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We study the problem of testing a simple hypothesis for a nonparametric `̀ signal � white-noise''

model. It is assumed under the null hypothesis that the `̀ signal'' is completely speci®ed, e.g., that no

signal is present. This hypothesis is tested against a composite alternative of the following form: the

underlying function (the signal) is separated away from the null in the L2 norm and, in addition, it

possesses some smoothness properties. We focus on the case of a inhomogeneous alternative when the

smoothness properties of the signal are measured in a Lp norm with p , 2. We consider tests whose

errors have probabilities which do not exceed prescribed values and we measure the quality of testing

by the minimal distance between the null and the alternative set for which such testing is still

possible. We evaluate the optimal rate of decay of this distance to zero as the noise level tends to

zero. Then a rate-optimal test is proposed which essentially uses a pointwise-adaptive estimation

procedure.
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1. Introduction

This study is motivated by two sources. First of all the series of results by Ingster (1982,

1984a,b, 1986, 1993) on the problem of testing a nonparametric hypothesis showed an

essential difference between estimation and testing in a nonparametric context. In particular,

the minimax rate is different in these two problems. The other source is connected with the

recent progress in nonparametric estimation which is now referred to as `̀ spatially adaptive

estimation''. This direction in nonparametrics was initiated in the pioneering paper by

Nemirovski (1985) and followed by a series of articles by Donoho and Johnstone (1992,

1994) and Kerkyacharian and Picard (1993) on wavelet estimation. It was shown that the

classical linear methods of nonparametric estimation do not provide the optimal rate of

convergence when functions with inhomogeneous smoothness properties are considered. To

be rate optimal, a method of estimation has to be locally adaptive (`̀ spatially adaptive'') and

hence nonlinear. As an alternative to linear methods, a nonlinear wavelet procedure was

proposed which turned out to be ef®cient for a wide range of criteria (Donoho and Johnstone

1992, 1994; Kerkyacharian and Picard 1993; Delyon and Juditski 1996; Donoho et al. 1995).

Another `̀ spatially adaptive'' procedure was proposed by Lepski et al. (1997). This is a
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kernel estimator with a variable data-driven bandwidth. It turned out that this estimator

retains most of the optimal properties possessed by the wavelet procedure. Lepski and

Spokoiny (1995) enlarged on this result and proved that a slightly modi®ed version of the

initial procedure is asymptotically sharp optimal for the problem of adaptive estimation at a

point. This paper presents one more application of the idea of pointwise adaptation; we

apply it to the problem of hypothesis testing.

We are unable to describe in detail the historical background of this problem. We

mention only a few early pertinent results by Neyman (1937), Mann and Wald (1942),

Huber (1956) among others. For more information see Ingster (1993). It was Ingster (1982)

who initiated the study of the problem of testing a hypothesis from the modern minimax

nonparametric point of view. Certainly, some closely related considerations appeared in

earlier papers by Burnashev (1979) and Ibragimov and Khasminskii (1977). Further progress

in this direction was mostly due to the St Petersburg school; see Ingster (1993) for the

detailed description of these results. We mention here only a few points which are

important for our further exposition.

Typically, a null hypothesis corresponds to our belief that the observed data are organized

in a relatively simple way, which means that the structure of the underlying model is

completely speci®ed. Therefore, when considering a goodness-of-®t problem of such a sort,

it is natural to measure the quality of any test by its sensitivity to perturbations or

contaminations of this model. The optimal test has to be sensitive for as large a set of

alternatives as possible.

Below, we consider the `̀ signal � noise'' model when the observed process X is

described by the stochastic differential equation

dX (t) � f (t) dt � E dW (t)

where E is the noise level and W denotes a standard white-noise process. The null

corresponds to the case when the signal is identically zero or, in other words, no signal is

present. The corresponding testing can be viewed as a problem of signal detection. A set of

alternatives can be naturally de®ned in the following way. Let f be `̀ true''. We say that this

function belongs to the alternative set if it is separated away from the `̀ null'' in some integral

Lr norm:

i f i r :�
�
j f (t)jr dt

� �1=r

> r: (1:1)

The radius r characterizes the sensitivity of testing. For a small noise level E, we may expect

that r can be also small. Hence, it is assumed that r depends on E, r � rE, and our aim is to

describe the optimal rate of decay rE ! 0 under which testing with prescribed probabilities

of errors is still possible. Note, however, that the assumption (1.1) is not suf®cient for

consistent testing (Ibragimov and Khasminskii 1977; Burnashev 1979; Ingster 1982;) with no

assumption on the regularity of the signal, it is impossible to distinguish between this signal

and a noise. Typically, one additionally assumes that the underlying function f possesses

some smoothness properties. A standard assumption here is that f belongs to some function

class F , for instance, to some HoÈlder or Sobolev ball. The recent work by Donoho and

Johnstone and by Kerkyacharian and Picard on wavelet methods in statistical inference
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showed that the formalism of the more general Besov function classes provides a useful

technical tool for nonparametric statistical considerations. For a statistical analysis, the

following factors appear to be of the greatest importance: the smoothness degree s, the

relation between the norm power p, in which we measure smoothness properties of the

function f and the norm power r, in which we measure errors of estimation or the distance

between the null and the alternative set.

