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Asymptotic normality of least-squares
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Based on least-squares considerations, Schultze and Steinebach proposed three new estimators for the
tail index of a regularly varying distribution function and proved their consistency. We show that,
unlike the Hill estimator, all three least-squares estimators can be centred to have normal asymptotic
distributions universally over the whole model, and for two of these estimators this in fact happens at
the desirable order of the norming sequence. We analyse the conditions under which asymptotic
confidence intervals become possible. In a submodel, we compare the asymptotic mean square errors
of optimal versions of these and earlier estimators. The choice of the number of extreme order
statistics to be used is also discussed through the investigation of the asymptotic mean square error for
a comprehensive set of examples of a general kind.
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1. Introduction and main results

Let X, Xy, X5, ... be independent random variables with a common distribution function
F(x) = P{X <x}, x € R, and for each integer n =1, let X;, < .- =< X,, denote the
order statistics based on the sample X, ..., X,. Let .72, be the class of all distribution
functions F such that 1 — F is regularly varying at infinity with index —1/a, i.e.

1 — F(x) = x /(%) 0<x<oo, (1.1)

where /(-) is an unknown nuisance function slowly varying at infinity and a >0 is a fixed
unknown parameter to be estimated. Introducing Q(s) :=inf {x: F(x) = s}, 0<s =<1,
0(0) := Q(0+), the inverse or quantile function of F and letting Q(1 — s—) denote the left-
continuous version of the right-continuous function Q(1 — s), 0 <s <1, it is well known that
F € 7%, if and only if, for some function L(-) slowly varying at zero,

Ol —s—)=sL(s), 0<s<l. (1.2)

Several estimators have been proposed, but a considerable part of the large literature is
*To whom correspondence should be addressed. e-mail: viharos@math.u-szeged.hu.
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centred around the asymptotic properties of Hill’s (1975) estimator & = a¥(k,) :=
k;lzlf;”l log* X 1-in —log™ X, 1, where the k, are some integers satisfying

1<k,<n, k, — oo, kn/n— 0as n— oo, (1.3)

and log™ x = logmax (x, 1), x € R. In particular, the basic weak- and strong-consistency
results are due to Mason (1982) and Deheuvels et al. (1988), while the difficult problem of
the asymptotic normality of & has been investigated by Hall (1982), Hall and Welsh (1985),
Haeusler and Teugels (1985), Csorgé and Mason (1985), Beirlant and Teugels (1989) and
their references, and by Csorgo et al. (1985) for a whole class of kernel estimators containing
&, Asymptotic normality here refers to that of k1/2{a® — u(®}, where u©® = u©(k,) is a
numerical centring sequence such that ¥ — a as n — oo. In some restrictions of .72, one
has k'/2{u® — a} — 0, so that it is possible to centre & at a in these statements. However,
even with varying 49, these results all use restrictive conditions on .72, itself, and the
various sets of conditions are difficult to compare. Bringing the approach of Csérgd and
Mason (1985) to what appears to be its ultimate limit, Csérgé and Viharos (1995) proved
even more general results, at the price of changing even the norming sequence ki/ 2 to
sequences depending also on the unknown L in (1.2) in complicated ways. However, we also
constructed there distribution functions F € .7, such that &”(|n?/3|), where |-| denotes
integer part, does not have a non-degenerate asymptotic distribution for any centring and
norming sequences. So, while the weak consistency of @%(k,) for all {k,} satisfying (1.3) in
fact characterizes the classes .72, by Mason’s (1982) theorem, the Hill estimator is not
universally asymptotically normal over .7,,.

From analytic considerations about L, Viharos (1997) has derived two new classes of
estimators such that, denoting a member of any one of them by &L(k,,), for suitable
ul (k) — a the sequence ki/z log(n/k,) {al(k,) — ul(k,)} is universally asymptotically
normal over .72, for all {k,} satisfying (1.3) for one of the classes and whenever,
additionally, k,/log? n — oo for the other. Thus the price of universal asymptotic normality
for both classes is the presence of the factor log(n/k,), indicating a possibly greater order
of bias than that of &?) (at least when a measure for the latter is available).

For simplicity of notation, we assume without loss of generality from now on that
F(0)=0 for all F e .%,, ie., X is positive; otherwise one only has to replace log by log*
in what follows with some trivial extra reasonings in the proofs. Approximating a Bayes
estimator, Hill’s (1975) estimator &'® is in fact a conditional maximum likelihood estimator
under the restricted model in which /(x) =e° in (1.1), for all x beyond a threshold, for
some constant c. Recently, Schultze and Steinebach (S&S) (1996) proposed three new
estimators of a, which are based on least-squares considerations in the same restricted
model. (In a mathematically equivalent fashion, they in fact do this in a corresponding
exponential model briefly touched upon in the next section.) Taking the logarithm of (1.1)
in the restricted case, substituting x = X, _;, into —log{l — F(x)} = —c + a !logx and
approximating the left-hand sides by —log {1 — F,(X,11_;.—)} = log(n/i), where F,(-) is
the sample distribution function, for some 1 < k,<<n we have either log X, 1_;, ~
d+alog(n/i), i=1,..., k,, where d=oac, or a 'logX, 1 i, ~ c+log(n/i), i=1,
..., kn. A least-squares fit based on the first set of approximative equations gives the first
estimator (" = @ V(k,), which thus results from minimizing Zf‘:”]{log)(nﬁ_i,,, —d -
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alog(n/i)}*> in the two variables a and d. The univariate minimization problem with
d = ¢ =0 yields the second estimator a? = a'?(k,); so this belongs to /(-) = 1. Finally,
the second set of approximative equations gives the third estimator &> = a®(k,); this
results from minimizing Zf:"l{a’l log X ,1_in — ¢ —log(n/i)}? in the two variables a~!
and c. Therefore, the S&S estimators are as follows:

