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Based on least-squares considerations, Schultze and Steinebach proposed three new estimators for the

tail index of a regularly varying distribution function and proved their consistency. We show that,

unlike the Hill estimator, all three least-squares estimators can be centred to have normal asymptotic

distributions universally over the whole model, and for two of these estimators this in fact happens at

the desirable order of the norming sequence. We analyse the conditions under which asymptotic

con®dence intervals become possible. In a submodel, we compare the asymptotic mean square errors

of optimal versions of these and earlier estimators. The choice of the number of extreme order

statistics to be used is also discussed through the investigation of the asymptotic mean square error for

a comprehensive set of examples of a general kind.

Keywords: asymptotic con®dence intervals; asymptotic mean square errors; least-squares estimators;

tail index; universal asymptotic normality

1. Introduction and main results

Let X , X 1, X2, . . . be independent random variables with a common distribution function

F(x) � PfX < xg, x 2 R, and for each integer n > 1, let X1,n < � � � < X n,n denote the

order statistics based on the sample X 1, . . . , X n. Let Rá be the class of all distribution

functions F such that 1ÿ F is regularly varying at in®nity with index ÿ1=á, i.e.

1ÿ F(x) � xÿ1=á l(x), 0 , x ,1, (1:1)

where l(:) is an unknown nuisance function slowly varying at in®nity and á. 0 is a ®xed

unknown parameter to be estimated. Introducing Q(s) :� inf fx: F(x) > sg, 0 , s < 1,

Q(0) :� Q(0�), the inverse or quantile function of F and letting Q(1ÿ sÿ) denote the left-

continuous version of the right-continuous function Q(1ÿ s), 0 , s , 1, it is well known that

F 2Rá if and only if, for some function L(:) slowly varying at zero,

Q(1ÿ sÿ) � sÿáL(s), 0 , s , 1: (1:2)

Several estimators have been proposed, but a considerable part of the large literature is
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centred around the asymptotic properties of Hill's (1975) estimator á̂(0)
n :� á̂(0)

n (k n) :�
kÿ1

n

Pk n

i�1 log� X n�1ÿi,n ÿ log � X nÿk n,n, where the k n are some integers satisfying

1 < k n , n, k n !1, k n=n! 0 as n!1, (1:3)

and log� x � log max (x, 1), x 2 R. In particular, the basic weak- and strong-consistency

results are due to Mason (1982) and Deheuvels et al. (1988), while the dif®cult problem of

the asymptotic normality of á̂(0)
n has been investigated by Hall (1982), Hall and Welsh (1985),

Haeusler and Teugels (1985), CsoÈrg}o and Mason (1985), Beirlant and Teugels (1989) and

their references, and by CsoÈrg}o et al. (1985) for a whole class of kernel estimators containing

á̂(0)
n . Asymptotic normality here refers to that of k1=2

n fá̂(0)
n ÿ ì(0)

n g, where ì(0)
n � ì(0)

n (k n) is a

numerical centring sequence such that ì(0)
n ! á as n!1. In some restrictions of Rá one

has k1=2
n fì(0)

n ÿ ág ! 0, so that it is possible to centre á̂(0)
n at á in these statements. However,

even with varying ì(0)
n , these results all use restrictive conditions on Rá itself, and the

various sets of conditions are dif®cult to compare. Bringing the approach of CsoÈrg}o and

Mason (1985) to what appears to be its ultimate limit, CsoÈrg}o and Viharos (1995) proved

even more general results, at the price of changing even the norming sequence k1=2
n to

sequences depending also on the unknown L in (1.2) in complicated ways. However, we also

constructed there distribution functions F 2Rá such that á̂(0)
n (bn2=3c), where b:c denotes

integer part, does not have a non-degenerate asymptotic distribution for any centring and

norming sequences. So, while the weak consistency of á̂(0)
n (k n) for all fk ng satisfying (1.3) in

fact characterizes the classes Rá by Mason's (1982) theorem, the Hill estimator is not

universally asymptotically normal over Rá.

From analytic considerations about L, Viharos (1997) has derived two new classes of

estimators such that, denoting a member of any one of them by á̂yn(k n), for suitable

ìyn(k n)! á the sequence k1=2
n log (n=k n) fá̂yn(k n)ÿ ìyn(k n)g is universally asymptotically

normal over Rá for all fk ng satisfying (1.3) for one of the classes and whenever,

additionally, k n=log2 n!1 for the other. Thus the price of universal asymptotic normality

for both classes is the presence of the factor log (n=k n), indicating a possibly greater order

of bias than that of á̂(0)
n (at least when a measure for the latter is available).

For simplicity of notation, we assume without loss of generality from now on that

F(0) � 0 for all F 2Rá, i.e., X is positive; otherwise one only has to replace log by log�

in what follows with some trivial extra reasonings in the proofs. Approximating a Bayes

estimator, Hill's (1975) estimator á̂(0)
n is in fact a conditional maximum likelihood estimator

under the restricted model in which l(x) � ec in (1.1), for all x beyond a threshold, for

some constant c. Recently, Schultze and Steinebach (S&S) (1996) proposed three new

estimators of á, which are based on least-squares considerations in the same restricted

model. (In a mathematically equivalent fashion, they in fact do this in a corresponding

exponential model brie¯y touched upon in the next section.) Taking the logarithm of (1.1)

in the restricted case, substituting x � X n�1ÿi,n into ÿlog f1ÿ F(x)g � ÿc� áÿ1 log x and

approximating the left-hand sides by ÿlog f1ÿ F̂n(X n�1ÿi,nÿ)g � log (n=i), where F̂n(:) is

the sample distribution function, for some 1 < k n , n we have either log X n�1ÿi,n �
d � á log (n=i), i � 1, . . . , k n, where d � ác, or áÿ1 log X n�1ÿi,n � c� log (n=i), i � 1,

. . . , k n. A least-squares ®t based on the ®rst set of approximative equations gives the ®rst

estimator á̂(1)
n � á̂(1)

n (k n), which thus results from minimizing
Pk n

i�1flog X n�1ÿi,n ÿ d ÿ
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á log (n=i)g2 in the two variables á and d. The univariate minimization problem with

d � c � 0 yields the second estimator á̂(2)
n � á̂(2)

n (k n); so this belongs to l(:) � 1. Finally,

the second set of approximative equations gives the third estimator á̂(3)
n � á̂(3)

n (k n); this

results from minimizing
Pk n

i�1fáÿ1 log X n�1ÿi,n ÿ cÿ log (n=i)g2 in the two variables áÿ1

and c. Therefore, the S&S estimators are as follows:

á̂(1)
n (k n) :� 1

k n

Xk n

i�1

log
n

i

� �� �
(log X n�1ÿi,n)ÿ 1

k2
n

Xk n

i�1

log X n�1ÿi,n

 ! Xk n

i�1

log
n

i

� �( )" #

3
1

k n

Xk n

i�1

log2 n

i

� �
ÿ 1

k n

Xk n

i�1

log
n

i

� �( )2
24 35ÿ1

,

á̂(2)
n (k n) :�

Xk n

i�1

log
n

i

� �� �
(log X n�1ÿi,n)

" # Xk n

i�1

log2 n

i

� �( )ÿ1

,

á̂(3)
n (k n) :� 1

k n

Xk n

i�1

log2 X n�1ÿi,n ÿ 1

k n

Xk n

i�1

log X n�1ÿi,n

 !2
8<:

9=;
3

1

k n

Xk n

i�1

log
n

i

� �� �
(log X n�1ÿi,n)ÿ 1

k2
n

Xk n

i�1

log X n�1ÿi,n

 ! Xk n

i�1

log
n

i

� �( )" #ÿ1

:

As is usual for á̂(0)
n , we now drop the restricted model and thus return to the whole Rá.

