2s)) � 0: So,

lim
n!1

nE(^T J
ÿ T J )(^T J1

ÿ T J1 ) � lim
n!1

E(ΛJJ1 ( ^f , K J ( ^f ), K J1 ( ^f ))

� ΛJJ1 ( f , K J ( f ), K J1 ( f )):

This implies that

lim
n!1

nE
X

k

j, j9�0

^T J
ÿ T J

0

@

1

A

2
2

6

4

3

7

5
�

X

k

j, j9, j1, j91�0

ΛJJ1 ( f , K J ( f ), K J1 ( f )):

We now show that

lim
n!1

2nE
X

k

j, j9�0

^LJ
ÿ LJ

0

@

1

A

X

k

j, j9�0

^T J
ÿ T J

0

@

1

A

2

4

3

5

� ÿ2
X

k

j, j9, j1, j91�0

ΛJJ1 ( f , K J ( f ), K J1 ( f )):

We begin by noticing that

E[(^T J
ÿ T J )(^LJ1

ÿ LJ1 )j ^f ] � E(^T J
^LJ1

j
^f ) ÿ E(^T J

j
^f )LJ1

:

We recall that ^T J
�

^T jj9
0 �

^T j9 j
0 �

^T J
2 , where ^T J

2 is defined by (2.2) with K J ( ^f ) in place of ψ.
Moreover,
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^T jj9
0 �

1
n2(n2 ÿ 1)

X

m

i�0

X

n2

l1 6� l2�1

(ÿ1) j pi(X l1 )(K J ( ^f ) p( j9)
i )( j)(X l2 ):

We will do the computations for ^T jj9
0 instead of ^T J . Integrating by parts, we obtain

E(^T jj9
0
^LJ1

j
^f ) ÿ E(^T jj9

0 j
^f )LJ1

� ÿ

2
n2

�π

ÿπ
(ÿ1) j9� j1 Sm[(K J1 ( ^f ) ^f ( j91))( j1) f ](K J ( ^f ) f ( j))( j9)

� �

ÿ

2
n2

�π

ÿπ
(ÿ1) j� j1 (K J ( ^f )Sm f ( j9))( j)(K J1 ( ^f ) ^f ( j91))( j1) f

� �

�

4
n2

�π

ÿπ
K J ( ^f )Sm f ( j9) f ( j)

�π

ÿπ
K J1 ( ^f ) ^f ( j91) f ( j1)

:

So

lim
n!1

2n
X

k

jj9 j1 j91�0

[E(^T jj9
0
^LJ1 ) ÿ E(^T jj9

0 LJ1 )] � ÿ2
X

k

j, j9, j1, j91�0

ΛJJ1 ( f , K J ( f ), K J1 ( f )):

Of course, the same result holds with ^T j9 j
0 replacing ^T jj9

0 . By similar computations for
E(^T

jj9
0
^LJ1

j
^f ) ÿ E(^T

jj9
0 j

^f )LJ1 , the above results holds for ^T J instead of ^T jj9
0 . Thus, finally,

lim
n!1

nE
X

k

jj9�0

^T J
ÿ T J

�
^LJ

ÿ LJ

0

@

1

A

2
2

6

4

3

7

5
� 0:

It remains to prove that R2 !
L2

0:

E(R2
2) �

n

n2
E
�π

ÿπ

X

k

j�0

(ÿ1) j(φ9j( ^f , . . . , ^f (k), :))( j)
ÿ

X

k

j�0

(ÿ1) j(φ9j( f , . . . , f (k), :))( j)

0

@

1

A

2

f

2

6

4

3

7

5

ÿ

n

n2
E

X

k

j�0

�π

ÿπ
φ9j( ^f , . . . , ^f (k), :) f ( j)

ÿ

�π

ÿπ
φ9j( f , . . . , f (k), :) f ( j)

0

@

1

A

2
2

6

4

3

7

5

Using the fact that φ and its derivatives are bounded over KE and that ^f and its p first
derivatives converge in Lÿ1-norm towards f and its derivatives respectively, we show as above
that

E
�π

ÿπ
((φ9j( ^f , . . . , ^f (k), :))( j))2 f

� �

!