1 kn 1 kn kn
(k) = [k—n;{mg (5) pos i = (Z log Xnﬂ,»,n) {}_; e (%) H

-1

| o n 1 & N
X |2 of (‘) - {k—Z tog <_)} ’
~ (2 b n S 2 (1 )
Ot(,,)(kn) — 3 {10g <7) }(10an+l—i,n) ; log (7) )

2
1 &

log” X s 1-in — (k_z 10an+li,n>
=1

1 ky n l kn ky " _
X lk— Z{log <7) }(IOanJrl—i,n) 2 (Z 1ogX,,+]_i,n> {Z log <7> H
n =1 W \— —

As is usual for &9, we now drop the restricted model and thus return to the whole .72,,.
Using results of Csorgé et al. (1985), Deheuvels et al. (1988), Csorgd et al. (1991), Lo
(1989) and Viharos (1993), S&S proved the consistency of these, for all {k,} satisfying
(1.3) for a?, and under the additional assumption that k,/log? n — oo for &V and a?),
supposig}g also the continuity of Q near 1 for the result on a®.

Let — denote convergence in distribution and let N(u, 0%) be the normal distribution
with mean u € R and variance 02> 0. Understanding limiting and order relations and
asymptotic equalities ~ as n — oo throughout if not specified otherwise, our main results in
this paper are contained in the following theorems.

aQ(k,) =

|
——
&=
™

Theorem 1.1. If k, is any sequence of positive integers such that (1.3) holds and
k,/log*n — oo, then, whenever F € .72, for some a € (0, 00),

KYA{aD k) — 1D (k)5 N, 202),
where 1D(ky) = uD := —(n/ky) [" log Q(1 — t=){1 + log (nt/k,)} dt — a.

Theorem 1.2. If k, is any sequence of positive integers such that (1.3) holds and
{k,log?(n/k,)}/log* n — oo, then, whenever F € 72, for some a € (0, c0),
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o ()0 — 20k} % NGO, 26

where u® (k) :kpj(nz) = Un.n) > With o, = pan(ky) = — jok”/" log Q(1— t—)logtdt and
Jn = Jn(ky) = J" "log? tdt = (k,/n){log? (n/k,) + 2log(n/k,) + 2}, and ,u(nz)(k,,) — a.

Theorem 1.3. If k, is any sequence of positive integers such that (1.3) holds and
k,,/log4 n — oo, then, whenever F € 7, for some a € (0, c0),

D ) = 1Dk} > N(O, 20%),
where /"(r?)(kn) = /4(n3) = {ta,n — ﬂg’n}/k//{(l), with us, = usn(ky) == (n/ky) fok"/n log O(1 —
t=)dt and ws, = pan(ky) = (n/ky) ;""" log?> (1 — t=)dt and u$)(k,) — a.

Thus all three S&S estimators are universally asymptotically normal over the whole
model .72, provided that %, /log4 n — o0o. The behaviour of d(f) is analogous to that of
Vihaross (1996) estimators. We do not know whether the theoretically weak size
requirements on k, are necessary. The universal asymptotic normality of &V and a(¥
with the desired norming factor kl/ 2 appears to be the first such results for the problem.

The basic practical problem is of course the choice of k, for a given n. While we do not
believe that this problem can be solved ‘universally’, it is part of the statistical nature of the
S&S least-squares estimators that heuristically appealing methods for the data-driven choice
of k, are readily available, at least for a(k,) and &{¥(k,). Indeed, S&S suggested two
such methods: one is based on minimizing a sum of squared residuals, and the other on
maximizing a corresponding sample correlation coefficient. As a result of their careful
simulation study, they conclude that the resulting &V and &) compare fairly well with (9.
The theorems above may provide the theoretical framework to investigate optimality
properties of these methods. A theoretical aspect of the problem of choosing k, is
considered in Section 4, where we suggest a heuristic rule of thumb, while the conditions
under which asymptotic confidence intervals for a become possible are discussed in Section
3. The proofs are in Section 5.

2. The exponential model

For a given a € (0, 00), let ¢, denote the class of all distribution functions G on R such that
1 — G(x) = e ¥/*r(x), 0 <x<oo, where r(-) is a function regularly varying at infinity. Let
Z, Z1, Z,, ... be independent random variables with distribution function G and quantile
function S(s) = inf{x: G(x) = s}, 0<s<1, and let Z,,<---<Z,, be the order
statistics pertaining to Zi, ..., Z,. Then G &€ £, if and only if F € .98,, where
F(x) = P{e? < x}, x € R, so that F(x) = G(logx), x>0 (Cs6rgd and Mason 1985). Hence,
whenever G € &, Theorems 1.1, 1.2 and 1.3 all remain valid if we replace log X y+1-in by
Zpti—in, i=1,..., ky, and logQ(-) by S(-). S&S discussed interesting examples from
insurance and risk theory which give rise to & ,.
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3. The centering problem: asymptotic confidence intervals

Having Theorems 1.1 and 1.3, a natural question concerns the conditions under which

)

and so
K2 {6 (k,) — a} 5 N(ba, 262,  j=1,3,

provided that k,/log* n — oo, for some limiting bias b € R scaled by a. If ® denotes the
standard normal distribution function and z.(b) >0 is the unique value of z for which
O((z — b)/2'?) — ®(—(z+ b)/2'/?) =1 — & for a given &€ (0, 1), then of course (3.1)
implies that

. € b n\Nn ~( € An n j
p(d%(m %fk) a(,{)(kn)Jr%)_’l_g’ S G

for any consistent estimator a,(k,) of a. The corresponding question for Theorem 1.2
concerns the conditions for kl/2 log (n/k){t'P(k, )— a} — ba for some b € R.