Using results of CsoÈrg}o et al. (1985), Deheuvels et al. (1988), CsoÈrg}o et al. (1991), Lo

(1989) and Viharos (1993), S&S proved the consistency of these, for all fk ng satisfying

(1.3) for á̂(2)
n , and under the additional assumption that k n=log2 n!1 for á̂(1)

n and á̂(3)
n ,

supposing also the continuity of Q near 1 for the result on á̂(3)
n .

Let !D denote convergence in distribution and let N (ì, ó 2) be the normal distribution

with mean ì 2 R and variance ó 2 . 0. Understanding limiting and order relations and

asymptotic equalities � as n!1 throughout if not speci®ed otherwise, our main results in

this paper are contained in the following theorems.

Theorem 1.1. If k n is any sequence of positive integers such that (1.3) holds and

k n=log4 n!1, then, whenever F 2Rá for some á 2 (0, 1),

k1=2
n fá̂(1)

n (k n)ÿ ì(1)
n (k n)g!D N (0, 2á2),

where ì(1)
n (k n) � ì(1)

n :� ÿ(n=k n)
� k n=n

0
log Q(1ÿ tÿ)f1� log (nt=k n)g dt! á.

Theorem 1.2. If k n is any sequence of positive integers such that (1.3) holds and

fk n log2 (n=k n)g=log4 n!1, then, whenever F 2Rá for some á 2 (0, 1),
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k1=2
n log

n

k n

� �
fá̂(2)

n (k n)ÿ ì(2)
n (k n)g!D N (0, 2á2),

where ì(2)
n (k n) � ì(2)

n :� ì2,n= jn, with ì2,n � ì2,n(k n) :� ÿ � k n=n

0
log Q(1ÿ tÿ) log t dt and

jn � jn(k n) :� � k n=n

0
log2 t dt � (k n=n)flog2 (n=k n)� 2 log (n=k n)� 2g, and ì(2)

n (k n)! á.

Theorem 1.3. If k n is any sequence of positive integers such that (1.3) holds and

k n=log4 n!1, then, whenever F 2Rá for some á 2 (0, 1),

k1=2
n fá̂(3)

n (k n)ÿ ì(3)
n (k n)g!D N (0, 2á2),

where ì(3)
n (k n) � ì(3)

n :� fì4,n ÿ ì2
5,ng=ì(1)

n , with ì5,n � ì5,n(k n) :� (n=k n)
� k n=n

0
log Q(1 ÿ

tÿ) dt and ì4,n � ì4,n(k n) :� (n=k n)
� k n=n

0
log2 Q(1ÿ tÿ) dt and ì(3)

n (k n)! á.

Thus all three S&S estimators are universally asymptotically normal over the whole

model Rá, provided that k n=log4 n!1. The behaviour of á̂(2)
n is analogous to that of

Viharos's (1996) estimators. We do not know whether the theoretically weak size

requirements on k n are necessary. The universal asymptotic normality of á̂(1)
n and á̂(3)

n

with the desired norming factor k1=2
n appears to be the ®rst such results for the problem.

The basic practical problem is of course the choice of k n for a given n. While we do not

believe that this problem can be solved `universally', it is part of the statistical nature of the

S&S least-squares estimators that heuristically appealing methods for the data-driven choice

of k n are readily available, at least for á̂(1)
n (k n) and á̂(3)

n (k n). Indeed, S&S suggested two

such methods: one is based on minimizing a sum of squared residuals, and the other on

maximizing a corresponding sample correlation coef®cient. As a result of their careful

simulation study, they conclude that the resulting á̂(1)
n and á̂(3)

n compare fairly well with á̂(0)
n .

The theorems above may provide the theoretical framework to investigate optimality

properties of these methods. A theoretical aspect of the problem of choosing k n is

considered in Section 4, where we suggest a heuristic rule of thumb, while the conditions

under which asymptotic con®dence intervals for á become possible are discussed in Section

3. The proofs are in Section 5.

2. The exponential model

For a given á 2 (0, 1), let E á denote the class of all distribution functions G on R such that

1ÿ G(x) � eÿx=á r(x), 0 , x ,1, where r(:) is a function regularly varying at in®nity. Let

Z, Z1, Z2, . . . be independent random variables with distribution function G and quantile

function S(s) � inf fx: G(x) > sg, 0 , s < 1, and let Z1,n < � � � < Z n,n be the order

statistics pertaining to Z1, . . . , Z n. Then G 2 E á if and only if F 2Rá, where

F(x) � Pfe Z < xg, x 2 R, so that F(x) � G(log x), x . 0 (CsoÈrg}o and Mason 1985). Hence,

whenever G 2 E á, Theorems 1.1, 1.2 and 1.3 all remain valid if we replace log X n�1ÿi,n by

Z n�1ÿi,n, i � 1, . . . , k n, and log Q(:) by S(:). S&S discussed interesting examples from

insurance and risk theory which give rise to E á.
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3. The centering problem: asymptotic con®dence intervals

Having Theorems 1.1 and 1.3, a natural question concerns the conditions under which

k1=2
n

ì( j)
n (k n)

á
ÿ 1

� �
! b, (3:1)

and so

k1=2
n fá̂( j)

n (k n)ÿ ág!D N (bá, 2á2), j � 1, 3,

provided that k n=log4 n!1, for some limiting bias b 2 R scaled by á. If Ö denotes the

standard normal distribution function and zå(b) . 0 is the unique value of z for which

Ö((zÿ b)=21=2)ÿÖ(ÿ(z� b)=21=2) � 1ÿ å for a given å 2 (0, 1), then of course (3.1)

implies that

P á̂( j)
n (k n)ÿ zå(b)á̂n(k n)

k1=2
n

< á < á̂( j)
n (k n)� zå(b)á̂n(k n)

k1=2
n

 !
! 1ÿ å, j � 1, 3, (3:2)

for any consistent estimator á̂n(k n) of á. The corresponding question for Theorem 1.2

concerns the conditions for k1=2
n log (n=k n)fì(2)

n (k n)ÿ ág ! bá for some b 2 R.