�π

ÿπ
((φ9j( f , . . . , f (k), :))( j))2 f :

By similar arguments for all the terms which appear in the expression for E(R2
2) and since

n=n2 ! 1, we obtain R2 !
L2

0: This concludes the proof of Theorem 2.
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Appendix

Proof of Lemma 1

The density f is assumed to satisfy Assumption A1. ~f is an estimator of the density f based
on projection methods:

~f (x) �
1
n1

X

n

j�nÿn1

X

m1

i�0

pi(X j) pi(x), where m1 � n1=(1�2s)
1 :

We define the event An � f
~f (i)(S) � [ai ÿ E, bi � E] for all i 2 f0, . . . , kgg, where E . 0 is

such that KE �

Qk
i�0[ai ÿ E, bi � E] 3 S � Ω, and we set ^f � ~f 1A n � f 01Ac

n where f 0

satisfies Condition A2(a) and (b).
It is clear that ^f also satisfies Condition A2(a) and (b); in particular, this implies that

i ^f ( l) i
1

is bounded for l � 0, . . . , k: Conditions A2(c)–(e) will also be satisfied because
they are satisfied for ~f and because P(Ac

n) is of smaller order than the rates we wish to
obtain.

We will first prove Condition A2(c) with ~f instead of ^f . Let us first evaluate the bias
term i �f ( l)

ÿ f ( l) iq
q, where �f ( l)

ÿ E( ~f ( l)) � (Sm1 f )( l)
� Sm1 ( f ( l)), for m1 even.

Let P m1 be the set of trigonometric polynomials with degree not bigger than m1: It
follows from M. Riesz’s theorem that for 1 , q ,�1 and for f 2 Lq(S), iSm( f )iq <
Cqi f iq (see Bary 1964, vol. 2, p. 137). Therefore for P 2 P m1,

iSm1 ( f ( l)) ÿ f ( l) iq � iSm1 ( f ( l)
ÿ P) ÿ ( f ( l)

ÿ P)iq

< Cqi f ( l)
ÿ Piq < (2π)1=qCqi f ( l)

ÿ Pi
1

,

hence,

iSm1 ( f ( l)
ÿ f ( l) iq < (2π)1=qCq inf

P2P m1

i f ( l)
ÿ Pi

1
<

C9q

msÿ l
1

(see Zygmund 1968, vol. 1, p. 117). This gives

i �f ( l)
ÿ f ( l)iq

q � O(nq( lÿs)=(1�2s)
1 ):

Here, and in the remainder of the proof, the Os do not depend on f 2 Fs,C but depend on q.
We will show that E(i ~f ( l)

ÿ
�f ( l) iq

q) is of the same order. Denote

Y j(x) �

X

m1

i�0

pi(X j) p( l)
i (x) ÿ

X

m1

i�0

ai( f ) p( l)
i (x)

m1� l
1

:

Since i p( l)
i i

1
< i l and jai( f )j <

�

f 2
�

p2
i < i f i

1
, we obtain jY j(x)j < 2(1 � i f i

1
) for m1

large enough. Moreover, by orthonormality of the pi we obtain
Pn

j�nÿn1
E(Y 2

j(x)) <
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λ(n1=m1), where λ 2 R is independent of x. The variables Y j(x) are independent and centred.
It follows from Rosenthal’s (1970) inequality that

E

�

�

�

�

X

n

j�nÿn1

Y j(x)

�

�

�

�

q
 !

< Aq
n1

m1

� �q=2
 !

,

where Aq is independent of x, which leads to

E

�

�

�

�

�

�

�

�

X

n

j�nÿn1

Y j

�

�

�

�

�

�

�

�

q

q

 !

< 2πAq
n1

m1

� �q=2
 !