Since u?(k,) —a = {- fo n/n log L(¢)log tdt}/(fo n/n log? ¢df) by calculation from (1.2),
we see by Lemma 5.1 below that u'®(k,) — a in Theorem 1.2, as claimed. Also, if
L(-) =1 in a right neighbourhood of 0, then u'® = o for all n sufficiently large. However,
even if L(-) =e® for a constant cx # 0 in that neighbourhood, which certainly is a best
possible distributional assumption for the problem at hand, we have u®(k,)—a ~
cx/log(n/ky). Thus, in general, the asymptotic normality of kl/2 log (n/k,){aP(k,) — a}
is not feasible. Since a(nz) is derived exactly under the side condltlon that L(-) = 1, this is
not surprising.

That u"(k,) > a in Theorem 1.1 can be seen by putting p(v):=
— [, (1 +logs)ds = —vlogv and noting that

kn/n
D (k) = L log O(1 — 1—)dp (Z—’)

kn/n
[, o () atloe 01 - 1)

0

1
J p(0)df (o)

0

1
- —Lp(v) d(log o)
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1
= —aJ logvdv = «, (3.3)
0
using the notation and the statement of Lemma 5.4 (iv) below. However, this approach does
not provide a handle on the rate of convergence. Another approach rests on introducing the
functionals  A,(f) := — fol(l +logs)log f(st)ds, O0=<t¢=<1, on functions f. Then
wD(ky) — a=—a{l + Ay, a0} + Ay, n(L) by (1.2), where «(u) = u, and it is easy to see
that Ay, /,(t) = —1. Hence, in fact, u()(k,) — @ = Ay,;,(L). Thus, under k,/log"n — oo,
(3.1) and (3.2) hold for j =1 if and only if k/?4,/,(L) — ba.

Sufficient conditions for the most useful case b =0 may be obtained in terms of the
functions a; and b; in the Karamata representation L(s) = ai(s)exp {J'Sl[bL(u)/ u]du},
0 <s<1, where limgga.(s) = ap for some ay € (0, co) and limyob.(s) = 0. Then

1 1 1
Ag, /(L) = —Jo(l + logs)logay (sk_,,) ds — J (1 +logs) <J bu(w) du) ds,

n 0 sko/n U
and using fol (1 +1logs)ds = 0, one concludes that, if besides k,/log* n — oo we have

K2 sup  [loga(f) — logag| — 0, K2 sup  |bi(1)] — 0,
0<t<k,/n 0<t<k,/n
then (3.1) and (3.2) hold for j=1 and b = 0.

For example, if L(s) = Di(1 4+ D,s#), 0 <s < 8, for some o € (0, 1], as a special case of
(4.1) below, then a;(s)=D; and bi(s)= —BDys"/(1 + DysP), 0<s<0, so that
KL/ SUPg<y<k,/n |bL(t)] < 2B Da| kP02 /uP for all n large enough. Hence (3.1) and
(3.2) hold for j =1 and b = 0 whenever k, = o(n*/?F+D). Also, it follows from the proof
of Theorem 4.1 below that, if k, ~ An**/@F+D_ then (3.1) holds for a b such that bD, <0,
once the constant >0 is given by A = {—b(8 + 1)2aB~! D; ' }2/@+D),

Finally, for u, = yngk,,) = s n(kpn) — lu%,n(k”? integrations by part and some algebra
gives ,un(kn) =-2 Jo Z)fkﬂ/n(v) dfkn/n(v) - {J() vdfk,,/n(v)}z’ S0 that /un(kn) -
—2a? fol logvdo — (—a fol dv)* = &? similarly as in (3.3). Hence u$’(k,) — a in Theorem
1.3. The problem of the rate in the latter convergence, and hence the centring problem in
(3.1) for j =3, is more complicated than for j = 1 and is not pursued here.

Monte Carlo experiments to assess actual coverage probabilities in (3.2) in some standard
situations, such as the latest example above, would be useful. We refer to Novak and Utev
(1990) for a nice mathematical treatment of a version of the problem in (3.1) for their
estimator, which is based on the whole sample X, ..., X,.

4. The choice of k,: asymptotic mean squared errors

The ‘ideal’ submodel of (1.2) is when L(:) is constant in [0, 6] for some o € (0, 1]
(equivalently, /() in (1.1) is constant beyond some threshold), in which case y(nj)(k,,) =a,
j =1, 3, by an extra calculation for j = 3, for all » for which k,/n € [0, 6] (and hence (3.1)
holds with 4 = 0). In this ideal case, one would choose k, quite large in practice to make the
asymptotic variance 2a’/k, of &V and & small. In order to get a sense of the general
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situation, where for &V the quantity 4% ,/n(L) may be viewed as a measure of deviation of
L(-) from a constant near 0, first we determine the theoretically optimal k, which minimizes
the asymptotic mean square errors of the estimators in another submodel of (1.2). The
complexity of this submodel, considered by Hall (1982) in the same context, is the next step
after that of the ‘ideal’ above; it is defined by assuming that

O(1 — s—) = s~ “Dy[1 + DysP{1 + 0(1)}] as s — 0, “.1)

where Dy >0, D, #0 and >0 are constants. The theorems above suggest defining the
asymptotic mean square error of & as M) = MY(k,) := b} ,(k,) + 2%k, for ] =1,3,
and as M@ = MPD(k,) := b3 (kn)—i—Za k- 11og—2 (n/k,) for j =2, for some b, (k, )~
{uD(k,) — a}z, j=1, 2, 3; “the sum of the asymptotic squared bias and varlance (cf.
Theorem 5 of Csorgd et al. (1985), with several examples, and Theorem 2.2 of Viharos
(1995); they do not formally include the factor a? in their variance terms).