Since ì(2)
n (k n)ÿ á � fÿ � k n=n

0
log L(t) log t dtg=(

� k n=n

0
log2 t dt) by calculation from (1.2),

we see by Lemma 5.1 below that ì(2)
n (k n)! á in Theorem 1.2, as claimed. Also, if

L(:) � 1 in a right neighbourhood of 0, then ì(2)
n � á for all n suf®ciently large. However,

even if L(:) � ec� for a constant c� 6� 0 in that neighbourhood, which certainly is a best

possible distributional assumption for the problem at hand, we have ì(2)
n (k n)ÿ á �

c�=log (n=k n). Thus, in general, the asymptotic normality of k1=2
n log (n=k n)fá̂(2)

n (k n)ÿ ág
is not feasible. Since á̂(2)

n is derived exactly under the side condition that L(:) � 1, this is

not surprising.

That ì(1)
n (k n)! á in Theorem 1.1 can be seen by putting r(v) :�

ÿ � v
0

(1� log s) ds � ÿv log v and noting that

ì(1)
n (k n) �

� k n=n

0

log Q(1ÿ tÿ) dr
nt

k n

� �

� ÿ
� k n=n

0

r
nt

k n

� �
dflog Q(1ÿ tÿ)g

� ÿ
�1

0

r(v) d f k n=n(v)

! ÿ
�1

0

r(v) d(log vÿá)
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� ÿá
�1

0

log v dv � á, (3:3)

using the notation and the statement of Lemma 5.4 (iv) below. However, this approach does

not provide a handle on the rate of convergence. Another approach rests on introducing the

functionals At( f ) :� ÿ � 1

0
(1� log s) log f (st) ds, 0 < t < 1, on functions f . Then

ì(1)
n (k n)ÿ á � ÿáf1� Ak n=n(é)g � Ak n=n(L) by (1.2), where é(u) � u, and it is easy to see

that Ak n=n(é) � ÿ1. Hence, in fact, ì(1)
n (k n)ÿ á � Ak n=n(L). Thus, under k n=log4 n!1,

(3.1) and (3.2) hold for j � 1 if and only if k1=2
n Ak n=n(L)! bá.

Suf®cient conditions for the most useful case b � 0 may be obtained in terms of the

functions aL and bL in the Karamata representation L(s) � aL(s) exp f� 1

s
[bL(u)=u] dug,

0 , s , 1, where lims#0aL(s) � a0 for some a0 2 (0, 1) and lims#0bL(s) � 0. Then

Ak n=n(L) � ÿ
�1

0

(1� log s) log aL

sk n

n

� �
dsÿ

�1

0

(1� log s)

�1

sk n=n

bL(u)

u
du

 !
ds,

and using
� 1

0
(1� log s) ds � 0, one concludes that, if besides k n=log4 n!1 we have

k1=2
n sup

0 , t<k n=n

jlogáL(t)ÿ log a0j ! 0, k1=2
n sup

0 , t<k n=n

jbL(t)j ! 0,

then (3.1) and (3.2) hold for j � 1 and b � 0.

For example, if L(s) � D1(1� D2sâ), 0 , s < ä, for some ä 2 (0, 1], as a special case of

(4.1) below, then aL(s) � D1 and bL(s) � ÿâD2sâ=(1� D2sâ), 0 , s < ä, so that

k1=2
n sup0<u<k n=n jbL(u)j < 2âjD2jk(2â�1)=2

n =nâ for all n large enough. Hence (3.1) and

(3.2) hold for j � 1 and b � 0 whenever k n � o(n2â=(2â�1)). Also, it follows from the proof

of Theorem 4.1 below that, if k n � ën2â=(2â�1), then (3.1) holds for a b such that bD2 , 0,

once the constant ë. 0 is given by ë � fÿb(â� 1)2áâÿ1 Dÿ1
2 g2=(2â�1).

Finally, for ìn � ìn(k n) :� ì4,n(k n)ÿ ì2
5,n(k n) integrations by part and some algebra

gives ìn(k n) � ÿ2
� 1

0
v f k n=n(v) d f k n=n(v)ÿ f� 1

0
v d f k n=n(v)g2, so that ìn(k n)!

ÿ2á2
� 1

0
log v dvÿ (ÿá � 1

0
dv)2 � á2 similarly as in (3.3). Hence ì(3)

n (k n)! á in Theorem

1.3. The problem of the rate in the latter convergence, and hence the centring problem in

(3.1) for j � 3, is more complicated than for j � 1 and is not pursued here.

Monte Carlo experiments to assess actual coverage probabilities in (3.2) in some standard

situations, such as the latest example above, would be useful. We refer to Novak and Utev

(1990) for a nice mathematical treatment of a version of the problem in (3.1) for their

estimator, which is based on the whole sample X 1, . . . , X n.

4. The choice of kn: asymptotic mean squared errors

The `ideal' submodel of (1.2) is when L(:) is constant in [0, ä] for some ä 2 (0, 1]

(equivalently, l(:) in (1.1) is constant beyond some threshold), in which case ì( j)
n (k n) � á,

j � 1, 3, by an extra calculation for j � 3, for all n for which k n=n 2 [0, ä] (and hence (3.1)

holds with b � 0). In this ideal case, one would choose k n quite large in practice to make the

asymptotic variance 2á2=k n of á̂(1)
n and á̂(3)

n small. In order to get a sense of the general
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situation, where for á̂(1)
n the quantity A2

k n=n(L) may be viewed as a measure of deviation of

L(:) from a constant near 0, ®rst we determine the theoretically optimal k n which minimizes

the asymptotic mean square errors of the estimators in another submodel of (1.2). The

complexity of this submodel, considered by Hall (1982) in the same context, is the next step

after that of the `ideal' above; it is de®ned by assuming that

Q(1ÿ sÿ) � sÿáD1[1� D2sâf1� o(1)g] as s! 0, (4:1)

where D1 . 0, D2 6� 0 and â. 0 are constants. The theorems above suggest de®ning the

asymptotic mean square error of á̂( j)
n as M ( j)

n � M ( j)
n (k n) :� b2

j,n(k n)� 2á2 kÿ1
n for j � 1, 3,

and as M (2)
n � M (2)

n (k n) :� b2
2,n(k n)� 2á2 kÿ1

n logÿ2 (n=k n) for j � 2, for some b2
j,n(k n) �

fì( j)
n (k n)ÿ ág2, j � 1, 2, 3; the sum of the asymptotic squared bias and variance (cf.

Theorem 5 of CsoÈrg}o et al. (1985), with several examples, and Theorem 2.2 of Viharos

(1995); they do not formally include the factor á2 in their variance terms).

Theorem 4.1. If (4.1) holds with some constants D1 . 0, D2 6� 0 and â. 0, then for both

á̂(1)
n (k n) and á̂(3)

n (k n) the optimal choice is

k n � k�n :� á2(â� 1)4

â3 D2
2

 !1=(2â�1)

n2â=(2â�1)

6664 7775 (4:2)

in which case, for both j � 1 and j � 3,

M ( j)
n (k�n ) � á4â=(2â�1) D

2=(2â�1)
2 2 1� 1

2â

� �
â3

(â� 1)4

 !1=(2â�1)

nÿ2â=(2â�1): (4:3)

Furthermore, if D1 6� 1, then M (2)
n (k n) � b2

2,n(k n) � (log D1)2=flog (n=k n)g2.

