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1. Introduction

We consider a Markov chain {X,},=¢ that takes values on a bounded and measurable subset

S c RY with m(S)>0 and whose transition probability function has the representation:
P(X, € B|lXo=x) = P"(B|x) = P{(B|x) + P{"(B|x) (1)

for x € S and B € .%#? (Borel subsets of RY with Lebesgue measure). The absolutely con-
tinuous part,

PGB = | P01 dy @
is such that p{"(y|x) =0 if y ¢ S; similarly, the discrete part
POB = > p (v 3)
yeBNS™

is such that pg”)(y|x) =0 for y¢ S and S C S for each x € S and n = 1.

Chains with continuous state space and the above representation arise naturally in random
global optimization algorithms. A general scheme for random search algorithms can be
described as follows: let Xy € S be an initial random point and let f: S — R be a function
whose global optimum on S (maximum or minimum) is of interest; for each x € § let
g(y|x) denote a density function on RY; if X, is the result of the algorithm at step 7 then
at step n+ 1 one generates a random value Y, according to the density g; next X, ; is
taken to be Y, with an acceptance probability a(Y,|X,) or X, = X, with probability
1 — a(Y,|X,). It follows that the transition function of the algorithm can be written as:
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P(Blx) = La<y|x)g<y\x) v+ Iue [1 _ La(y|x)g<y|x) dy] 4

where / denotes the indicator function. This type of Markovian algorithm will be detailed in
Section 3.

Though there is an extensive literature on general state-space Markov processes,
considerable mathematical background is required to understand them. In this paper we treat
Markov chains in R? by extending the notions of communicability and periodicity of states
to subsets of R¥. It will be shown that, as in the discrete state space, they play an important
role in analysing the existence of stationary and long-run distributions,

lim P"(B|x) = Q(B). 5)
In Section 2 we derive conditions that will guarantee (5) and in Section 3 we apply these

notions to random search algorithms studied by Dorea (1986; 1990) and to a continuous
version of the ‘simulated annealing’ algorithm treated by Dekkers and Aarts (1991).

2. Continuous state space

Let {X,}.,=0 be a Markov process with values on S. Assuming that the nth-step transition
function has the representation (1), we then have:

PHD(Bx) = LP(")(B|)/)P(dy|x)

= LP(")(BIy)pc(yIX) dy+ > P(B|y) pa(yl),
YESK

where S, = {y: y € S, pa(¥|x) >0}. Using (2) and (3), we can write

P O(Blx) = JB USPE”’(zy)pc(yIX) dy+ ) Pﬁ”)(2|y)Pd(Y|x)] dz

yESy
+ 1D Ao dy+ Y] > PCE P
51 zemns YES zepnst))
It follows that
pU(zlx) = Lpﬁ">(z|y)pc<y|x) dy+ Y pGEly)pa(ylx) (6)
YESk
and
Py GEN) = P ) pay - )

YESK
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By expressing PU"D(B|x) = [sP(B|y)P"(dy|x) we also obtain the inequalities
P (z]x) >J PN PP dy + Y pelzl )i ()
S yest®
and
Py = D paEln p ).
yest

Our main result (Theorem 1 below) shows that an irreducible and aperiodic chain
possesses a long-run distribution if certain regularity conditions are met. And in this case it
coincides with the unique stationary distribution. The following notation and notions will be
needed:

P = P + Py (). ®)
For B € %9 let
Bt ={D: D C B, m(D)>0}, if m(B)>0 )
and
Bt ={D: D#@, DC B} if Bis countable. (10)
Let
S'={D: D C S, either m(D)>0 or D is countable}. (11)

Definition 1. Let {A, B} C S'. We say that B is accessible from A if there exists ng = 1 such
that

PU8)(B'|x) >0, Vx € A,VYB' € B*

(which we write as AEB). We say that A and B are communicating subsets (A < B) if
A B and B™ 4.

Definition 2. We say that a chain is irreducible if there exists {Ay, ..., Ay} C S' such that
Uj;l Aj =8 and A; — A; for all i and j.