Theorem 4.1. If (4.1) holds with some constants D; >0, D, # 0 and >0, then for both
aD(k,) and aQ)(k,) the optimal choice is

26+ )\
L 2B/CB+1
kp=kf:= ( 5D ) B/@B+1) 4.2)
in which case, for both j =1 and j =3,
| 8 1/@2p+1)
MO(E) ~ /@D D2/(2ﬁ+1)2(1 n ) 2B/@B+1). 43
(k) %)\ G n (43)

Furthermore, if Dy # 1, then MW (k,) ~ bg,n(k,,) = (log D1)?/{log(n/k,)}>.

The behaviour of a? is again completely analogous to those of Vihaross (1996)
estimates. Its large bias makes &{? worse than the other two estimators. (Of course,
MP(k,) is small if Dy is close to 1.) Under (4.1), there is no difference between the ideal
asymptotic performances of &(nl)(kj:) and d(,?)(k;:) with mean square error as criterion.

Using Theorem 4.1, it is possible to compare &"(k*) with the Hill (1975) estimator, the
optimal kernel estimator of Csorgé et al. (1985), and the optimal linear combination of
Viharos (1995). For each of these, the corresponding smallest possible asymptotic mean
square error M, under (4.1) is of the same order with the same two leading constants as in
(4.3); so the comparison can be made by means of the corresponding four functions

M, n28/CB+D)

m(f) = lim o8/CH 1) /P

B>0.

Figure 1, drawn by Maple V, depicts the m(f3) of the optimal Hill estimator ay , = &%, of
Viharos’s (1995) optimal estimator &y, of the optimal kernel estimator Gx , and of
o = 0Y(ky), j =1, 3. We have limg_.,m(8) = 2 for éx ,, and Viharos (1995) has shown
that limg_,,.m(8) = 1 for the other three estimators.
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The estimators ax , and Qv , are better uniformly than &y, because optimal choices of a
kernel and an extra tuning parameter are made besides that of %, and both of the original
classes contain the Hill estimator for a particular choice of the kernel and the tuning
parameter, respectively. They are also uniformly better than ¢« ,. While d(nf)(k’;), j=1,3,
are a little better than the Hill estimator for 3 <1, they are relatively poor for large f3; here
f — oo means approaching the ‘ideal’ submodel, where L is constant near zero. Even
though the relative gains quickly become negligible as n increases, the results suggest using
the other three estimators with a somewhat large k,, rather than d(nf)(kn), j=1, 3, if there
is sufficient reason to believe that /(x) in (1.1) is nearly constant for large x. Plots of the
graph of x!'/ {1 — F,,(x)} for large x, with preliminary estimates ¢, may be helpful in
exploring this. What should be done if a substantial deviation of /(-) from a constant is
suspected far out so that the validity of Hall’s very restrictive submodel becomes
questionable?

From now on we concentrate primarily on (. In a general situation, its asymptotic
mean square error is M(nl)(k,,; L,a)= Ain/n(L) + 20:2k;l for any L in (1.2), where the first
term, reflecting the asymptotic squared bias, is a nonlinear measure of deviation of L from
a constant near zero. The universal asymptotic normality of @\(k,), j = 1, 3, implies that
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their asymptotic variance is 2a?/k, for any L, which may not be true for the other
estimators. Thus, while the other estimators may be slightly better for a near-constant L, as
discussed for the Hall model above, the least-squares estimators d(nf), j=1, 3, are more
‘robust’ against deviations of L from a constant. To investigate the mean square error,
introduce now the function Mj;(t; L,a):= A%(L) +20?t 'n7!, 0<t<1, and note that
MD(k,; L, a) = M*(k,/n; L, a) for any L in (1.2) and any k, as in (1.3). We considered
a variety of slowly varying functions L, with particular interest in unbounded functions.
Those that we eventually kept for illustration are defined by

Lio(s) := loglog (é), Lo(s) := exp {log3/4 (é) }’
1 1

Lg(s) :=exp {logz/3 ) } Lq(s) :=log () ,
s s

Le(s) := exp {log (E) } Ls(s) := exp [log‘/3 (é) cos {log‘/3 (%) H,
Ly(s) := exp {log (é) } Li(s) =1+,

1 log (1
Ly(s) :== 1+ ssin <E), Li(s) :=exp (%),

with Ly, Ly, ..., Ljp taken from the list of Bingham ef al. (1987, p. 16). Here L;(s) is as
above for s € (0, si(a)), where si(a) € (0, 1] is such that Qx(1 — s) = Li(s)/s* in (1.2) is
decreasing on (0, sx(a)); if sp(a) <1, we set Li(s):= Li(sx(a)) for all s € [sr(a), 1),
k=1,...,10, to preserve this property on the whole (0,1). We have
si(a) = exp (—exp [{(1 +4a)'/?> — 1}/2a]) and si(a) =1, k=4, 6, 7, 8, 9, for all a >0,
sjo(@) =1 for a < e and ss(a) =1 for a = 2/3x ~ 0.2122. Also, si(a) =1, k=2, 3, if
a = 1. However, if a <1, then s3(a) = a/(1 — a) and L, must be deleted from the list. Also,
Ls will be dropped in Figure 4 below since s5(1/5) = 0.00177 <0.01.

Figure 2 fully contains the graphs of M;koo(t; Ly, 1), t €(0.01, 0.36], for k=1,..., 10
as solid curves, labelled by the corresponding indices of the ten slowly varying functions
considered, as they leave the Figure. It also fully contains the five graphs of M7y, (#; L, 1),
0.01 <r=0.36, for k =2, 3, 8,9, 10 as dotted curves, pulled down by the doubled sample
size in a clear fashion, and also those parts of the dotted graphs of M TOOO(-; Ly, 1) for
k=1,4,5, 6,7 which do not block the view of the interesting crossing pattern of the solid
curves. (These are for ¢ values before they reach a solid line and for ¢ € [0.269, 0.36]; the
missing parts are easily visualized by the overall shape and the pertaining solid curves.)

On the basis of Figure 2 the present discussion refers to the estimation of a = 1, but we
shall see below that it is of much wider applicability.