The behaviour of á̂(2)
n is again completely analogous to those of Viharos's (1996)

estimates. Its large bias makes á̂(2)
n worse than the other two estimators. (Of course,

M (2)
n (k n) is small if D1 is close to 1.) Under (4.1), there is no difference between the ideal

asymptotic performances of á̂(1)
n (k�n ) and á̂(3)

n (k�n ) with mean square error as criterion.

Using Theorem 4.1, it is possible to compare á̂(1)
n (k�n ) with the Hill (1975) estimator, the

optimal kernel estimator of CsoÈrg}o et al. (1985), and the optimal linear combination of

Viharos (1995). For each of these, the corresponding smallest possible asymptotic mean

square error M n under (4.1) is of the same order with the same two leading constants as in

(4.3); so the comparison can be made by means of the corresponding four functions

m(â) :� lim
n!1

M n n2â=(2â�1)

á4â=(2â�1) D
2=(2â�1)
2

, â. 0:

Figure 1, drawn by Maple V, depicts the m(â) of the optimal Hill estimator á̂H,n � á̂(0)
n , of

Viharos's (1995) optimal estimator á̂V,n, of the optimal kernel estimator á̂K,n and of

á̂� ,n � á̂( j)
n (k�n ), j � 1, 3. We have limâ!1m(â) � 2 for á̂�,n, and Viharos (1995) has shown

that limâ!1m(â) � 1 for the other three estimators.
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The estimators á̂K,n and á̂V,n are better uniformly than á̂H,n because optimal choices of a

kernel and an extra tuning parameter are made besides that of k n and both of the original

classes contain the Hill estimator for a particular choice of the kernel and the tuning

parameter, respectively. They are also uniformly better than á̂�,n. While á̂( j)
n (k�n ), j � 1, 3,

are a little better than the Hill estimator for â, 1, they are relatively poor for large â; here

â!1 means approaching the `ideal' submodel, where L is constant near zero. Even

though the relative gains quickly become negligible as n increases, the results suggest using

the other three estimators with a somewhat large k n, rather than á̂( j)
n (k n), j � 1, 3, if there

is suf®cient reason to believe that l(x) in (1.1) is nearly constant for large x. Plots of the

graph of x1=á̂ nf1ÿ F̂n(x)g for large x, with preliminary estimates á̂n may be helpful in

exploring this. What should be done if a substantial deviation of l(:) from a constant is

suspected far out so that the validity of Hall's very restrictive submodel becomes

questionable?

From now on we concentrate primarily on á̂(1)
n . In a general situation, its asymptotic

mean square error is M (1)
n (k n; L, á) � A2

k n=n(L)� 2á2 kÿ1
n for any L in (1.2), where the ®rst

term, re¯ecting the asymptotic squared bias, is a nonlinear measure of deviation of L from

a constant near zero. The universal asymptotic normality of á̂( j)
n (k n), j � 1, 3, implies that
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Figure 1. The curves of m(â) for á̂H,n (ÐÐ), á̂V,n (´´´´´´), á̂K,n (± ± ±) and á̂� ,n (±´±).
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their asymptotic variance is 2á2=k n for any L, which may not be true for the other

estimators. Thus, while the other estimators may be slightly better for a near-constant L, as

discussed for the Hall model above, the least-squares estimators á̂( j)
n , j � 1, 3, are more

`robust' against deviations of L from a constant. To investigate the mean square error,

introduce now the function M�n (t; L, á) :� A2
t (L)� 2á2 tÿ1 nÿ1, 0 , t , 1, and note that

M (1)
n (k n; L, á) � M�n (k n=n; L, á) for any L in (1.2) and any k n as in (1.3). We considered

a variety of slowly varying functions L, with particular interest in unbounded functions.

Those that we eventually kept for illustration are de®ned by

L10(s) :� log log
1

s

� �
, L9(s) :� exp log3=4 1

s

� �� �
,

L8(s) :� exp log2=3 1

s

� �� �
, L7(s) :� log

1

s

� �
,

L6(s) :� exp log1=2 1

s

� �� �
, L5(s) :� exp log1=3 1

s

� �
cos log1=3 1

s

� �� �� �
,

L4(s) :� exp log1=4 1

s

� �� �
, L3(s) :� 1� s,

L2(s) :� 1� s sin
1

s

� �
, L1(s) :� exp

log (1=s)

log log (1=s)

� �
,

with L1, L4, . . . , L10 taken from the list of Bingham et al. (1987, p. 16). Here Lk(s) is as

above for s 2 (0, sk(á)), where sk(á) 2 (0, 1] is such that Qk(1ÿ s) � Lk(s)=sá in (1.2) is

decreasing on (0, sk(á)); if sk(á) , 1, we set Lk(s) :� Lk(sk(á)) for all s 2 [sk(á), 1),

k � 1, . . . , 10, to preserve this property on the whole (0, 1). We have

s1(á) � exp (ÿexp [f(1� 4á)1=2 ÿ 1g=2á]) and sk(á) � 1, k � 4, 6, 7, 8, 9, for all á. 0,

s10(á) � 1 for á < e and s5(á) � 1 for á > 2=3ð � 0:2122. Also, sk(á) � 1, k � 2, 3, if

á > 1. However, if á, 1, then s3(á) � á=(1ÿ á) and L2 must be deleted from the list. Also,

L5 will be dropped in Figure 4 below since s5(1=5) � 0:001 77 , 0:01.

Figure 2 fully contains the graphs of M�500(t; Lk , 1), t 2 (0:01, 0:36], for k � 1, . . . , 10

as solid curves, labelled by the corresponding indices of the ten slowly varying functions

considered, as they leave the Figure. It also fully contains the ®ve graphs of M�1000(t; Lk , 1),

0:01 , t < 0:36, for k � 2, 3, 8, 9, 10 as dotted curves, pulled down by the doubled sample

size in a clear fashion, and also those parts of the dotted graphs of M�1000(:; Lk , 1) for

k � 1, 4, 5, 6, 7 which do not block the view of the interesting crossing pattern of the solid

curves. (These are for t values before they reach a solid line and for t 2 [0:269, 0:36]; the

missing parts are easily visualized by the overall shape and the pertaining solid curves.)

On the basis of Figure 2 the present discussion refers to the estimation of á � 1, but we

shall see below that it is of much wider applicability.