For the problem of estimation, the case p > r is classical and here the linear methods

provide the optimal rate of convergence which is equal to E2s=(2s�1). If p , r, which

corresponds to functions with inhomogeneous smoothness properties, the minimax rate of

estimation is the same, but it cannot be achieved by any linear method (Nemirovski 1985;

Donoho and Johnstone 1992).

The situation signi®cantly changes for the problem of hypothesis testing. If p � r � 2,

then the optimal rate of testing is E4s=(4s�1) (Ingster 1982), which is better than the rate of

estimation. For this case not only is the optimal rate described, but also asymptotically

optimal (up to an exact constant) test procedures were constructed (Ermakov 1990; Ingster

1993). The same rate is optimal for r < 2 and p > 2 (Ingster 1986). Another unexpected

feature of the testing problem is that for p � r . 2 the rate of testing depends on p. More

precisely it is E2s=(2s�1ÿ1= p) (Ingster 1986). However, the case of p , r, which corresponds

to a set of alternatives with inhomogeneous smoothness properties, was not studied. At the

same time, just as in the estimation problem, it is of essential importance both from the

theoretical point of view and for applications.

Here we focus on the situation when r � 2 and p , 2 which admits a relatively simple

and evident description and the proofs are clearer. The cases when p , r and r . 2 or when

r . p > 2 and r , 2, p , 2 are more involved and lead to new phenomena. Any further

discussion of the problem of testing in a Lr norm with r 6� 2 lies beyond the scope of this

paper.

In the next section we formulate our problem and state the main results pertaining to the

optimal rate of testing. In Section 3 we present tests which achieve the optimal rate of

testing. Next we mention some possible directions for further developments and we

postpone the proofs until the last section.

2. The minimax rate of testing

In this section we specify the problem of hypothesis testing and state the main results.

2.1. The model

Suppose that we are given the observations X (t), t 2 [0, 1], described by the stochastic

differential equation

dX (t) � f (t) dt � E dW (t), 0 < t < 1, (2:1)

where W (t) is a Brownian motion and f is an unknown function.
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2.2. The null and the alternative

Our aim is to test the null hypothesis H0 that the regression function (signal) f is identically

zero,

H0: f � 0:

Under the alternative, we assume that f is separated away from the null in the L2 norm and

belongs to some smoothness class F . Below, we assume that F is a Besov ball Bs
p,q(M) with

Bs
p,q � f f : i f i Bs

p,q
< Mg,

where (Triebel 1992)

i f i Bs
p,q
�

i f i p �
�1

0

hÿsq iosc f (:, h)iq

p

dh

h

 !1=q

, if q ,1,

i f i p � sup
0<h<1

hÿs iosc f (:, h)i p, if q � �1:

8>>>><>>>>:
Here i f i p is the Lp norm, i f i p

p �
� 1

0
j f j p, and the local oscillation osc f (x, h) of f is

de®ned as

osc f (x, h) � inf sup
j yÿxj<h

j f (y)ÿ P(y)j:

The in®mum here is taken over all polynomials of order m, which is the maximal integer

smaller than s, and the supremum with respect to x, y is restricted to the interval [0, 1]. The

parameters s, p, q, M are such that p, q > 1, s, M . 0 and sp . 1.

We arrive at a set of alternatives F (rE) of the form

H1: F (rE) � f f 2 Bs
p,q(M), i f i > rEg:

Here i f i means the usual L2 norm, i f i2 � � 1

0
f 2(t) dt.

Remark 2.1. For an integer s, one may consider instead of the Besov norm i:i Bs
p,q

the Sobolev

seminorm i:iW s
p

with

i f iW s
p
�

�
j f (s)(t)j p dt

� �1= p

and f (s)(t) stands for the sth generalized derivative of the function f.

The values of s, p, q, M entering into the de®nition of the alternative set are assumed

®xed and known. Note, however, that only s and p are important for the results and the
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construction of the optimal tests. The problem of adaptive testing when the smoothness

parameters are unknown is brie¯y discussed in Section 4.

2.3. The problem of hypothesis testing

A test öE is a rule to accept or to reject the null hypothesis by means of the observed process

X (t), 0 < t < 1; therefore, it is a measurable function of the observations taking values in

the two-point set f0, 1g. The value öE � 0 is treated as accepting H0, and öE � 1 means that

the test rejects H0.

The quality of any test is measured by the probabilities of the corresponding errors. The

probability á0(öE) of error of the ®rst kind is the probability under the null to reject the

hypothesis

á0(öE) � P0(öE � 1),

where P0 is the distribution on the space of observations corresponding to H0.

The probability of error of the second kind can be viewed as the probability to accept H0

if f belongs to the alternative set H1. We denote it by á1(öE, rE) taking into account that

H1 is a composite alternative:

á1(öE, rE) � sup
f 2F (rE)

Pf (öE � 0),

where Pf is the distribution corresponding to a particular function f.

We are studying the asymptotic behaviour of these probabilities as the noise level E tends

to zero. We are interested in describing the fastest rate of decay to zero of such a radius rE
for which it is still possible to construct a test öE such that at least for a small level noise E
the probabilities á0(öE) and á1(öE, rE) do not exceed some prescribed values á0 and á1,

respectively.

2.4. The main results

Ingster (1982, 1984a,b, 1986, 1993) studied the above problem for function classes of the

Sobolev type and for p > 2. The optimal rate rE in this case is

rE � E4s=(4s�1):

Here we are concentrating on the situation when p , 2. As usual, we distinguish the results

obtained for the lower and upper bounds. The ®rst of these, related to the lower bound,

describes the rate for rE which cannot be improved by any test.