Although the oscillating M ;‘;(~; Ly, 1) becomes worse beyond e~', particularly for
n < 500, the good behaviour of a1 on L,, deviating from L; of (4.1), is surprising in view

1
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Figure 2. The curves of M;‘OO(t; Ly, 1) (——) and M;kooo(t? L, 1) (), k=1,...,10.

of how poor L, is for the Hill estimator (Csorgd and Viharos 1995). Similarly, the ‘infinite
oscillation’ of Ls is harmless for (V. The slopes of M*(; Ly, 1), k =4, 6, 8, 9, change
beyond e~! at the rate seen near e~!, while Mj(g Ly, 1) becomes as bad near r =1 as
M*(; Lip, 1) near ¢t =e~!, n=1500, 1000. Writing L < L* if limyo |L*(s)|/|L(s)| = oo,
the ordering L, ~ L3 < L1g < L7 < Ly < Lg < Lg < Lo < L; is not preserved globally for
M j(-; L, 1), except for the subseries L3 < Ly < Lg < Lg < Lg. Estimation will be poor with
Ly even for very large n. However, it may be surprisingly good with the ‘largest’ function
Ly, for the lucky choice of k, ~ n/4, n € [100, 3000].

For sample sizes n = 400, 300, 200, 100 the curves shift more and more upwards and
become ‘less and less convex’, but the whole global picture remains the same; for the fully
decreasing curves the gain beyond ¢ ~ 0.27, say, is negligible, but the harm of using a large
t = k,/n for all the others may be great. The harm of using a very small ¢ = k,/n is clear
for all the curves; the price for a small bias is a huge variance. Although the typical ten
curves here, and the others that we looked at, do not of course ‘grade’ the whole ocean of
L functions substantially different from a constant near zero, the following pragmatic rule
of thumb appears reasonable for estimating o near 1: For 100 < n <300 use a{V(k,) with
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9n/100 < k, < 28n/100, and for 300 < n <3000 use a'V(k,) with 8n/100 < k, <
27n/100; the factors of n decrease very slowly as n increases. Since the asymptotic
behaviour of @) is analogous, within these intervals choose (adaptively) that &, for which
a'V(k,) and aP(k,) are the closest to each other; this is part of the suggested rule and it
uniquely determines the choice of a data-driven k, for n = 100.

The question now is whether the fact that o is near 1 is unimportant in these
considerations. Do these findings remain applicable for a whole range of the estimated
parameter?

With a decreased unit on the vertical axis, Figure 3 is the version of Figure 2 for a = 2.
While the bias term remains the same for a given L, the greater a (or the smaller the
exponent 1/a in (1.1)), the greater is the asymptotic variance of course. However, not only
does the picture remain qualitatively the same, but also we do not hesitate to claim that our
rule of thumb extends to the range 1 < a < 2. One may argue that the case a>2, when
E(X'/?) = 00, is not practical any longer. (For example, there is no instance in the large
literature when typical estimates would suggest a>2 if the controversial Mandelbrot
hypothesis for stock price changes and related quantities is valid in a certain situation, and

0.5 1

03T

0.2+

0.1t

0 t t t t t t t
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 3. The curves of M;‘OO(t; Ly, 2) (—) and Mikooo t; Ly, 2) (=), k=1,...,10.
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hence the underlying distribution is approximately stable with exponent 1/a € (0, 2); see
Csorgo (1984) for many of the early references.) Clearly, the case a <1 is more important
for possible applications. We have plotted the cases o = 1/m, m =2, ..., 10, for which
Figure 4 gives the case a = 1/5 with increased units on the vertical axis and no need to
delete portions of the dotted curves. The transition through the values m =2, 3, 4 from
Figure 2 to Figure 4 is ‘smooth’ and continues to be so for m =6, 7, ... . The smaller a,
the smaller is the mean square error for each L. While the relative error for estimating a
small @ may become huge for a large L, our rule of thumb for the choice of k, remains
pragmatic; it guards against worst cases when a € [1/2, 2], while for a <1/2 the loss from
the exclusion of a smaller &, for some L, such as Ly, Lo, Ly and L, is negligible. So, we
recommend the rule for all a < 2.

We do not believe that asymptotic considerations are very helpful for this estimation
problem when n < 100. We refer to S&S for simulation results with n = 50. The results
raise the question of weighted least-squares versions.

03T
0.25 +
8
02+
7
0.15 +
0.1+ 6
0.05 +
4
1
0 = i t t 1 i — 3
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure4. The  curves of M (6 Li, 1/5)  (——) and  Mjpo(t Li, 1/5) (),
k=1,3,4,6,7,8,9, 10.
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5. Proofs

Throughout, (1.3) is assumed to hold, Z denotes distributional equality, u A v = min (u, v)
and u Vv = max (u, v), u, v € R. The claims that u) — a, j =1, 2, 3, in Theorems 1.1-1.3
have been established above. The first lemma is for general use while the next two aim at
Theorem 1.2.

Lemma 5.1 (de Haan 1970, Corollary 1.2.1.1; Bingham ef al. 1987, Proposition 1.3.6). If
L is a function slowly varying at zero, then limg,log L(s)/logs = 0.

Lemma 5.2. Put dyy1i = —n [)/",), log tdt. If {kylog* (n/k,)}/log? n — oo, then

1
212ak! log(n/k,)

<Zdn+l znloan+l in n;u2n>—>N(O 1) (51)

Proof A stralghtforward extension of Corollary 1.1 of Viharos (1995) gives (5.1) with
= un(k,) == ”f1 log O(1 — t—)logtdt+d,logO(1 — n~'=) replacing nu,,,
where now d,, =1 + log n. Integrating by parts,
1/n

Un = Nz, + nj log O(1 — t—)log tdt + (1 + logn)log O(1 — n~'—)
0

1/n
= N2, — nL t(logt — 1)d{log O(1 — -)}.