Although the oscillating M�n (:; L2, 1) becomes worse beyond eÿ1, particularly for

n� 500, the good behaviour of á̂(1)
n on L2, deviating from L3 of (4.1), is surprising in view
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of how poor L2 is for the Hill estimator (CsoÈrg}o and Viharos 1995). Similarly, the `in®nite

oscillation' of L5 is harmless for á̂(1)
n . The slopes of M�n (:; Lk , 1), k � 4, 6, 8, 9, change

beyond eÿ1 at the rate seen near eÿ1, while M�n (:; L7, 1) becomes as bad near t � 1 as

M�n (:; L10, 1) near t � eÿ1, n � 500, 1000. Writing L � L� if lims#0 jL�(s)j=jL(s)j � 1,

the ordering L2 � L3 � L10 � L7 � L4 � L6 � L8 � L9 � L1 is not preserved globally for

M�n (:; L, 1), except for the subseries L3 � L4 � L6 � L8 � L9. Estimation will be poor with

L9 even for very large n. However, it may be surprisingly good with the `largest' function

L1, for the lucky choice of k n � n=4, n 2 [100, 3000].

For sample sizes n � 400, 300, 200, 100 the curves shift more and more upwards and

become `less and less convex', but the whole global picture remains the same; for the fully

decreasing curves the gain beyond t � 0:27, say, is negligible, but the harm of using a large

t � k n=n for all the others may be great. The harm of using a very small t � k n=n is clear

for all the curves; the price for a small bias is a huge variance. Although the typical ten

curves here, and the others that we looked at, do not of course `grade' the whole ocean of

L functions substantially different from a constant near zero, the following pragmatic rule

of thumb appears reasonable for estimating á near 1: For 100 < n , 300 use á̂(1)
n (k n) with
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Figure 2. The curves of M�500(t; Lk , 1) (ÐÐ) and M�1000(t; Lk , 1) (´´´´´´), k � 1, . . . , 10.
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9n=100 < k n < 28n=100, and for 300 < n < 3000 use á̂(1)
n (k n) with 8n=100 < k n <

27n=100; the factors of n decrease very slowly as n increases. Since the asymptotic

behaviour of á̂(3)
n is analogous, within these intervals choose (adaptively) that k n for which

á̂(1)
n (k n) and á̂(3)

n (k n) are the closest to each other; this is part of the suggested rule and it

uniquely determines the choice of a data-driven k n for n > 100.

The question now is whether the fact that á is near 1 is unimportant in these

considerations. Do these ®ndings remain applicable for a whole range of the estimated

parameter?

With a decreased unit on the vertical axis, Figure 3 is the version of Figure 2 for á � 2.

While the bias term remains the same for a given L, the greater á (or the smaller the

exponent 1=á in (1.1)), the greater is the asymptotic variance of course. However, not only

does the picture remain qualitatively the same, but also we do not hesitate to claim that our

rule of thumb extends to the range 1 < á < 2. One may argue that the case á. 2, when

E(X 1=2) � 1, is not practical any longer. (For example, there is no instance in the large

literature when typical estimates would suggest á. 2 if the controversial Mandelbrot

hypothesis for stock price changes and related quantities is valid in a certain situation, and
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Figure 3. The curves of M�500(t; Lk , 2) (ÐÐ) and M�1000(t; Lk , 2) (´´´´´´), k � 1, . . . , 10.
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hence the underlying distribution is approximately stable with exponent 1=á 2 (0, 2); see

CsoÈrg}o (1984) for many of the early references.) Clearly, the case á, 1 is more important

for possible applications. We have plotted the cases á � 1=m, m � 2, . . . , 10, for which

Figure 4 gives the case á � 1=5 with increased units on the vertical axis and no need to

delete portions of the dotted curves. The transition through the values m � 2, 3, 4 from

Figure 2 to Figure 4 is `smooth' and continues to be so for m � 6, 7, . . . . The smaller á,

the smaller is the mean square error for each L. While the relative error for estimating a

small á may become huge for a large L, our rule of thumb for the choice of k n remains

pragmatic; it guards against worst cases when á 2 [1=2, 2], while for á, 1=2 the loss from

the exclusion of a smaller k n for some L, such as L10, L9, L8 and L7, is negligible. So, we

recommend the rule for all á < 2.

We do not believe that asymptotic considerations are very helpful for this estimation

problem when n� 100. We refer to S&S for simulation results with n � 50. The results

raise the question of weighted least-squares versions.
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Figure 4. The curves of M�500(t; Lk , 1=5) (ÐÐ) and M�1000(t; Lk , 1=5) (´´´´´),

k � 1, 3, 4, 6, 7, 8, 9, 10.
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5. Proofs

Throughout, (1.3) is assumed to hold, �D denotes distributional equality, u ^ v � min (u, v)

and u _ v � max (u, v), u, v 2 R. The claims that ì( j)
n ! á, j � 1, 2, 3, in Theorems 1.1±1.3

have been established above. The ®rst lemma is for general use while the next two aim at

Theorem 1.2.

Lemma 5.1 (de Haan 1970, Corollary 1.2.1.1; Bingham et al. 1987, Proposition 1.3.6). If

L is a function slowly varying at zero, then lims#0 log L(s)=log s � 0.

Lemma 5.2. Put d n�1ÿi,n :� ÿn
� i=n

(iÿ1)=n
log t dt. If fk n log2 (n=k n)g=log2 n!1, then

1

21=2ák1=2
n log (n=k n)

Xk n

i�1

d n�1ÿi,n log X n�1ÿi,n ÿ nì2,n

 !
!D N (0, 1): (5:1)

Proof. A straightforward extension of Corollary 1.1 of Viharos (1995) gives (5.1) with

ì9n � ì9n(k n) :� ÿn
� k n=n

1=n
log Q(1ÿ tÿ) log t dt � d n,n log Q(1ÿ nÿ1ÿ) replacing nì2,n,

where now d n,n � 1� log n. Integrating by parts,

ì9n � nì2,n � n

�1=n

0

log Q(1ÿ tÿ) log t dt � (1� log n) log Q(1ÿ nÿ1ÿ)

� nì2,n ÿ n

�1=n

0

t(log t ÿ 1) dflog Q(1ÿ tÿ)g:

Furthermore, as x # 0,�x

0

t(log t ÿ 1) dflog Q(1ÿ tÿ) � ÿ
�1

Q(1ÿxÿ)

f1ÿ F(v)g[log f1ÿ F(v)g ÿ 1]
1

v
dv

� ÿá[1ÿ FfQ(1ÿ xÿ)g](log [1ÿ FfQ(1ÿ xÿ)g]ÿ 1)

� ÿáx log x,

so that ì9n � nì2,n � O(log n), implying the lemma by the condition on fk ng. u

Lemma 5.3. Put cn�1ÿi,n :� d n�1ÿi,n ÿ log (n=i) � 1ÿ (iÿ 1) log fi=(iÿ 1)g, where cn,n is

understood as 1. Then
Pk n

i�1cn�1ÿi,n log X n�1ÿi,n � OP(log2 n).

Proof. The function q(x) :� 1ÿ x log f(x� 1)=xg, x . 0, is strictly decreasing, with

q(0�) � 1 and q(1) � 0, and q(x) < C log f(x� 1)=xg, x . 0, for some constant C . 0.