Definition 3. Assume A — A. We say that d4 is the period of A if d4 is the greatest common
divisor of

D(A) = {n: P"(A'|x)>0,Vx € 4,VA' € A™}.

If dgy =1 we say that the subset A is aperiodic.
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Some immediate properties can be derived:

Proposition 1. (a) If A 22 B then, given ¢y >0, there exists Ay € A" such that either
P"(B|x) = ¢, Vx € Ay or P{"(B|x) = ¢, Vx € Ay, (12)

depending on whether m(B)>0 or B is countable.

(b) If A™% B and BS C then 4" C.

(c) If A < B then they have the same period (d4 = dp).

(d) If dy is the period of A then there exists my =1 such that for m = my we have
mdy € Z(A).

Proof. (a) Assume m(B)>0 and let SU'® = {y: p"?(y|x)>0}. Since B\S!"*) € B* and
m(S{"?)) = 0, Vx € 4, we must have P"#(B'|x)>0, Vx € 4 and VB’ € B*. Given ¢y >0,
define for k =1

1
Dy = {x: x € 4, PU"#(B|x) <%}.

Since Dyi1 C Dy, (xDx = @ and m(A4) <oo we have limy_,o, m(Dy) = 0. Let ko be large
enough so that ¢y < 1/ky and m(A4\Dy,)>0 (if m(4)>0) and A\Dy, #D (f A4 is
countable). Then Ay = A\Dy, € A" and for x € 4y we have P{"#)(B|x) = ¢.
If B is countable clearly we have P("#)(B'|x) = ("8)(3 |x), VB’ € B". Now proceeding
with arguments of the same type we obtam (12) by observing that P("E)(B|x) >0, Vx € 4.
(b) Let C" € C*; then we have BXS C’. From (a), given ¢, >0, there exists By € B
such that P("O(C'|y) = ¢, for y € By. Since By € Bt we also have 4% By. Now for x € 4,

P (Cl ) = J Pre(C! ) Pr(dyl) = P (Bolx) > 0.
By
c+n5

It follows that A C.

(c) Let A2 B and B 4. From (b) we have 4 "' 4 so that ny + ng € Z7(A). Now
let n; € Z(B), we will show that ng+ n; + ny € Z(A4). Thus d, divides n; since it
divides ny + ng. It follows that d, < dp. Interchanging the roles of 4 and B, we conclude
dy = dp.

Let A’ € A"; since B—>A’ there exists By € B such that P"(4’|z) = ¢y >0 on B.
Since n; € Z(B) we have B> By, and there exists B, € B such that P(")(By|y) = ¢; >0
on By. Now for x € A4,

pranealy = [ | e Py P
(y€B1)J(z€By)

?60J P (By| ) P9 (dyx)
(yeBy)
= coe PU(By|x) > 0.

Thus ng + ny + ny € Z(A).



Stationary distribution of markov chains in R? 419
(d) Note that if r € Z(A4) and s € Z(A) then, using (a), we have r+ s € Z7(A). That is,

Z(A) is closed under addition. Then there exists my such that md, € Z7(A) for m = my;
see Doob (1953, p. 176) or Parzen (1962, p. 262). L]

Proposition 2. (a) If 422 B then there exist 05 >0, Ay € AT and By € BT such that

inf { p"®(y|x): x € 4o, y € By} = . (13)
M) If AL A then there exist 0,>0 and Ay € A" such that
inf { p?")(y|x): x € 4o, y € Ao} = 4. (14)

(¢) If the chain is irreducible and aperiodic, then we can decompose S = S; U Sy where
Sq is countable and S, = S\Sq. Moreover, there exists ns = 1 such that S2S., and if
Sq # D we also have et Sq.

Proof. (a) First assume B is countable. Let By = {by, ..., by} C B. Since AEBN, from
(12) we can write,

P"(By|N) = p>0o0n 4y € A*. (15)

It follows that we must have pg"‘?)(yj|x) = 0y/N for some y; € By. Now (13) follows using
(8) and taking By = {y;} € B" and 0 = 0o/ N.