Theorem 2.1. Let p < 2, sp . 1 and

rE � E4s 0=(4s 0�1), (2:2)

where
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s 0 � sÿ 1

2 p
� 1

4
:

Then, for any sequence r9E with r9E=rE ! 0 as E! 0 and for any tests öE,

lim inf
E!0

fá0(öE)� á1(öE, r9E)g > 1:

The second result for the upper bound claims that there exist tests ö�E which provide the

rate of testing rE described in Theorem 2.1. Their structure is explained in the next section.

Theorem 2.2. Let s, p and rE be the same as in Theorem 2.1. For each positive á0 and á1,

there exist a constant c1, depending on s, p, q, M, and tests ö�E such that

lim
E!0

á0(ö�E ) < á0 (2:3)

and

lim
E!0

á1(ö�E , c1rE) < á1: (2:4)

3. A test procedure

In this section we explain the structure of the tests ö�E mentioned in Theorem 2.2. We start

with some preliminary discussion.

3.1. Preliminaries

Below we give some heuristic explanation of the results and the proposed test procedures.

We shall consider test statistics based on kernel smoothers. Let K be a kernel satisfying

standard conditions; see (K1)±(K5) below. Let us also ®x a bandwidth value h 2 [0, 1]

(which we specify later) and consider a kernel estimator

~f h(t) � 1

h

�
K

t ÿ s

h

� �
dX (s), t 2 [0, 1]:

This can be decomposed in a standard way into a deterministic and a stochastic part:

~f h(t) � f h(t)� îh(t),

where

f h(t) � 1

h

�
K

t ÿ s

h

� �
f (s) ds,

îh(t) � E
h

�
K

t ÿ s

h

� �
dW (s):
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It is natural to use the value

Th � i~f h i2 �
�1

0

~f 2
h(t) dt

for testing the null hypothesis H0: i f i � 0 against the alternative H1: i f i > rE. Under the

null, one has ~f h � îh and

Th � T0
h �

�1

0

î2
h(t) dt:

It is not dif®cult to derive that

ET0
h �

E2 i K i2

h
,

DT 0
h �

E4d2

h
,

where d � d(K) is some constant depending only on the kernel K. Moreover, if

ç0
h �

T 0
h ÿ ET0

h

(DT 0
h)1=2

,

then

L (ç0
hjP0)!w N (0, 1):

This leads to the test of the form

öh � 1(çh . ÷á0
),

where

çh � Th ÿ ET 0
h

(DT 0
h)1=2

,

and ÷á is the 1ÿ á0 quantile of the standard normal law.

Under the alternative, for some f 2 H1, we have

Th �
�1

0

f f h(t)� îh(t)g2 dt � i f h i2 � T0
h � cross term:

It is easy to show that the `̀ cross term'' is relatively small. Hence,

çh � ç0
h � i f h i2(dE2 hÿ1=2)ÿ1

where � means asymptotic equivalence. However, i f h i2 > i f i2=2ÿ i f ÿ f h i2 and,

therefore, the test öh detects a signal f from the alternative set if
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i f i2 > C(E2 h1=2 � i f ÿ f h i2) (3:1)

for some suf®ciently large C.

The value i f ÿ f h i can be estimated by using the smoothness condition f 2 Bs
p,q. If

p > 2, then (Triebel 1992) i f ÿ f h i < O(hs). In this case, minimization over h in (3.1)

leads to the bandwidth choice of h � O(E4=(4s�1)) and (3.1) is met for i f i > C1E4s=(4s�1)

with some C1 . 0. Note that a value of h � O(E2=(2s�1)), which is typical for the estimation

problem leads to the testing rate E2s=(2s�1). This rate is usual for estimation but it is

relatively poor for testing.

If p , 2, then the estimate i f ÿ f h i < O(hs) is no longer true. The condition f 2 Bs
p,q

ensures only that i f ÿ f h i p � O(hs). To get a bound for the L2 norm, we can apply the

embedding theorem for Besov classes (Triebel 1992); i f ÿ f h i < O(hs9) where s9 �
sÿ 1=p� 1

2
. This approach obviously leads to the bandwidth choice h9 � O(E4=(4s9�1)) and

to the corresponding testing rate E4s9=(4s9�1). Since s 0 . s9, it is worse that the optimal rate

shown in Theorem 2.2. The situation here is similar to that met for the estimation problem.

Tests of type öh are analogous to linear methods in the estimation theory. It is known

(Nemirovski 1985; Donoho and Johnstone 1992) that, for p , 2, linear methods can only

achieve the rate with E2s9=(2s9�1) instead of E2s=(2s�1). An improvement can be accomplished

by nonlinear methods possessing some `̀ spatially adaptive'' properties (Donoho et al. 1995;

Lepski et al. 1997). Below, this idea is extended to the problem of hypothesis testing.

Following Lepski et al. (1997), we apply a nonlinear pointwise-adaptive procedure which

can be regarded as the above-described kernel method with a variable data-driven

bandwidth. In essence, this method allows us to control the differences j f h(t)ÿ f h=2(t)j for

different h from a dyadic geometric grid. If such a difference is for some h and some

t 2 [0, 1] so large that it cannot be explained by the noise ¯uctuation, then we detect the

signal. Otherwise we have a bound of the form j f h(t)ÿ f h=2(t)j < ëh with some ëh which

allows us to estimate

i f h ÿ f h=2 i2 < i f h ÿ f h=2 i p

p i f h ÿ f h=2 i2ÿ p

1 < Chspë2ÿ p
h :

Our calculations are based exactly on this idea.