This implies that 0 , ci,n < 1 and cn�1ÿi,n < Cen�1ÿi,n=n, i � 2, 3, . . . , n, where

en�1ÿi,n :� n
� i=n

(iÿ1)=n
tÿ1 dt � n log fi=(iÿ 1)g. Noting that log X n,n � OP(log n), it suf®ces

to show that Sn :�Pk n

i�2en�1ÿi,n log X n�1ÿi,n � OP(n log2 n).

Recalling (1.2) and using Lemma 5.1 for the L there, we ®x a ä 2 (0, 1) such that

log Q(1ÿ sÿ)=log sÿá < 2 for all s 2 (0, ä). Let U1,n < � � � < Un,n denote the order
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statistics based on a sample of size n from the uniform(0,1) distribution, so that

Sn�D
Pk n

i�2en�1ÿi,n log Q(1ÿ Ui,n) �: Ón. Then, on the event En :� fU k n,n , äg, we have

Ón < 2
Pk n

i�2en�1ÿi,n log Uÿái,n �: 2Ó�n . Hence, with If:g denoting the indicator function,

Ón < 2IfEngÓ�n � OP(n log2 n), since PfEng ! 1. Therefore, it now suf®ces to show

that Ó�n �D ~Ón :�Pk n

i�2en�1ÿi,n log ~Q(U n�1ÿi,n) � OP(n log2 n), where ~Q(1ÿ s) :� sÿá,

s 2 (0, 1). Introduce ~ìn :� n
� k n=n

2=n
tÿ1 log ~Q(1ÿ t) dt � enÿ1,n log ~Q(1ÿ nÿ1) and a2

n :�� k n=n

1=n

� k n=n

1=n
(u ^ vÿ uv) dK(u) dK(v), where K(t) :� ÿ � t

1=2
uÿ1 dflog ~Q(1ÿ u)g. Then by

Theorem 1.2 of Viharos (1995), f~Ón ÿ ~ìng=n1=2an � OP(1), and easy calculation

shows that ~ìn � O (n log2 n) and a2
n � 2á2 n. Hence we ®nally obtain ~Ón �

n1=2anf(n1=2an)ÿ1(~Ón ÿ ~ìn)g � ~ìn � OP(n)� O(n log2 n) � OP(n log2 n). u

Proof of Theorem 1.2. For the sequence rn :�Pk n

i�1 log2 (n=i), ®guring in the denominator

of á̂(2)
n , we have n

� (k n�1)=n

1=n
log2 t dt < rn < n

� k n=n

0
log2 t dt � njn, where njn �

k n log2 (n=k n), so that rn=njn � 1� O[log2 n=fk n log2 (n=k n)g]. These relations and the

growth condition on fk ng imply the theorem through Lemmas 5.2 and 5.3. u

Consider next á̂(1)
n . Set in � in(k n) :� kÿ1

n

Pk n

i�1 log2 (n=i)ÿ fkÿ1
n

Pk n

i�1 log (n=i)g2 for its

denominator. Since in ! 1 if k n=log2 n!1 (S&S, Lemma 2.1), ®rst we examine

in(k n)á̂(1)
n (k n)�D ~án(k n) � án(k n)� R1,n(k n)� R2,n(k n), where ~án � ~án(k n), án � án(k n),

R1,n � R1,n(k n) and R2,n � R2,n(k n) are given by

~án :� 1

k n

Xk n

i�1

log
n

i

� �
log Q(1ÿ Ui,n)ÿ 1

k2
n

Xk n

i�1

log Q(1ÿ Ui,n)

 ! Xk n

i�1

log
n

i

� �( )
, (5:2)

án :� 1

k n

Xk n

i�1

gn�1ÿi,n log Q(1ÿ Ui,n) with gn�1ÿi,n :� ÿk n

� i=k n

(iÿ1)=k n

(1� log x) dx,

R1,n :� ÿ 1

k n

Xk n

i�1

cn�1ÿi,n log Q(1ÿ Ui,n) with cn�1ÿi,n � 1ÿ (iÿ 1) log
i

iÿ 1

� �
, cn,n � 1,

and

R2,n :� ÿ 1

k n

1

k n

Xk n

i�1

log
n

i

� �
ÿ log

n

k n

� �
ÿ 1

( )Xk n

i�1

log Q(1ÿ Ui,n):

Assuming henceforth that k n=log4 n!1, the next lemma says that án dominates in ~án.

Lemma 5.4. The following four relations hold: (i) R1,n(k n) � OPf(log2 n)=k ng, (ii)

R2,n(k n) � OP[(log n)flog (n=k n)g=k n], (iii) in(k n) � 1� Of(log2 n)=k ng and (iv) f s(v) :�
log Q(1ÿ svÿ)ÿ log Q(1ÿ sÿ)! log vÿá as s # 0 for every v . 0.

Proof. Here (i) follows from Lemma 5.3. Further, S&S showed while proving their

Lemmas 2.5 and 2.3 that jkÿ1
n

Pk n

i�1 log (n=i)ÿ log (n=k n)ÿ 1j < (log n� 1)=k n and
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fk n log (n=k n)gÿ1
Pk n

i�1 log Q(1ÿ Ui,n)! á in probability. These imply (ii), (iii) follows by

the technique in the proof of Theorem 1.2, and (iv) is evident from (1.2). u

To prove Theorems 1.1 and 1.3, we use the probability space constructed by Mason and

van Zwet (1987). It carries a sequence fUng1n�1 of independent random variables uniformly

distributed on (0, 1), with U1,n < � � � < Un,n as the order statistics of U1, . . . , Un again,

and a sequence fBn(t): 0 < t < 1g1n�1 of Brownian bridges such that, letting

Gn(s) :� nÿ1
Pn

k�1 IfUk < sg, 0 , s , 1, and Un(s) :� Uk,n, (k ÿ 1)=n , s < k=n,

k � 1, . . . , n, and putting ân(s) :� n1=2fGn(s)ÿ sg and ãn(s) :� n1=2fsÿ Un(s)g for the

respective uniform empirical and quantile processes, we have

sup
ë=n<s<1ÿ(ë=n)

jân(s)ÿ Bn(s)j
fs(1ÿ s)g(1=2)ÿí � OP

1

ní

� �
, sup

ë=n<s<1ÿ(ë=n)

jãn(s)ÿ Bn(s)j
fs(1ÿ s)g(1=2)ÿk � OP

1

nk

� �
(5:3)

for any ®xed í 2 [0, 1
2
), k 2 [0, 1

4
) and ë. 0, and

sup
0 , s , 1

jân(s)ÿ Bn(s)j � O
log n

n1=2

� �
almost surely: (5:4)

(This probability space carries the construction `dual' to that in CsoÈrg}o et al. (1986). In fact,

through Viharos (1995), the proof of Theorem 1.2 was also on one of the two spaces.)