Now assume m(B)>0. If A is countable let xo € A and Ay = {x} € A*. Since

P"(Blxo) = [5p{"#(y]x0) dy >0, there exist 05 >0 and By € BT such that on By we have

PUP(ylx0) = 0.
If m(A)>0 then from (12),

P")(Blx) = 0;>00n 4, € A" (16)
Let 03 = 01/2m(B) and define
D={(x, y):x€ 41, y€B, p"(ylx) =03}

Note that for x € 4y and D, = {y: (x, y) € D} we have m(D,) > 0. If not, then for almost all
y in D, we have p{"®)(y|x)<dp and P{"#)(B|x) < dpm(B) < d;/2, which contradicts (16).
Let m; denote the Lebesgue measure on R24; then we have my(D) = f 4, m(Dy)dx > 0. Thus
there exists a rectangle 4y X By with my(dg X By) >0, Ay € Af C A, By € B, and for
x € Ag and y € By we have

PO = p"(ylx) = 0.
(b) From (a) there exist 4 € A" and 4, € A" such that
inf { p"")(y|x): x € A1, y € 4y} =, >0.
By (12) there exists 4y € 45 such that
P (4;]y) = 0,>0 on Ao.
Now for x € 4y and y € A,
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Py = J P2 P O(dz]x) = 01 PU(A1[x) = 0162 > 0.

Ay

(c) Let {4, ..., Ay} satisfy Definition 2. Since the chain is aperiodic, from Proposition
1 there exist mji, ..., my such that for r =max{m, ..., m} we have r € Z(4;) for
j=1, , k.

Slnce m(S)>O not all 4js can be countable. Without loss of generality, assume that
Ay, ..., A, have positive measure (/ < k). Let S, = U 14 and B < ST. Then for some j
we have Bi=BUA4; € Aj' For i=1, ..., k let n; be such that 4; —>B Since m(B;) >0,
from the proof of (a) we have, for i = l , k,

inf { p{")(y|x): x € 4}, y € Bi(i)} = 6, >0, (17)

where 4; € 4] and Bj(i) € B}
Now take ng large enough so that ng — n; € Z(4;) for i=1, ..., k. From (2) and (17)
we have, for z € 4],
P{")(B'(i)|z) = 8;m(B'(i)) > 0. (18)

Let 05 = min;<;<x {0;m(B(i)} and x € S. Then x € 4; for some i, and we have

PU)(Blx) = PU)(B)(i)|x) = J PUI(BY(i)|2) P~ (dz]x).

A
From (18) and the fact that ng — n; € &Z(4;), we have
PU)(B|x) = 0 g P"s~")(A}]x) > 0. (19)

Since (19) holds for all B € S}, we have 55 S..

If /= k then the proof is completed by taking Sq = . If not, let Sq = U, _,oq Ar. Let
Be Sy and /+1 <<k such that B;= BN 4; € A4;. The proof is exactly the same,
except that p. is replaced by py in (17) and P, and m(B (z)) by Py and [|Bj(i)| in (18)
(where ||-|| denotes cardinality of the set). And we have S Sj. O

Remark 1. Let 423 B. Then from the proofs of Propositions 1 and 2 we also have the
following:
(a) If m(B)>0 then

P"(B'|x)>0, Vx € 4, VB' € BT, (20)

inf { p{"#)(y|x): x € 4o, y € By} = 93>0, 1)

with 49 € A" and B, € B™.
(b) If B is countable then (20) and (21) hold with Py and pg4 in place of P, and p.,
respectively.
(c) If 422 4 and m(A4)>0, then
inf { p3"(y|x): x € g, y € Ao} = 94>0, (22)

with 49 € A*. If A is countable we have (22) with py in place of p..
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Our next result requires the following condition:

Condition 1. If m(E;) — 0 as k — oo then:
klim Po(Er|x) <1, uniformly on x. (23)
Note that for each x € S we always have P.( Ek|x)—k>0. Condition 1 requires that the

convergence be uniform on S. Also if p.(y|x) < K <oc is bounded then (23) holds trivially,
since Po(Ey|x) < Km(Ey).

Theorem 1. If a chain is irreducible and aperiodic, and if Condition 1 is satisfied, then it

possesses a long-run distribution

lim P"(B|x) = O(B), VB € .5, (24)

where Q is a probability on (R?, .%4).