Some more information about the difference between the cases p > 2 and p , 2 can be

extracted from the structure of the least favourable prior distributions for the problem of

detecting a random signal. Ingster (1982, 1986) showed that for p > 2 such a random

signal is wiggling and uniformly small with the altitude of order E(4s�2)=(4s�1) which is

essentially smaller than the noise level. Note that the Lp norm of this signal for any p > 1

is of the same order and depends on p very weakly.

By inspecting the proof of Theorem 2.1, one can see that, for p , 2, the structure of the

least favourable priors is entirely different. Namely, the corresponding random signal is

almost everywhere zero with N � Eÿ2=(2s�1ÿ1= p) peaks. Such a structure is caused by the

extremal problem of maximizing over the given Besov class the Lp norm of a function

when the L2 norm is ®xed. In particular, the ratio i f i p=i f i2 for such signals tends to

in®nity as E tends to zero. This explains why the rate of testing depends on p and justi®es

the use of the notion of an alternative with inhomogeneous smoothness properties.
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3.2. A data-driven bandwidth selector

For the construction of tests we need to split the observed data X (:) from (2.1) into two

independent parts. For a model with discrete time, the usual way of doing this is to split the

observations into even and odd points. For the continuous-time model (2.1), the following

method can be used. Let W9 be a white Gaussian noise independent of W. De®ne two

processes ~X and ~~X by

~X (t) � X (t)� EW 9(t),

~~X (t) � X (t)ÿ EW 9(t):

Obviously, ~X and ~~X obey the equations

d ~X (t) � f (t) dt � E21=2 d ~W (t),

d ~~X (t) � f (t) dt � E21=2 d ~~W (t),

where

~W (t) � 2ÿ1=2fW (t)� W 9(t)g,
~~W (t) � 2ÿ1=2fW (t)ÿ W 9(t)g,

are two independent white Gaussian noises. We treat ~X and ~~X as two independent data sets.

One part provided by ~X will be used for a pointwise bandwidth selection, and the other for

constructing the kernel-type test statistics with the plugged-in bandwidth. This splitting

procedure obviously leads to some loss of ef®ciency which is manifested by an increase in

the noise level (by 21=2) for the process ~~X . This factor 21=2 can be viewed as a payment for

the pointwise adaptation.

Now we introduce a family of kernel estimators with a kernel K satisfying usual

regularity conditions. Let m � bsc, the largest possible integer smaller than s. Let now K(u)

be a function de®ned on the real axis such that the following hold.

(K1) It is symmetric, K(u) � K(ÿu), u 2 R1.

(K2) It is compactly supported, i.e., K(u) � 0 for juj. b for some b . 0.

(K3) It is continuous.

(K4)
�

K(u) du � 1.

(K5)
�

K(u)ui du � 0, i � 1, . . . , m.

In what follows, we omit the integration limit if the integration is taken over the whole

real line.

Denote, for given h . 0 and t 2 [0, 1],

~f h(t) � 1

h

�
K

t ÿ s

h

� �
d ~X (s),

~~f h(t) � 1

h

�
K

t ÿ s

h

� �
d ~~X (s):
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Remark 3.1. These de®nitions should be corrected near the end points t � 0 and t � 1 which

might be done in a standard way by replacing the kernel near these points by special

boundary one-sided kernels. Therefore, we actually need three kernels: one (symmetric) for

application inside the interval (0, 1); another (right-sided with a support of the form [0, b])

for applying near the point 0; the third (left-sided with a support of the form [ÿb, 0]) near 1.

All the three kernels should satisfy the above-mentioned conditions (K1)±(K5). For more

details see, for instance, Lepski et al. (1997). To simplify the exposition, we retain the

notation K for the boundary corrected kernel.

Now we describe a pointwise bandwidth selector introduced by Lepski et al (1997); see

also Lepski and Spokoiny (1997). We begin by introducing a set H . Our pointwise

bandwidth takes its values in this set. Denote

h� � E4=(4s 0�1) � E2=(2s�1ÿ1= p) (3:2)

and set

H � fh � h�2ÿk , k � 0, 1, 2, . . . , h > E2g:
In particular, h� is the largest considered bandwidth value. We also apply h� to de®ne the

boundary corrected kernel: the symmetric kernel K is to be replaced by the right-sided kernel

in the interval [0, bh�] and by the left-sided kernel in [1ÿ bh�, 1].

Given ç, h from H with ç, h and c � ç=h, set

ó 2(ç, h) � 2E2

ç

�
jK(u)ÿ cK(uc)j2 du (3:3)

and

ø(ç, h) � ó (ç, h) 2 ln
h�
ç

 !( )1=2

:

Denote also

C(K) � sup
0<c<1

�
jK(u)ÿ cK(uc)j2 du

and

ø(h) � E21=2C(K)

h1=2
max 2 ln

h�
h

� �
, 1

� �1=2

: (3:4)

Note that the values C(K), ø(ç, h) and ø(h) depend on t via the boundary corrected kernel

K.