Proof of Theorem 1.1. The general outline of the proof of Theorem 1 in Viharos (1993) is

followed; so we set J (t) :� ÿ1ÿ log t and g(t) :� log Q(1ÿ tÿ) to accommodate the

notation there. Introducing

Nn � Nn(ln, k n) :� ÿ n

k n

� �1=2� k n=n

l n=n

Bn(t)J
n

k n

t

� �
dg(t),

note ®rst that by Lemma 5.4 (i)±(iii) it is enough to prove that

k1=2
n fán(k n)ÿ ì(1)

n (k n)g � N n(ln, k n)� oP(1), N n(ln, k n)!D N (0, 2á2) (5:5)

for some sequence l n such that ln !1 and k n=ln !1.

We need ìn � ìn(k n) :� nkÿ1
n

� k n=n

1=n
g(t)J (nt=k n) dt � g n,n g(1=n)kÿ1

n as a modi®ed

centring sequence. Also, let G�n (s) :� fGn(s) ^ (1ÿ nÿ1)g _ nÿ1 and, for 1 < m < r < n,

Èn(m, r) :� ÿ
� r=n

m=n

� nG�n ( t)

nt=k n

J (s) ds dg(t), Vn(m) :�
�m=n

Um, n

� nG�n ( t)=k n

m=k n

J (s) ds dg(t):

Fix any integers m and l such that 1 < m < l < k n. Then we obtain

án ÿ ìn � Èn(1, m)ÿ Vn(1)� Rn �Èn(m, l)� Vn(k n)�Èn(l, k n)

�: Än(m, l)� Vn(k n)�Èn(l, k n) (5:6)

as an analogue of (2.3) in Viharos (1993), where Rn :� g n,nfg(U1,n)ÿ g(1=n)g=k n �
OPf(log k n)=k ng by an application of Lemma 5.4 (iv), because g n,n � log k n.

Consider ®rst Vn(k n) � ÿn
� k n=n

Uk n , n
G�n (t) log fnG�n (t)=k ng dg(t)=k n. On the event E1,n :�
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fU1,n , k n=n , Un,ng we have G�n (t) � Gn(t) in the integral, so that Vn(k n) �
IfE1,ngVn(k n)� oP(kÿ1=2

n ) since PfE1,ng ! 1. Hence jVn(k n)j < IfE1,ngÃ1,nÃ2,n �
oP(kÿ1=2

n ), where Ã1,n :� n sup t Gn(t)j log fnGn(t)=k ngj=k n, with the supremum taken

for all t in between k n=n and Uk n,n, and Ã2,n :� jg(k n=n)ÿ g(Uk n,n)j � oP(1) by

Lemma 5.4 (iv). The analysis of the function r�(s) :� sj log sj and the fact that

r�(nGn(U k n,n)=k n) � 0 shows that on the event E2,n :� fnGn(k n=n)=k n . 1=eg we have

Ã1,n � nGn(k n=n)j log fnGn(k n=n)=k ngj=k n �: Ën. Since P(E2,n)! 1, we get jVn(kn)j <
IfE2,ngËnoP(1)� oP(kÿ1=2

n ). An application of (5.3) gives nGn(k n=n)=k n � 1 �
OP(kÿ1=2

n ), and hence Ën � OP(kÿ1=2
n ). Therefore, Vn(k n) � oP(kÿ1=2

n ).

Next, on the event E3,n :� fnG�n (l=n)=k n , 1=eg \ fl=n , Un,ng, for some în(v) in

between nG�n (v=n)=k n and v=k n, for which J (în(v)) . 0, we have

jÈn(m, l)j �
����� l

m

� nG�n (v=n)=k n

v=k n

J (s) ds dg
v

n

� �����
< ÿ

� l

m

���� n

k n

G�n
v

n

� �
ÿ v

k n

����J (în(v)) dg
v

n

� �

< ÿJ
1

k n

� �
n1=2

k n

� l

m

����ân

v

n

� ����� d f 1=n(v)� 1

k n

� l

m

d f 1=n(v)

( )

� ÿJ
1

k n

� �
n1=2

k n

� l

m

����Bn

v

n

� ����� d f 1=n(v)� n1=2

k n

O
log n

n1=2

� �
� O

1

k n

� �( )

� (ÿ1� log k n) OP

1

k n

� �
� O

log n

k n

� �
� O

1

k n

� �( )

� OP

(log k n)(log n)

k n

� �
,

using (5.4), a simple argument for the integral involving the Brownian bridge Bn and Lemma

5.4 (iv). Since PfE3,ng ! 1, this implies that k1=2
n Èn(m, l) � oPf(log k n)=k1=4

n g by the

growth condition on the sequence fk ng. A similar argument yields k1=2
n Vn(1) �

oPf(log k n)=k1=4
n g.

Thus, k1=2
n Än(m, l) � oPf(log k n)=k1=4

n g, for all ®xed 1 < m , l, for the ®rst term in

(5.6). Then by a diagonal selection procedure, similar to that used in the proof of Lemma 1

by Viharos (1993), we can construct sequences 1 < mn < ln < k n such that mn !1,

l n=mn !1, k n=ln !1 and k1=2
n Än(mn, ln) � oP(1): It follows that k1=2

n (án ÿ ìn) �
k1=2

n Èn(ln, k n)� oP(1), and an argument as in the proof of Lemma 2 in Viharos (1993) and

the approximations (5.3) give that k1=2
n Èn(ln, k n) � Nn � oP(1).

Next we show that k1=2
n (ìn ÿ ì(1)

n )! 0. Integrating by parts, we have

ìn � ì(1)
n ÿ

n

k n

�1=n

0

g(t)J
nt

k n

� �
dt � gn,n g(1=n)

k n

� ì(1)
n ÿ

�1=n

0

nt

k n

log
nt

k n

� �
dg(t):
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Hence, for all n large enough,

k1=2
n jìn ÿ ì(1)

n j < ÿk1=2
n

�1=n

0

nt

k n

� �3=4

dg(t) � O(kÿ1=4
n ), (5:7)

using Lemma 3.2 of CsoÈrg}o and Mason (1985) in the last step.

Thus we established the ®rst statement in (5.5). Finally, to prove the second, note that Nn

is a normal random variable with mean zero and variance

E(N2
n) � n

k n

� k n=n

l n=n

� k n=n

l n=n

(s ^ t ÿ st)J
ns

k n

� �
J

nt

k n

� �
dg(s) dg(t)

�
�1

l n=k n

�1

l n=k n

(u ^ v)J (u)J (v) d f k n=n(u) d f k n=n(v)ÿ k n

n

�1

l n=k n

uJ (u) d f k n=n(u)

 !2

�: vn ÿ wn: (5:8)

Using Lemma 5.4 (iv), we see that vn !
� 1

0

� 1

0
(u ^ v)J (u)J (v) d(log uÿá) d(log vÿá) � 2á2

and nwn=k n ! f
� 1

0
uJ (u) d(log uÿá)g2 � 0. Hence wn ! 0, and so E(N2

n)! 2á2. u

Theorem 1.3 requires two more lemmas, the ®rst of which is analogous to Lemma 5.4

(iv) while the one after corresponds to Lemma 2.6 of S&S, without their regularity

condition. For the rest we use the notation g(s) � log Q(1ÿ sÿ), 0 , s , 1, as above.