Proof. The proof requires several steps and uses some of the techniques found in Doob
(1953).

(a) Since the chain is irreducible and aperiodic, by Proposition 2 there exists S, € S*
such that S5 S, (also SCgSC). From (22) there exist 0; >0 and S¢ € S such that

inf { p?")(y|x): x € Si, y € Si} = 0. (25)
From (20) we have
PUs)(S¢|x) >0, Vx € S. (26)

Let E; = {x: PU")(Si|x) <1/k}; then, by (26) and the fact that m(S)<oc, we have
m(Ey) — 0. From Condition 1, there exist ¢) >0 and k( such that

P(Ep|x) <1—¢, Vx € S. 27
Since P{"S)(S¢|z) = 1/ko for z € S\Ey,, using (6) and (27) we can write, for x € S,

PUst(SEx) = J PS)(St]2)P(dz]x)
s

|
> P(S\Ej,|x) = 2. (28)
ko ko

Now take D = S (thus m(D)>0), np =3ns+ 1 and dp = d1¢0/ko. Then, using (6),
(25) and (28), we have for y € D and x € S,

Pk = | R ek dz
D

= 01 PUsTO(SEx) = 6p > 0.
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Thus there exist 6p >0, np =1 and D € ST such that
inf { p"?)(y|x): x € S, y € D} = 6p.
(b) Let D and Op satisfy (29) and ¢p = dpm(D), then
|PUP(Bl) = PE(Bly)| < (1 - ep)*
VBe 74, VxeS, VyeSand k= 1.
From (1) and (29) we have

PUD(Blx) = J P (ylx)dy = dpm(B N D)
BND
and
PUD)(BC|x) = O pm(B° N D) = ¢p — dpm(B N D).
It follows that for x € S,

dpm(BN D) < P")(B|x) < 1 —ep+ dpm(BN D).

Using inequality (31) with y in place of x, we can write
PU2)(Blx) — P"2)(Bly) < 1 —¢p.
Interchanging the roles of x and y, we obtain
| PU2(Blx) = PUPY(BIy) < 1= ep,
For k = 2, let
L(dz; x, y, k) = PEDm0)(dz)x) — PUDm0)(dz]y)

U = (L(dz; x, y, k) = 0) and V = (L(dz; x, y, k) <O0).

And we can write

C.C.Y. Dorea

(29)

(30)

1)

(32)

(33)

Po)(Blx) — PR)(B|y) :J PU0)(B|z)L(dz; x, , k)+J PU"2)(B|z)L(dz; x, y, k).
U V

From (31) we have
J PU)(B|2)L() < (1 —ep 4+ Opm(BN D))J L()
v U
and
J PUY(BI2)L() < dpm(B N D)J L)
. v
Since [¢L(-) + [vL(-) = 0, we have

P(k"D)(B|x) _ P(k”D)(Bb/) S (1 — €D)J L()
U

(34)
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If £k =2 we have, from (32),
| 2=~ P <1 - e
U

Thus
PR"2)(Blx) — P2")(Bly) < (1 — ep).

Induction arguments and (34) give us (30).
(c) For k=1, m=1 and x € S, we have

| P m(Blx) — PU(Bl)| < (1= ep)*. (35)
Since [sP")(dy|x) =1 and P*">t™(B|x) = [¢P*2)(B|y)P™(dy|x), we can write

Pt m(Blx) — pUn(Bly) = J [PH0)(Bly) — PUmD(Blx)] P(d ).
N

and (35) follows from (30).

(d) P"(BJx) is a Cauchy sequence by (35). For B € B? let Q(B) = lim,_., P"(B|x),
which is independent of x by (30). It is easy to verify that Q is o-additive on .7 and since
0O(S) =1 it is a probability on (R9, %9). O

Remark 2. (a) Under the hypothesis of Theorem 1 the long-run distribution Q necessarily has
an absolutely continuous part. Note that from (29) we have p{"?)(y|x) = 05 >0, Vy € D and
Vx € § with m(D)>0. And from (6) for y € D, x € §,

P () = j PP (32)Pdz]x) = 0.
S
Thus for D’ € DT we have
lim PU(D'|x) = 6 pm(D").