Given t 2 [0, 1], de®ne the pointwise data-driven bandwidth ĥ(t) by

ĥ(t) � maxfh 2H : j~~fç(t)ÿ ~~f h(t)j < ø(ç, h)� 2ø(h), 8ç 2H , ç, hg:
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3.3. A test

First we de®ne an estimator f̂ (t) which is the kernel estimator ~f h(t) with the plugged-in

bandwidth ĥ:

f̂ (t) � ~f ĥ( t)(t), t 2 [0, 1]:

Denote, for h 2H ,

B(h) � 2E2 iK i2

h
,

where i K i2 � � K2(u) du and introduce the statistic TE:

TE � Eÿ2(h�)1=2

�1

0

ff̂ 2(t)ÿ B(ĥ(t))g dt: (3:5)

Below we shall show that under the null the random variables TE are asymptotically normal

N (0, d2) with some d . 0 and, in particular,

lim
E!0

E0T2
E � d2: (3:6)

The test ö�E is based exactly on the statistic TE; we reject the null hypothesis if TE is large

enough. More precisely,

ö�E � 1
TE

d
. ÷á0

� �
where ÷á is de®ned for á 2 (0, 1) by Ö(÷á) � 1ÿ á, Ö being the Laplace function.

Remark 3.2. It follows from (3.6) that the value d is determined only by the behaviour of the

test statistic TE under the null hypothesis. Therefore, for numerical calculations it is not

necessary to derive this value issuing from its theoretical expression; it can be calculated by

the Monte Carlo method for model (2.1) with f � 0.

4. Some further developments

4.1. Other nonparametric models

In this study we restrict ourselves to the `̀ ideal'' (and convenient from the technical point of

view) `̀ signal � white-noise'' model. We would expect that the main results remain valid for

more realistic statistical models such as the probability density model, the regression model,

etc. (perhaps under additional assumptions). We indicate here the relevant results obtained by

Ingster (1984a,b, 1986, 1993) on minimax hypothesis testing for the density and spectral

density models and the results obtained by Brown and Low (1996) and Nussbaum (1996) on

the asymptotic equivalence between the regression model and the `̀ signal � white-noise''

model and between the density model and the `̀ signal � white-noise'' model, respectively.
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4.2. Parametric versus nonparametric ®ts

This study focuses on the simple null hypothesis. Note, however, that a parametric null

hypothesis with unknown values of parameters is more typical in practical applications. This

means that the null hypothesis H0 is of the form f 2 f fè, è 2 Èg where È is an open subset

of the Euclidean space Rk . The alternative is again smooth and separated away from this

parametric family f fèg:
inf
è2È

i f ÿ fè i > rE:

However, such a testing problem can be reduced to the problem considered above with a

simple null using the following method. First a pilot parametric estimator ~è of the parameter

è is constructed; this can be typically done E consistently. Then the corresponding

`̀ parametric'' estimator f ~è can be subtracted from the observed data and we arrive at the

situation with the simple null hypothesis. The crucial point here is that the rate of parametric

estimation is higher than that of nonparametric testing. An example of such calculations can

be found in the work of HaÈrdle and Mammen (1993).

4.3. Adaptive testing

One aspect of the problem of hypothesis testing in the nonparametric set-up is of special

importance for practical applications, namely, that the structure of the proposed test depend

critically on the smoothness parameters s, p whose prior knowledge is typically lacking. In

our procedure, the value of the largest applied bandwidth h� depends on s and p. An

inspection of the proof shows that a wrong choice of this value leads to an essentially worse

rate of testing. This raises an important issue such as `̀ can this parameter be selected in an

adaptive (data-based) way without any loss of sensitivity?'' A recent result (Spokoiny 1996)

shows that an adaptive testing is indeed possible with a loss of power by a negligible log log

factor.

5. Proofs of Theorem 2.1 and 2.2

5.1. Proof of Theorem 2.1

We follow Ingster (1993). Let rE be the same as in Theorem 2.1 and suppose that r9E is such

that cE � r9E=rE ! 0. We show that, for any tests öE,

lim inf
E!0

fá0(öE)� á1(öE, r9E)g > 1: (5:1)

The idea of the method is standard; in essence, the minimax problem is replaced by a Bayes

problem. Let ðE be (prior) measures on the alternative set F (r9E) � f f 2 Bs
p,q(M):

i f i > r9Eg. Denote by PðE the corresponding Bayes measure for model (2.1): PðE ��
Pf ðE d f . Let also
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ZðE �
dPðE

dP0

,

where the measure P0 corresponds to the null hypothesis. It is well known that (5.1) follows

from

ZðE!
w

1 (5:2)

(see, for example, Ingster (1993, II, p. 171)). He also showed in the same place that it is not

necessary for the prior measures ðE to be supported on F (r9E); it is suf®cient that

ðE(F (r9E))! 1: (5:3)

For the construction of ðE satisfying (5.2) and (5.3) we use the method described by Ingster

(1993, Section 4.3). Let G be a smooth function supported on [ÿ1, 1]. Assume also that a

parameter h is small enough; we specify its choice later. Denote by I the partition of the

interval [ÿ1, 1] into intervals of length 2h with N being their number. Without loss of

generality we assume that

Nh � 1: (5:4)

Denote by t I the centre of an interval I from I and introduce the family of functions j I (:),
I 2 I , on [ÿ1, 1] with

j I (t) � 1

h1=2 iGi
G

t ÿ t I

h

� �
,

where iGi2 � � G2(t) dt. It is easy to see that these functions form an orthonormal set of

functions on [ÿ1, 1].