:

It follows that

E(i ~f ( l)
ÿ

�f ( l) iq
q) � O(nq( lÿs)=(1�2s)

1 ):

It remains to show that the same result holds when ~f is replaced by ^f . To do this, we
will bound P(Ac

n) from above. Since f 2 Fs,C , iSm1 ( f ( l)) ÿ f ( l) i
1
� O(log (m1)=mα

1 ) for all
l < p (see Zygmund 1968, vol. 1, p. 64). Hence for n large enough, independently of
f 2 Fs,C , i �f ( l)

ÿ f ( l)i
1

< E=2 for all l 2 f0, . . . , pg: If i ~f ( l)
ÿ

�f ( l) i
1

is also bounded by
E=2 for l � 0, . . . , p, then ^f � ~f : So,

P(Ac
n) <

X

p

l�0

P i ~f ( l)
ÿ

�f ( l) i
1

>
E

2

� �

:

Denote by Dm1 Dirichlet’s kernel:

Dm1 (t) �
sin (m1 �

1
2)t

2π sin
t

2

:

Then

~f ( l)(x) �
1
n1

X

n

j�nÿn1

D( l)
m1

(x ÿ X j),

where �f ( l) is the convolution product f � D( l)
m1

: We have that iD( l)
m1

i
1

< m1� l
1 and

E((D( l)
m1

(x ÿ X j))2) < m1�2 l
1 : It follows from Bernstein’s inequality that

P j
~f ( l)

ÿ
�f ( l)

j(x) >
E

2

� �

< 2 exp ÿ

1
2

n1E
2
=4

m1�2 l
1 �

1
6Em1� l

1

" #( )

:

Let x0, . . . , xN be N � 1 points from [ÿπ, π] such that x0 � ÿπ, xN � π, xi <
xi�1jxi�1 ÿ xij � δ: Then

j
~f ( l)(x)ÿ �f ( l)(x) ÿ ( ~f ( l)(xi) ÿ �f ( l)(xi))j < (i ~f ( l�1)i

1
� i �f ( l�1)i

1
)jx ÿ xij < 2m2� l

1 jx ÿ xij:
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Let δ be such that 2δm2� l
1 � E=4: Then

P sup
jxÿxij<δ

j
~f ( l)

ÿ
�f ( l)

j(x) .
E

2

� �

< P j
~f ( l)

ÿ
�f ( l)

j(xi) .
E

4

� �

< 2 exp ÿ

1
2

n1E
2
=16

m1�2 l
1 �

1
12Em1� l

1

" #( )

:

Finally

P i ~f ( l)
ÿ

�f ( l) i
1

>
E

2

� �

< 2
2π
δ

� �

exp ÿ

1
2

n1E
2
=16

m1�2 l
1 �

1
12Em1� l

1

 !( )

,

which we can also write as

P i ~f ( l)
ÿ

�f ( l) i
1

>
E

2

� �

< K0 m2� l
1 exp ÿ

K1 n1E
2

m1�2 l
1 �

1
12Em1� l

1

 !( )

, (5:1)

where K0, K1 are positive absolute constants. Since m1 � n1=(1�2s)
1 , for n1 large enough, and

for l < p , s, P(Ac
n) <

P p
l�0 P(i ~f ( l)

ÿ
�f ( l)i

1
> E=2) < K0 nÿqs=(1�2s)

1 : We can now write

E(i ^f ( l)
ÿ f ( l) iq

q) < E(i ~f ( l)
ÿ f ( l) iq

q) � i f ( l)
ÿ f ( l)

0 iq
q K0 nÿqs=(1�2s)

1 < γ1 nÿq(sÿ l)=(1�2s)
1 :

This concludes the proof of Condition A2(c).
Let us now control the order of magnitude of E(i ^f ( l) iq

1

) for all l < 2k in order to prove
Condition A2(d). From (5.1) we deduce

P
i ~f ( l)

ÿ
�f ( l)iq

1

mq( lÿs9)
1

> t

 !

< K0 m2� l
1 exp [ÿK1 n1 t2=q mÿ1ÿ2s9

1 ]:

Since the above inequality holds for t > t0 . 0, we obtain, for n1 large enough,

E
i ~f ( l)

ÿ
�f ( l)iq

1

mq( lÿs9)
1

 !