(b) Our next theorem shows that the results of Theorem 1 hold if we assume the
following condition:

Condition I'. if m(E;) — 0 then lim,_ ., Py(Er|x) = 0 uniformly on S.

Theorem 1'. Assume that the chain is irreducible and aperiodic with Sq # . Then (24)
holds if Condition 1' is satisfied.

Proof. From Proposition 2(c), if the chain is irreducible and aperiodic then S = S. NS4 with
Sq countable and S, = S\Sy. Since Sq # @ there exists ng = 1 with S8y, and by (22)
there exist Sq € S; and d; >0 such that

inf{pf"“)(y|x): x €84, y€Sit =0
And by (20) we have P{")(S4]x)>0, Vx € .
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Let B, = {x: P{")(S4|x) < 1/k}; then m(E;) — 0. From Condition 1', given ¢ >0, there
exists ko such that Py(E%, |x) = ¢ for x € S. From (7) we have

PUstsio = > PYI(Si2) palel)

ze(ECkOﬂSX)
1 60
ol =

Now let D =S§, np=3ns+1 and 0p = d1¢0/ko and we have for, y € D and x € S,

3 1 2 1
P =Y pE 2P V)
zeD

=0, P(nb+1)(S | )>k_0_(§D>0

Thus there exist 6p >0, np =1 and D € S such that
inf {pg"[’)(y|x): x€S,ye D} =0p. (36)
It follows that for B € B?

PUOBlxy = Y pi(ylx) = dp|DN B

(yeBNDNS\"D))

and

OplDN B| < P")(Blx) < 1—0p|D| +dp|DN B
Since 0 <dp||D|| <1, using the same arguments as in Theorem 1 we obtain (24). O
Theorem 2. Let {Ey, ..., Ex} C S' be mutually communicating and aperiodic subsets of S.

For E = Ul \Ei, let F = S\E Assume that F # &, m(E) >0, Condition 1 holds and that
for some r and ngp we have F 28 E,. Then the chain has a long-run distribution.

Proof. Since m(E)>0 we may assume m(E;)>0 for i=1,...,/ and E; countable for
i=/+1,..., k Let E.=J_ E and £y = UL, . Ei.
First, we w111 show that there exists n» = 1 such that

FXAE and FI5Ey  (f Eg # D). (37)

Since the E; are communicating and aperiodic subsets we can take m large enough so that
E, 2 E; for i=1,..., k Since F25E, we have (37) by setting nr = np + m and using
Proposition 1.

Using aperiodicity again, there exists ng = 1 such that

S™E and S5 E;  (if Eq # D). (38)
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Now m(E.)>0 and E. % E,. Using exactly the same type of argument as in the proof of
Theorem 1, we show that there exist D € ET, 6p >0 and np = 1 such that

inf { p"?)(y|x): x € S, y € D} = 6p.
Following the proof of Theorem 1, we have (24). O

3. Applications

Consider the problem of estimating the global minimum of f: § — R, that is,
Yin = Min {f(x)} or Spin = {x: x € 5, f(x) = ymin}- (39)

Assume that S is bounded with m(S) >0, the global minimum y, is finite, f is continuous
in a neighbourhood of each minimum point Xy, € Spin and the minimum points are interior
points of S.

The following random search algorithm will be used: let X, € § be an initial random
point; for each x € S let g(-|x) be a density function on R?; for k = 0 let X denote the
value of the algorithm at step k; at step k + 1 a random value Y} is generated according to
the density g(-|X;) and we define

Yo = Y,  with probability a(Yi|Xy)
17 X with probability 1 — a(Y;|Xy).