Consider now the random signal

f (t) � EcE
X
I2I

î Ij I (t),

where cE � r9E=rE, î I , I 2 I , are independent identically distributed random variables with

values in the three-point set fÿ1, 0, 1g having the distribution

P(î I � 0) � 1ÿ h1=2, P(î I � �1) � h1=2

2
, I 2 I : (5:5)

Let a prior measure ðE correspond to the distribution of such random signal f. Ingster (1993,

II, p. 176) established (5.2) for such prior measures with arbitrary h � hE ! 0 as E! 0. To

prove (5.3) we need to specify the choice of h. Let us take

h � hE � E2=(2s�1ÿ1= p): (5:6)

We use the following technical assertion.

Lemma 5.1. For any s, p, q, M satisfying the conditions of the theorem and any set

(î I , I 2 I ) one has
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i f i p

Bs
p,q

< C(G)c p
E h1=2

X
I2I

jî I j: (5:7)

Proof. We present only a sketch of the proof for the Sobolev seminorm i f iW s
p
�

(
� j f (s)(t)j p dt)1= p where f (s)(t) means the sth generalized derivative of the function f. The

arbitrary Besov norm can be handled in a similar way using a standard technique of the

approximation theory (Triebel 1992). Obviously,�
j f (s)(t)j p dt � (EcE iGiÿ1 hÿ1=2) p

X
I2I

jî I j p
�
jhÿsG(s)(hÿ1:)j pdt

� C(G)(EcE) p hÿspÿ p=2�1
X
I2I

jî I j,
(5:8)

where C(G) � iGiÿ p
� jG(s)(:)j pdt. This, coupled with (5.6), yields the assertion. u

Lemma 5.2. Let î I , I 2 I , be independent identically distributed random variables with

distribution (5.5). Then

h1=2
X
I2I

jî I j!P 1:

Proof. This statement is simply the law of large numbers for a sample of independent random

variables with the distribution (5.5); for more details see Ingster (1993, Section 4.3). u

Since cE ! 0, the above lemmas guarantee that, with a high probability, the function f

lies in the ball Bs
p,q(M). Now, similarly

i f i2 � (EcE)2
X
I2I

jî I j2 � (EcE)2 hÿ1=2 � c2
E r

2
E � r92

E

which completes the proof of (5.3).

5.2. Proof of Theorem 2.2

We begin by decomposing the test statistic TE from (3.5) using the standard decomposition of

the kernel estimator ~f h(t) into a deterministic and a stochastic term. Namely, for each h . 0

and any t 2 [0, 1], we have

~f h(t) � f h(t)� îh(t), (5:9)

where

f h(t) � 1

h

�
K

t ÿ s

h

� �
f (s) ds,
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îh(t) � E21=2

h

�
K

t ÿ s

h

� �
d ~W (s):

A similar decomposition holds true for
~~f h with ~~W in place of ~W .

Now we note that, by (3.2) and (2.2),

E2

(h�)1=2
� r2

E :

Next, obviously

j~f h(t)j2 � j f h(t)j2 � 2 f h(t)îh(t)� jîh(t)j2, (5:10)

and, in view of (3.5),

TE � rÿ2
E

�1

0

fj~f ĥ( t)(t)j2 ÿ B(ĥ(t))g dt � rÿ2
E [Ŝ � 2ãE]� RE

where

Ŝ �
�1

0

f 2

ĥ( t)
(t) dt, (5:11)

ãE �
�1

0

f ĥ( t)(t)îĥ( t)(t) dt, (5:12)

RE � (h�)1=2

E2

�1

0

î2

ĥ( t)
(t)ÿ 2E2 i K i2

ĥ(t)

 !
dt

� 2iK i2(h�)1=2

�1

0

ĥ(t)ÿ1fæ2

ĥ( t)
(t)ÿ 1g dt,

(5:13)

with

æh(t) � h1=2

E21=2 iK i
îh(t) � 1

iK i h1=2

�
K

t ÿ s

h

� �
d ~W (s): (5:14)

The idea of the proof is as follows. To show (2.3) we note that under the null the terms Ŝ and

ãE vanish and it remains to check that RE is asymptotically normal with zero mean and a

®nite variance d2.

Now let f be an arbitrary function from Bs
p,q(M). First we check that the `̀ stochastic''

term RE is bounded in probability uniformly in f 2 Bs
p,q(M); more precisely, for a small

enough E and a large enough z1,

sup
f 2Bs

p,q(M)

Pf (RE . z1) <
á1

2
: (5:15)

The next step is to show that the cross term ãE is relatively small; for each ä. 0,

P(2ãE . ä(Ŝ � r2
E )) � oE(1): (5:16)
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(Here and in what follows oE(1) denotes any sequence depending on E only and vanishing as

E! 0. If there is no risk of confusion, we also omit the index f in Pf .)