< t0 �

�

�1

t0

K0 m2� l
1 exp [ÿK1 n2(sÿs9)=(1�2s)

1 t2=q] dt < 2t0 for all s9 , s:

To conclude the proof of Condition A2(d), it remains to prove that

i �f ( l) i
1
� O(1 � mlÿs9

1 ) for all s9 , s, for all 0 < l < 2k:

We can see that for all l < p, i �f ( l) i
1

is bounded by some constant independent of f 2 Fs,C:

This follows from Lemma 3 and the fact that for all l < p, i �f ( l)
ÿ f ( l)i

1
� O(log m1)=mα

1 ).
We shall now prove that i �f ( p�1)i

1
� O(m1ÿα9

1 ) for all 0 , α9 , α. Since f is extended by
periodicity, we have that

�f ( p�1)(x) �
�π

ÿπ
D9m1 (t)[ f ( p)(x ÿ t) ÿ f ( p)(x)] dt
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�

�π

ÿπ

(m1 �
1
2) cos (m1 �

1
2)t

2π sin
t

2

ÿ

sin (m1 �
1
2)t cos

t

2

4π sin
t

2

� �2

2

6

6

6

4

3

7

7

7

5

[ f ( p)(x ÿ t) ÿ f ( p)(x)] dt:

Moreover, for all x and for t 2 [ÿπ, π], we have j f ( p)(x ÿ t) ÿ f ( p)(x)j < 2Cjtjα since
f 2 Fs,C and f is extended by periodicity. So,

j
�f ( p�1)(x)j < m1 �

1
2

� �

�π

ÿπ

cos (m1 �
1
2)t

2π sin
t

2

� �

2

6

4

3

7

5

[ f ( p)(x ÿ t) ÿ f ( p)(x)] dt

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� 2Cmÿα
1

�m1π

ÿm1π

sin 1 �
1

2m1

� �

y

sin
y

2m1

� �2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

jyjα
dy

m1
:

The second term of the sum is bounded by

C9m1ÿα
1

�m1π

ÿm1π
jyjαÿ2

�

�

�

�

sin 1 �
1

2m1

� �

y

�

�

�

�

dy �
O(m1ÿα

1 ) if 0 , α , 1
O(log m1) if α � 1:

�

As to the first term, we observe that
�π

ÿπ

(cos (m1 �
1
2)t)

2π sin
t

2

2

4

3

5

( f ( p)(x ÿ t) ÿ f ( p)(x)) dt � Sm1 ( �f ( p))(x)ÿ �f ( p)(x),

where Sm( �f ( p)) denotes the conjugate Fourier series of f ( p) and �f ( p) the conjugate function
of f ( p) (see Bary 1964, vol. 2, pp. 51–53). Since f ( p) is an α-Hölderian function, if
0 , α , 1, �f ( p) is also an α-Hölderian function, as proved in Bary (1964, vol. 2, p. 99).
Therefore,

iSm1 ( �f ( p)) ÿ �f ( p))i
1
� O(mÿα9

1 )

for all α9 such that 0 , α9 , α < 1: This leads to

i �f ( p�1)i
1
� O(m1ÿα9

1 ) for all α9 , α:

From Bernstein’s inequality concerning trigonometric polynomials (see Zygmund 1968, vol.
1, p. 118), it follows that for l > 1i �f ( p� l) i

1
< (2m1) lÿ1i �f ( p�1) i

1
: Moreover, since

i �f ( p�1)i
1
� O(m1ÿα9

1 ) for all α9 , α, we obtain i �f ( p� l) i
1
� O(mlÿα9

1 ) for all l > 1, and
α9 , α: This completes the proof of Condition A2(d). So, for all s9 , s,

E(i ^f ( l) iq
1

) � O(mq( lÿs9)
1 � 1): (5:2)

Finally for all s9 , s, we have to show that

E(i ^f ( l) iq
α) < γ3(1 � nq( l�αÿs9)=(1�2s)