Furthermore, as x | 0,

{o.¢]

th(log t—1d{logQO(1 — t—) = —J {1 = F()}[log{1 — F(v)} — 1]l do
0 o(1-x-) v

—a[l = F{O(1 — x—)}(og[1 — F{O(1 —x—)}] - 1)
~ —axlogx,

so that u, = nuy, + O(log n), implying the lemma by the condition on {k,}. O

Lemma 5.3. Put ¢y 1-in = dpi1-in —log(n/i)=1—(i— Dlog{i/(i — 1)}, where c,, is
understood as 1. Then Zf;lc,,ﬂ_,-m log Xpyi1—in = Op(log? n).

Proof. The function ¢(x):=1—xlog{(x+ 1)/x}, x>0, is strictly decreasing, with
q(0+) =1 and ¢(oco) =0, and ¢g(x) < Clog{(x + 1)/x}, x>0, for some constant C > 0.
This implies that O<c,n <1 and cpp1-in < Cepyi-in/n, i=2,3,...,n, where
Cnil—in =N (;/7"1)/" Y'dt = nlog {i/(i — 1)}. Noting that log X, , = Op(log n) it suffices
to show that S, := Z seni1—inl0g Xpi1-in = Op(nlog? n).

Recalling (1.2) and using Lemma 5.1 for the L there, we fix a 6 € (0, 1) such that

log O(1 — s—)/logs™* <2 for all s€(0,0). Let U, <---<U,, denote the order
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statistics based on a sample of size n from the uniform(0,1) distribution, so that
S, ;Zf:” ent1-inlog Q(1 — U;,) =: Z,. Then, on the event E, := {Uy,, <O}, we have
2, =<2> i eni—inlogU = 22;':. Hence, with 7{-} denoting the indicator function,
PIES 2I{En}2>: +Op(nlog® n), since P{E,} — 1. Therefore, it now suffices to show
that Z* Z 3, = Zk Yentl— ,,,log OU,ps1- in) = Op(nlog?n), where Ol —5):=s9,
s € (0, 1) Introduce [, := nj"z o/ g "og O(1 — 1) dt + e, . log Q(l —nl) and o :=
k" "f "(u AN v — uv) dK (u) dK(U) where K(f) := — fl ) u! d{log O(1 — u)}. Then by
T eorem 1.2 of Viharos (1995), {2 — i, }/n‘/ a, =0p(1), and easy calculation
shows that @&, =7(nlog’n) and a> ~2a’n. Hence we finally obtain 3, =

n'2a,{(n'?a,) " (Z, — fin)} + jtn = Op(n) + O(nlog? n) = Op(nlog? n). O

Proof of Theorem 1.2. For the sequence Iy = Zl ! E (n/ l) figuring in the denominator
of a(nz), we have n l(k ntD/n log 2idt<r, < nj log tdt = nj,, where nj,~
k,log?(n/k,), so that r,/nj, =1 +O [log? n/{k,log? (n/k,)}]. These relations and the

growth condition on {k,} imply the theorem through Lemmas 5.2 and 5.3. O

Consider next &V, Set i, = i,(k,) := k; 'S5 log? (n/i) — {k;'S ¥ log(n/i)}? for its
denominator. Slnce in— 1 if k,/log?n — oo (S&S Lemma 2.1), first we examine
i (k )a(l)(kn) an(k ) - an(kn) + Rl n(kn) + RZ n(k ) where an - an(k ) a, = an(k )
Ry, = Ry n(ky) and Ry, = R ,(k,) are given by

- 1 & n 1 kn kn n
&, = k—Z log (—) log O(1 ~ Uy~ 5 (Z log O(1 - U,»,n)> {Z log (—) 52
i=1 n i=1 i=1
1 k, i/kn
a, = k—Z Eni1-inlog O — Uyp) With g1 iy = —knj (1 + logx) dx,
i—1 (i—1)/kn

1 & '
R, = » Cnit—inlog O — Uy,) with cpy1_in =1 — (i — 1) log (’1) Cnn = 1,
n =1 1 —

and

11 &
Ry, = —k—n{k—n; log (?) log <k ) - 1} Z log O(1 — U ,).

Assuming henceforth that k,/log* n — oo, the next lemma says that @, dominates in c,.

Lemma 5.4. The following four relations hold: (i) Ry .(k,)=Op{(log’n)/k,}, (ii)
Ry (k) = Op[(log m){log(n/k,)}/knl, (ii) in(k,) =1+ O{(log® n)/k,} and (iv) fy(v) :=
log O(1 — sv—) —log O(1 — s—) — logv™ as s | 0 for every v=>0.

Proof. Here (i) follows from Lemma 5.3. Further, S&S showed while proving their
Lemmas 2.5 and 2.3 that |k;12f:”1 log(n/i) —log(n/k,) — 1] < (logn+1)/k, and
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{kn log(n/k,,)}’lzlk:”l log O(1 — U; ) — a in probability. These imply (ii), (iii) follows by
the technique in the proof of Theorem 1.2, and (iv) is evident from (1.2). ]

To prove Theorems 1.1 and 1.3, we use the probability space constructed by Mason and
van Zwet (1987). It carries a sequence {U,},., of independent random variables uniformly
distributed on (0, 1), with U, , <--- < U,, as the order statistics of Uy, ..., U, again,
and a sequence {B,(r):0<r=<1}, of Brownian bridges such that, letting
Gu(s) :=n 130 [ H{Ur<s}, 0<s<l, and Uu(s):=Uy, (k—1)/n<s<¥k/n,
k=1,...,n, and putting B,(s) := n'/>{G,(s) — s} and y,(s) := n'/?{s — U,(s)} for the
respective uniform empirical and quantile processes, we have

|Ba(s) — Bu(s)| ( 1 ) [V n(s) — Ba(s)| ( 1 )
AP = Bt _ g, — W)= BN _o,( =) (5.3
l/ns.vséllli(i/n) {s(1 — 5)}/2=v ) A/nsssglli(/l/n) {s(1 — 5)}/2=x P\ 5:3)

for any fixed v € [0, §), k € [0, ) and 1 >0, and

1
sup |ﬁ (s) — Bu(s)| = O( Olg/zn) almost surely. 5.4)
n

0<s<

(This probability space carries the construction ‘dual’ to that in Csérgo et al. (1986). In fact,
through Viharos (1995), the proof of Theorem 1.2 was also on one of the two spaces.)