Lemma 5.5. Put hn(s) :� g(s)fg(s)ÿ 2ì�5,ng and f �n,s(v) :� hn(sv)ÿ hn(s), where

ì�5,n � ì�5,n(k n) :� nkÿ1
n

� k n=n

1=n
g(t) dt � g(1=n)kÿ1

n . Then f �n,1=n(v) � á2(2� log v) log v�
O(log n) and f �n,k n=n(v)! á2(2� log v) log v �: f �á (v) for every ®xed v . 0.

Proof. Integrating by parts,

ì�5,n � g
k n

n

� �
ÿ n

k n

� k n=n

0

t dg(t)� n

k n

�1=n

0

t dg(t):

By Lemma 3.1 of CsoÈrg}o and Mason (1985), ì�5,n � g(k n=n)� á� o(1), and so f �n,s(v) �
fg(sv)ÿ g(s)gfg(sv)ÿ g(s)ÿ 2á� o(1)g � 2fg(sv)ÿ g(s)gfg(s)ÿ g(k n=n)g. Since g(s) �
O(log s) as s # 0, by Lemma 5.1, both statements follow from Lemma 5.4 (iv). u

Lemma 5.6. Let W n � W n(k n) :� kÿ1
n

Pk n

i�1 g2(Ui,n)ÿ fkÿ1
n

Pk n

i�1 g(Ui,n)g2 and recall that

ìn � ìn(k n) � ì4,n(k n)ÿ ì2
5,n(k n) � ì(1)

n (k n)ì(3)
n (k n). Then

k1=2
n (W n ÿ ìn) � N�n � oP(1),

where

N�n � N�n (ln, k n) :� ÿ n

k n

� �1=2� k n=n

l n=n

Bn(t) dhn(t)

and N�n!
D

N (0, 8á4), for the same sequence fl ng for which (5.5) holds.
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Proof. Set ì�n � ì�n(k n) :� ì�4,n(k n)ÿ fì�5,n(k n)g2, where ì�4,n(k n) :� nkÿ1
n

� k n=n

1=n
g2(t) dt

�g2(1=n)kÿ1
n and ì�5,n(k n) is as in Lemma 5.5. Then, with hn(�) from the same lemma,

W n ÿ ì�n � kÿ1
n

Pk n

i�1 hn(Ui,n)ÿ ì�n ÿ R�n, where

ì�n � ì�n (k n) :� n

k n

� k n

1=n

hn(s) ds� hn(1=n)

k n

, R�n � R�n(k n) :� 1

k n

Xk n

i�1

g(Ui,n)ÿ ì�5,n

 !2

:

Here R�n � OP(1=k n) by Corollary 1.1 of Viharos (1995), and k1=2
n (ìn ÿ ì�n)! 0 as in (5.7).

Similarly as in (5.6), we now obtain

1

k n

Xk n

i�1

hn(Ui,n)ÿ ì�n � È�n (1, m)ÿ V�n (1)� R�n �È�n (m, l)� V�n (k n)�È�n (l, k n)

for ®xed integers m and l such that 1 < m < l < k n, where, for 1 < m < r < n,

È�n (m, r) :� ÿ n

k n

� r=n

m=n

fGn(t)ÿ tg dhn(t), V�n (m) :� n

k n

�m=n

Um, n

Gn(t)ÿ m

n

� �
dhn(t)

and R�n :� fhn(U1,n)ÿ hn(1=n)g=k n. Using now Lemma 5.5 instead of Lemma 5.4 (iv), an

analogue of the proof of (5.5) yields the ®rst statement of Lemma 5.6, where, executing the

two proofs jointly, the sequence flng can be and is chosen as the flng in (5.5).

Also, Ef(N�n )2g � v�n :� � 1

l n=k n

� 1

l n=k n
(u ^ v) d f �n,k n=n(u) d f �n,k n=n(v), similarly as in (5.8),

where, using Lemma 5.5, v�n !
� 1

0

� 1

0
(u ^ v) d f �á (u) d f �á (v) � 8á4. u

Proof of Theorem 1.3. Recall ~án from (5.2). Since ì(1)
n ! á and ~án ! á in probability by

Theorem 1.1 and Lemma 5.4, and ìn ! á2 as noted in Section 3, by another application of

Lemma 5.4 and the facts that k1=2
n (án ÿ ì(1)

n ) � OP(1) in (5.5) and k1=2
n (W n ÿ ìn) � OP(1) in

Lemma 5.6 we see that

k1=2
n (á̂(3)

n ÿ ì(3)
n )�D 1

~án

k1=2
n (W n ÿ ìn)ÿ ìn

~ánì
(1)
n

k1=2
n (~án ÿ ì(1)

n )

� 1

á
k1=2

n (W n ÿ ìn)ÿ k1=2
n (án ÿ ì(1)

n )� oP(1):

Hence k1=2
n (á̂(3)

n ÿ ì(3)
n )�D ~N n � oP(1), where ~Nn :� áÿ1 N�n ÿ N n by (5.5) and Lemma 5.6

again. Thus, setting cn :� � 1

l n=k n

� 1

l n=k n
(u ^ v)J (u) d f k n=n(u) d f �n,k n=n(v), we now obtain

E( ~N 2
n) � áÿ2v�n � vn ÿ 2áÿ1cn by (5.8), the end of the previous proof, and by similar

considerations showing E(N n N�n ) � cn. Here, cn !
� 1

0

� 1

0
(u ^ v)J (u) d(log uÿá) d f �á (v) �

4á3, using Lemmas 5.4 and 5.5, and so E( ~N2
n)! 8á2 � 2á2 ÿ 8á2 � 2á2. u

Proof of Theorem 4.1. First we prove the theorem for á̂(1)
n . Under (4.1) we obtain

S(1ÿ sÿ) � log Q(1ÿ sÿ) � ÿá log s� log D1 � D2sâf1� å(s)g, where å(s)! 0 as s # 0.

Whence
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ì(1)
n (k n)ÿ á � D2

k n

n

� �â�1

0

vâ 1� å
k nv

n

� �� �
(ÿ1ÿ log v) dv

� f1� o(1)gD2

k n

n

� �â�1

0

vâ(ÿ1ÿ log v) dv � f1� o(1)gb1,n(k n),

where b1,n(k n) � ÿD2â(k n=n)â=(â� 1)2, so that k n � k�n is chosen as the integer sequence

for which M (1)
n (k n) � b2

1,n(k n)� 2á2 kÿ1
n is minimized. Then we get (4.2), from which (4.3)

follows for j � 1. The proof for j � 3 is similar. Finally, under (4.1),

ì(2)
n (k n)ÿ á � ÿ 1

jn(k n)

� k n=n

0

log (D1[1� D2 tâf1� o(1)g]) log t dt � ÿlog D1

log (k n=n)
,

which implies the last statement. u
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