It follows that the Markov chain {X,},=o has the transition probability function given by
P(B|x) = P¢(B|x) + P4(B|x), with

P.(Blx) = Jch(ylx) dy, Pe(¥]x) = a(y|x)g(y|x) (40)
and
PO = 3 O, puio=1- | pOdn (1)
yeBN{x} S

and pg(ylx) =0 if y # x.
Note that the second step transition is given by

PO(BJx) = LP(BIy)pc(yIX) dy + P(BIx) paClx).
and writing P(B|x) = [ppc(y|x)dy + I(xep)pa(x|x) we have
PO(Blx) = L Uspc<z|y>pc(y|x> dy 1 paCel2)pelz) + pelzl)patalo) | dz

and

PYU(B|x) = e p pi(x).
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In general we have

PO = piolx)

and

p(ylx) = Lpi"’”(yIZ)pc(ZIX) dz + pi ' (W[») pe(ylx) + pa(y1p) P P ().

Note that, in this case, inequality (6) is strict and we have equality in (7). Two types of
algorithms will be analysed.

Algorithm 1. Take g(y) = g(y|x) independent of x and the acceptance probability to be
a(ylx) = Iipn=repdyes)-

Algorithm 2. Take a(y|x) = min{l, exp {—c(f(y) — f(x))}}, where ¢>0 is a constant.

For Algorithm 2 we assume the same type of hypothesis as in Dekkers and Aarts (1991) (but
weaker relative to the objective function f and the set of minimum points Syin): (1) if
m(A4)>0 then [4g(y[x)dy>0, Vx € S; (ii) if m(Ey) L0 then Je,g(yx)dy £ uniformly
on x; and (iii) [sg(y[x)dy =1 for all x € S and g(y|x) = g(x|y).

We will show that the hypothesis of Theorem 2 is satisfied and the long-run distribution
is given by

O(B) = J ae ()= Yimin) dy with o~ ! = J e /()= min) dy. (42)
B s
For ¢ >0 define
() ={x:x €S, |x — xo| < ¢ for some Xy € Sin}- (43)
Let ymin(€) = inf {f(x): x € S\n(¢)} and
B(e) = n(c) N {x: x € S, f(x) < Ymin(O)}- (44)

Since f is continuous 1n a neighbourhood of each minimum point we have m(B(¢)) > 0.
We will show that B(e)<—>B(e) and S\B(e)ﬂB(e) This, together with (ii), verifies the
conditions of Theorem 2. Thus the long-run distribution exists and coincides with the
unique stationary distribution. To prove (42) it is enough to show that the stationary density
is given by ¢(y) = aexp{—c(f(¥) — ¥min)}- And this can be done by verifying that g
satisfies

q(y) = Jspc(yIX)q(X) dx + q(») pa(y|y)-
To prove B(e)<i>B(e), first note that f(y) — f(X) =< Ymin(€) — Ymin for x € B(e) and

¥ € B(e). Tt follows that a(y|x) = &, = exp {—c(Ymin(€) — Ymin)}- Now let B' € Bt (¢) and
x € B(e); then by (40) and (i) we have

Pe(B'|x) = JB,a(yIX)g(ylx) dy = 5(J3,g(yIX) dy=>0.
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To prove that S\ B(¢) 4 B(¢), note that for z € S\B(¢) and y € B(c) we have f(y) < f(2)
so that a(y|z) = 1. And by (i),

P(B'|z) < J g(y|2)dy>0, VB’ € B'(o).
»

As for Algorithm 1, we assume that x( is the unique minlimum point and that g(y) >0 in
a neighbourhood of xy. An atypical situation arises: Smin <= Smin but Smin 1S not accessible
from any other subset of S (for all n =1 we have P ({x}|x) equal to 0 if x # xo and
equal to 1 if x =xg). Now let B(¢) be defined by (44) and ¢>0 small enough so that
g(¥)>0 on B(c). Then we can show that S\ B(¢) — B(¢). In this case one can prove directly
that the long-run distribution Q is the probability mass at xy. Note that for all » =1 and
¢>0 we have P"(B()x)=1. And for x#xy) and ¢, = [peg(y)dy we have
P(B%(¢)|x) = 1 — g.. Using induction arguments it is easy to show that, for x # xo,

POB(OL) = J PUNEOLPE = (- q)" 45)

Be(e
From (45), if n(c) is an e-neighbourhood of x;, we have

lim P"(5(e)|x) = 1, Vx e S.

It follows that X, — x¢ in probability and Q({xp}) = 1.
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