Proof of Theorem 1.1. The general outline of the proof of Theorem 1 in Viharos (1993) is
followed; so we set J(?):= —1 —log¢ and g(¢) :=logQ(l — t—) to accommodate the
notation there. Introducing

n 1/2 phku/n n
Vo= Nl k)= =() | a0 (1) ason

note first that by Lemma 5.4 (i)—(iii) it is enough to prove that
k@) = 1D} = Noll, k) +0p(1),  No(l, k)= N0, 20%)  (5.5)

for some sequence /, such that [, — oo and k,/I, — oc.
We need #, = Hu(k,) = nk, J"k” " g(O)J(nt/k,)dt + g,,g(1/n)k," as a modified
centring sequence. Also, let G*(s) ={G.(s)AN1—n"H}vn'and for lSsm=<r=<n,

r/n nG,,(t) m/n pnG,()/k,
O,(m, r) := —J J J(s)dsdg(t), V.(m):= J J J(s)dsdg(?).
m/nd nt/k, Upndm/k,

Fix any integers m and / such that 1 < m < [ < k,. Then we obtain
a, — Up = ®n(la m) - Vn(l) + R, + ®n(m: l) + Vn(kn) + ®n(la kn)
= Ay(m, )+ V,(k,)+ 0O, (1, k) (5.6)

as an analogue of (2.3) in Viharos (1993), where R, := g,.{g(U..,)— g(1/n)}/k,
Op{(log k,)/k,} by an appllcatlon of Lemma 5.4 (iv), because g, , = log k,.
Consider first V,(k,) = — / G*(t) log {nG*(t)/k,}dg(t)/k,. On the event E;, :=
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{Up,<kn/n<U,,} we have G ()= G,(#) in the integral, so that V,(k,) =
I{Eln}V (kn) +op(k;'/?) since  P{E;,} — 1. Hence |V,(k,)| < I{E,}T1,T0, +
op(k, 12), where Ty, := nsup, G,(1)|log{nG,(1)/k,}|/kn, with the supremum taken
for all ¢ in between k,/n and Uy, and I, :=|g(k,/n)— g(Uk,.)| =o0p(1) by
Lemma 5.4 (iv). The analysis of the function p*(s):=s|logs| and the fact that
p*(nG,(Uy, )/ ky) =0 shows that on the event E,, := {nG,(k,/n)/k,>1/e} we have
T, = nG,(k, /n)|log{nG (kn/n)/ ku}|/kn =: Ay. Since P(E,,) — 1, we get |V,(k,)| <
I{Ezn}A op(1) +op(k, 1/2). An application of (5.3) gives nG,(k,/n)/k,=1+
Op(k;'/?), and hence A, = Op(k;'/?). Therefore, V,(k,) = op(k;"/?).

Next, on the event Ej,:= {nG*(l/n)/k <1/e}n{l/n<U,,}, for some &,(v) in
between nG*¥(v/n)/k, and v/k,, for which J(&,(v)) >0, we have

I ¢nGhw/n)/k, v
J J J(s)dsdg(—)‘
mJv/k, n

!
- _J e <§) -= ]J@(v)) dg (%)

1 1/2 1 1 (!

s—J(k—>{nk | ﬁn(%)ldfl/nwwk—j dfl/n(w}
R a2 2\ |y /Ologn o}
o) o)
emtfo2) o) o(2)

_ o, <(log k,;c)(log n))’

|®,(m, )| =

using (5.4), a simple argument for the integral involving the Brownian bridge B, and Lemma
5.4 (iv). Since P{E;,} — 1, this implies that k/?®,(m, [) = op{(logk,)/k'/*} by the
growth condition on the sequence {k,}. A similar argument yields k}/ 2V.(1) =
op{(log k,)/k)/*}.

Thus, kl/zA o(m, 1) = op{(log k,)/k'/*}, for all fixed 1 < m<1, for the first term in
(5.6). Then by a diagonal selection procedure, similar to that used in the proof of Lemma 1
by Viharos (1993), we can construct sequences 1 < m, < [, < k, such that m, — oo,
Iy/m, — 00, kn/l, — oo and k'/2A,(m,, 1,) =op(1). Tt follows that k'/*(@, —7,) =
k1/2®,,(l,,, k,)+ op(1), and an argument as in the proof of Lemma 2 in Viharos (1993) and
the approximations (5.3) give that k1/2® (L, ky) = N, +op(1).

Next we show that k'/*(@, — ﬂ(nl)) — 0. Integrating by parts, we have

1/n l/n
— o _ gnng(1/n) _ ) _ J
=0’ =1 L (t)J<k >dt+—kn S log dg(1).
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Hence, for all n large enough,
1/n nt 3/4
- = <R[ () s =0t 57)

using Lemma 3.2 of Csérgé and Mason (1985) in the last step.
Thus we established the first statement in (5.5). Finally, to prove the second, note that N,
is a normal random variable with mean zero and variance

kn/n pky/n
E(Ni):kijl/ Jl/ (s/\t—st)J<§>J<Z—’> dg(s)dg(t)

2

1 1 k 1
| | wnoswie e - (L W dfkn/n(u)>

Ln/knd 1/ kn
=10, — W, (5-8)
Using Lemma 5.4 (iv), we see that v, — jo Io (u A v)J(u)J(v) d(log u’“) d(log v"") =2a?
and nw,/k, — {fo uJ(u)d(log u=*)}* = 0. Hence w, — 0, and so E(N?) — 2a>. O

Theorem 1.3 requires two more lemmas, the first of which is analogous to Lemma 5.4
(iv) while the one after corresponds to Lemma 2.6 of S&S, without their regularity
condition. For the rest we use the notation g(s) =log O(1 —s—), 0 <s<1, as above.