1 ):
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We use the inequality

j
^f ( l)(x)ÿ ^f ( l)(y)j

jx ÿ yjα
< i ^f ( l�1) i

1
jx ÿ yi1ÿα for all x, y 2 S,

and we consider two cases, first, if l � 1 , s, then E(i ^f ( l�1)iq
1

) � O(1) by (5.2) and we also
have E(i ^f ( l) iq

α) � O(1): Second, if l � 1 > s � p � α, then l > p; there are two subcases to
deal with. If jx ÿ yj < 1=m1, then

j
^f ( l)(x) ÿ ^f ( l)(y)j

jx ÿ yjα
< i ^f ( l�1)i

1
mαÿ1

1 :

If however jx ÿ yj > 1=m1, then, for all 0 , α9 , α,

j
^f ( l)(x) ÿ ^f ( l)(y)j

jx ÿ yjα
�

j
^f ( l)(x) ÿ ^f ( l)(y)j
jx ÿ yjαÿα9

jx ÿ yjα9 < 2i ^f ( l) i
1

(2π)α9 mαÿα9
1 :

Finally,

E(i ^f ( l) iq
α) � O[E(i ^f ( l�1) iq

1

)mq(αÿ1)
1 � E(i ^f ( l)iq

1

)mq(αÿα9)
1 ]:

From (5.2) we derive that, for all s9 , s,

E(i ^f ( l)iq
α) � O(mq( l�1ÿs9)

1 mq(αÿ1)
1 � (1 � mq( lÿs9)

1 )mq(αÿα9)
1 ) � O(1 � mq( l�αÿs9)

1 ):

This completes the proof of Lemma 1.

Semi-parametric information bound

We refer to Koshevnik and Levit (1976) and Levit (1978). We suppose that f belongs to Fs,C ,
with s � p � α: We want to estimate T( f ) �

�

φ( f (x), . . . , f (k)(x), x) dx with k < p: Let î
be a bounded function, infinitely differentiable, such that

�

f î � 0: We define

f t � f (1 � tî):

f t 2 Fs,C is a density for t small enough. Now

T( f t)ÿ T( f ) �
�

X

k

j�0

@φ
@xj

( f , . . . , f (k), :)( f ( j)
t ÿ f ( j)) � o(t)

�

�

X

k

j�0

(ÿ1) j @φ
@xj

( f , . . . , f (k), :)
� �( j)

( f t ÿ f ) � o(t) by integration by parts

�

�

X

k

j�0

(ÿ1) j @φ
@xj

( f , . . . , f (k), :)
� �( j)

ÿ

�

@φ
@xj

( f , . . . , f (k), :) f ( j)
� �

" #

3 ( f t ÿ f ) � o(t)

since
�

f t �
�

f � 1: Moreover, i
�����

f t
p

ÿ

����

f
p

ÿ Ati2 ! 0 as n !1, where At � tî
����

f
p

=2:
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Now, T( f t) ÿ T ( f ) � Bt � o(t), where Bt � E f (Gtî=2) and

G � 2
X

k

j�0

(ÿ1) j @φ
@xj

( f , . . . , f (k), :)
� �( j)

ÿ

X

k

j�0

�

@φ
@xj

( f , . . . , f (k), :) f ( j)

2

4

3

5

:

so the function G satisfies E f (G) � 0: Since the functions î are dense in the set of functions
g 2 L2([ÿπ, π]) such that E f (g) � 0, there exists a sequence în such that

lim
n!1

�π

ÿπ

în

2
ÿ G

� �2

f (x) dx � 0:

According to Theorems 1 and 2 of Koshevnik and Levit (1976),

inf
E

lim inf
n!1

sup
f12Fs,C ,i f1ÿ f i2<E

nE(^Tn ÿ T( f ))2 > 1
4E f (G2):

Finally,

1
4

E f (G2) �
�

X

k

j�0

(ÿ1) j @φ
@xj

( f , . . . , f (k), :)
� �( j)

2

4

3

5

2

f dµÿ
�

X

k

j�0

@φ
@xj

( f , . . . , f (k), :) f ( j) dµ

0

@

1

A

2

:

For the problem of estimating
�

( f (k))2, we get for the analogue of the Cramér–Rao bound:

4
�

( f (2k))2 f ÿ

�

( f (k))2

� �2
" #

:
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