Lemma 5.5. Put n(sZ = g(s){g(s) — Zﬂsn} and fn S(v) = h,(sv) — h,(s), where
1, = us,(ky) == nk, jl/ g(ndi+ g(1/mk,".  Then fu/n(@) = @*(2 + logv) log v+
O(log n) and fn i /n(v) — a2(2 +logv)logv = f (v) for every ﬁxed v>0.

Proof. Integrating by parts,
. k, n kn/n n 1/n
in=a(t) [ g+ [ s
n kn 0 0

By Lemma 3.1 of Csdrgé and Mason (1985), us , = g(k, /n)+ a+ o(1), and so f [(0) =

{g(s0) — g()}{g(s0) — g(s) — 2a + o(1)} + 2{g(sv) — g(s)}{g(s) — g(ky/m)}. Since g(s) =
O(log s) as s | 0, by Lemma 5.1, both statements follow from Lemma 5.4 (iv). ]

Lemma 5.6. Let W, = W,(k,) = k'S5 &2(U.,) — {k;' S5 g(Ui)}* and recall that
Un = n(ky) = ta n(kn) — ﬂ%,n(kn) = ﬂ(nl)(kn)ﬂ(y?)(kn)- Then

k(W = ) = Ny + 0p(1),
where
N N n 1/2 pku/n
Nn = Nn(lna kn) = _(k> Jl , Bn(t) dhn(t)
and N 2 N(0, 8a*), for the same sequence {1,} for which (5.5) holds.
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Proof. Set 15, = 5, (ky) = p5, (k) — (g, (ka)}2, where 15, (ky) := nk," [/ g(r)dt
—&—gz(l/n)k;1 and uS ,(k,) is as in Lemma 5.5. Then, with #,(-) from the same lemma,
W — 5, =k, S (Ui ) — i — R, where

2

k k

n [ h,(1/n) 1 &

= (k) o= k_L/ ha(s)ds + k—/ R, = R (k) = (k—z g(Ui) = ﬂ;in) :
n " =1

Here RS = Op(1/k,) by Corollary 1.1 of Viharos (1995), and ki/z(ﬂ,, —u5) — 0 asin (5.7).
Similarly as in (5.6), we now obtain

1 &
T2 nUin) = 415 = ©(1, m) = V(1) + Ry + O (m, D+ V7 (k) + O (1 k)
=1

for fixed integers m and [ such that 1 < m < [ < k,, where, for | < m < r < n,

n r/n n m/n m

O(m 1= | (G0 = hdn(o.  Vion = [ (G0 -2 aho
kn m/n kn Up,n n

and R* := {h,(Uy,) — h,(1/n)}/k,. Using now Lemma 5.5 instead of Lemma 5.4 (iv), an

analogue of the proof of (5.5) yields the first statement of Lemma 5.6, where, executing the

two proofs jointly, the sequence {/,} can be and is chosen as the {/,} in (5.5).

Also, E{(N?Y} ~ v} = [} I, I e @A AS S @ df S (@), similarly as in (5.8),
where, using Lemma 5.5, v — f()l fol(u Av)dfF () dfE () = 8at. O

Proof of Theorem 1.3. Recall @, from (5.2). Since 4! — « and &, — a in probability by
Theorem 1.1 and Lemma 5.4, and u, — «* as noted in Section 3, by another application of
Lemma 5.4 and the facts that k'/%(@, — u") = Op(1) in (5.5) and k/2(W, — u,) = Op(1) in
Lemma 5.6 we see that

Un

—
)

. 7 1 -
@) — i) == B2V — ) = = k2@ — )

1 _
= kW — ) = k2@ — ) + 0p(1).

Hence ki/z(&(,?) — yf))%ﬁn + 0p(1), where N, := a’lN:': — N, by (5.5) and Lemma 5.6
again. Thus, setting c, = [, " I 1, N0 @) df g, u()df s, (©), We now obtain
E(N?) ~ a20* + v, —2a7 ¢, by (5.8), the end of the Previous proof, and by similar
considerations showing E(N,N’) ~ c,. Here, ¢, — Jg o (u A v)J(u)d(logu™*) df::(v) =
4a’, using Lemmas 5.4 and 5.5, and so E(N?) — 8a? +2a? — 8a? = 2d2. O

Proof of Theorem 4.1. First we prove the theorem for a{). Under (4.1) we obtain
S(1 —s—) =1log (1 — s—) = —alogs + log D; + DysP{1 4 &(s)}, where &(s) — 0 as s | 0.
Whence
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B 1
#P k) — o0 = Dy ("—) J vﬁ{l + e(""”> }(—1 —logv)do
n 0 n

B
= {1 +o(1)} D, ("—) J oP(—1 —logv) dv = {1+ o(1)} b1 u(k.),
0

where by ,(k,) = —Dof(k,/n)’ /(B + 1)%, so that k, = k' is chosen as the integer sequence
for which M(k,) = b} ,(k,) + 2a*k," is minimized. Then we get (4.2), from which (4.3)
follows for j = 1. The proof for j = 3 is similar. Finally, under (4.1),

Ok, —a = Jkn/nlog (D[l + Dy {1 + o(1)}]) log £ dr ~ — 28 D1
Hot Jnkn) Jo e log (ku/n)’
which implies the last statement. O
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