Note then that, for each h 2H and any t,

f 2
h(t) > 1

2
f 2(t)ÿ j f (t)ÿ f h(t)j2; (5:17)

hence, by (5.11)

Ŝ > 1
2

�1

0

f 2(t) dt ÿ
�1

0

j f (t)ÿ f ĥ( t)(t)j2 dt: (5:18)

Denote

QE � rÿ2
E

�1

0

j f (t)ÿ f ĥ( t)(t)j2 dt:

We shall prove later that QE is bounded in probability in the same sense as RE:

sup
f 2Bs

p,q(M)

Pf (QE . z2) <
á1

2
(5:19)

if E is small enough and z2 is suf®ciently large. Now we show how statement (2.4) of the

theorem follows from (5.15), (5.19) and (5.16). In fact, making use of (5.16) and (5.18), one

has, for ä < 1
3

and any f 2 Bs
p,q(M),

P(TE . z) � P(rÿ2
E (Ŝ � 2ãE)� RE . z)

> P(rÿ2
E Ŝ(1ÿ ä)ÿ ä� RE . z)ÿ oE(1)

> P(1
3
rÿ2
E i f i2 ÿ 2

3
QE � RE . z� 1

3
)ÿ oE(1):

Let z � d÷á0
and suppose that z1 and z2 are the same as in (5.15) and (5.19), respectively. If

f is such that i f i2 . 3r2
E (z� 1

3
� z1 � 2

3
z2), then

P(ö� � 1) � P(TE . z) > 1ÿ P(RE . z1)ÿ P(QE . z2)ÿ oE(1) > 1ÿ á1 ÿ oE(1)

as required in (2.4).

Therefore, to prove the theorem it suf®ces to show the asymptotic normality of RE under

the null hypothesis and to check (5.15), (5.19) and (5.16). We begin by estimating RE.

Denote by ~G and
~~G the ó-algebras generated by the random processes ~W and ~~W,

respectively. Since ~W and ~~W are independent, these algebras are also independent. By

de®nition, for each h 2H and any t 2 [0, 1], the random variables ~f h(t) are ~G measurable,

but
~~f h(t) are

~~G measurable, and so are ĥ(t). Therefore, the processes ~f h(:) and ĥ(:) are

independent. It is convenient to denote by Ê the conditional expectation with respect to the

ó-algebra
~~G or, in the other words, the conditional expectation given ĥ(:). Clearly

ER2
E � E(ÊR2

E ). To estimate ÊR2
E we apply representation (5.13) and make use of some

simple properties of the random variables æh(t) from (5.14) collected in the next lemma.

Lemma 5.3. Let æh(t) be de®ned by (5.14). Then we have the following.
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(i) The random variables æh(t) are standard normal and, in particular, Eæh(t) � 0,

Eæ2
h(t) � 1.

(ii) If ç, h 2H and jt ÿ sj. b(ç� h), then the random variables æç(s) and æh(t) are

independent and, in particular,

Efæç(s)æh(t)g � 0,

E[fæ2
ç(s)ÿ 1gfæ2

h(t)ÿ 1g] � 0:

(iii) If ç, h, then, for any s, t,

jEfæç(s)æh(t)gj < C1(K)
ç

h

� �1=2

:

jE[fæ2
ç(s)ÿ 1gfæ2

h(t)ÿ 1g]j < C2(K)
ç

h
,

where C1(K) and C2(K) are some absolute constants depending only on the kernel K.

Proof. Statement (i) follows directly from (5.14). Statement (ii) holds because the supports of

the functions K((t ÿ u)=h) and K((sÿ u)=ç) do not intersect for s, t with jsÿ tj. b(ç� h),

and because the white noise ~W has independent increments.

Next, it follows directly from (5.14) that

jEfæç(s)æh(t)gj � 1

(çh)1=2 i K i2

�����K
sÿ u

ç

� �
K

t ÿ u

h

� �
du

����
<

iK i1
iK i2

ç

h

� �1=2�����K sÿ u

ç

� ����� d u

ç

< C1(K)
ç

h

� �1=2

,

where iK i1 � supujK(u)j and C1(K) � i K i1 i K i1 i K iÿ2 with iK i1 �
� jK(u)j du. This

implies the ®rst statement in (iii). Now, since æç(s), æh(t) are standard normal,

straightforward calculations provide

E[fæ2
ç(s)ÿ 1gfæ2

h(t)ÿ 1g] � 2jEfæç(s)æh(t)gj2:
Thus the second assertion in (iii) follows. u

Denote

VE(t) � (h�)1=2

ĥ(t)
(æ2

ĥ( t)
ÿ 1): (5:20)

Since ĥ(t) takes values in H , one may also use the following representation:
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VE(t) � (h�)1=2
X
h2H

hÿ1(æ2
h ÿ 1)1(ĥ(t) � h):

Now, applying (ii) and (iii) of Lemma 5.3, we obtain

jÊVE(t)VE(s)j � h�
���� X

h2H

X
ç2H

(çh)ÿ1E[fæ2
ç(s)ÿ 1gfæ2

h(t)ÿ 1g]1(ĥ(t) � h, ĥ(s) � ç)

����
< 2C2(K)h�

X
h2H

X
ç2H ,ç, h

hÿ21(jt ÿ sj < b(ç� h))1(ĥ(t) � h, ĥ(s) � ç)

< 2C2(K)h�
X
h2H

hÿ21(jt ÿ sj < 2bh)1(ĥ(s) < h):

Hence

ÊR2
E � Ê

�1

0

VE(t) dt

 !2

�
�1

0

�1

0

ÊfVE(t)VE(s)g dt ds

< 2C2(K)h�
X
h2H

hÿ2

�1

0

�1

0

1(jt ÿ sj < 2bh)1(ĥ(s) < h) dt ds

� 8bC2(K)
X
h2H

h�
h

�1

0

1(ĥ(s) < h) ds:

(5:21)

This immediately gives

ER2
E < 8bC2(K)

X
h2H

h�
h

�1

0

P(ĥ(s) < h) ds: (5:22)

Note, that the above calculations are valid for any arbitrary function f. Now we analyse the

last sum supposing that f � 0. In this case the estimators
~~f h(t) consist only of the stochastic

term coinciding in distribution with îh(t). Hence, by de®nition of ĥ(t) we obtain, for each

h1 2H ,

P(ĥ(t) < h1) <
X

h2H ,h<2h1

X
ç2H ,ç, h

P(jîç(t)ÿ îh(t)j.ø(ç, h)):

The difference jîç(t)ÿ îh(t)j is a Gaussian random variable with the variance ó 2(ç, h) (see

(3.3)) and
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P(jîç(t)ÿ îh(t)j.ø(ç, h)) � P jæj. 2 ln
h�
ç

 !( )1=2
0@ 1A

< 2 exp ÿ2 ln
h�
ç

 !( )

� 2
ç

h�
� �2

:

(5:23)

Here æ denotes a standard normal random variable. Making use of the de®nition of the set

H as a dyadic series, we conclude that

P(ĥ(t) < h1) <
X

h2H ,h<2h1

X
ç2H ,ç, h

2
ç

h�
� �2

< 2
2h1

h�
� �2

:

By (5.22) this yields

ER2
E < 64bC2(K)

X
h2H

h

h� < 128bC2(K): (5:24)

Note that this bound is suf®cient to prove (5.15) with f � 0, but we need to prove the

asymptotic normality of RE under H0. Let VE(t) be given by (5.20). De®ne the process UE(u)

by

UE(u) � (h�)1=2VE(uh�), 0 < u <
1

h� :

With this notation we obtain from (5.13)

RE � 2iK i2(h�)1=2

�1=h�

0

UE(u) du: (5:25)

It is easy to see that the process UE(u) is stationary under H0 in the interval

u 2 [b, 1=h� ÿ b] because this holds true for the processes îh(:) and ĥ(:). Non-stationarity

in the subintervals [0, b] and [1=h� ÿ b, 1=h�] is caused by the correction of the kernel at

the end points. Next, statement (ii) of Lemma 5.3 shows that the process UE is mixing and

®nite dependent, which means that UE(u) and UE(u9) are independent if juÿ u9j. 2b.

Moreover, an easy analysis proves that the distribution of UE does not depend on E. These

facts together with (5.24) allow us to apply the central limit theorem to the integral of UE

over the interval from b to 1=h� ÿ b (see, for example, Ibragimov and Linnik (1965, Section

XVIII.7). This clearly leads to an asymptotic normality of RE; compare (5.25).

We turn now to studying the behaviour of the term RE for an arbitrary function f 2 Bs
p,q.

In contrast with the above case, the process ĥ(t) is not stationary any longer, because it
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describes local smoothness properties of the function f which, generally speaking, vary

from point to point. The same is true for the above-de®ned processes VE and UE, but the

estimate (5.22) remains valid and we show that it leads to (5.15). Namely, we are verifying

that

sup
f2Bs

p,q(M)

ER2
E < C9, (5:26)

with some constant C9 depending possibly on the parameters s, p, q, M. This yields (5.15) by

the Chebyshev inequality. For this purpose we introduce a useful pointwise characteristic of

the function f which re¯ects the local smoothness properties of this function in a small

vicinity of each point. This notion in a slightly modi®ed form was used by Lepski et al.

(1997) and Lepski and Spokoiny (1997).

Given t 2 [0, 1] and h . 0, let

Ä f (h, t) � max
ç2H ,ç<h

j f (t)ÿ fç(t)j:

Also set

h f (t) � maxfh 2H : Ä f (h, t) < ø(h)g, (5:27)

ø(h) being de®ned in (3.4). Obviously

ø(2h) >
ø(h)

31=2
,

and de®nition (5.27) yields

j f (t)ÿ f h(t)j < ø(h f (t)), 8h 2H , h < h f (t), (5:28)

j f (t)ÿ f 2h f ( t)(t)j.ø(2h f (t)) .
ø(h f (t))

31=2
, if h f (t) , h�: (5:29)

Now we note that

P(ĥ(t) < h) < 1(h f (t) < h)� P(ĥ(t) < h, h , h f (t)): (5:30)

The second term on the left-hand side can be easily estimated.

Lemma 5.4. For each t 2 [0, 1],

P(ĥ(t) < h, h , h f (t)) < 2(h=h�)2:

Proof. Let us ®x some t 2 [0, 1] and set h1 � h f (t). By the de®nition of ĥ(t)

P(ĥ(t) < h, h , h1)

<
X

h2H ,h<h1

X
ç2H ,ç,h

P(j ~~fç(t)ÿ ~~f h(t)j.ø(ç, h)� 2ø(h)):

Now, decomposition (5.9) and properties (5.28) and (5.23) imply that
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P(j ~~fç(t)ÿ ~~f h(t)j.ø(ç, h)� 2ø(h))

< P(jîç(t)ÿ îh(t)j � j f (t)ÿ fç(t)j � j f (t)ÿ f h(t)j.ø(ç, h)� 2ø(h))

< P(jîç(t)ÿ îh(t)j.ø(ç, h))

<
ç

h�
� �2

:

We end up by the same arguments as in the proof of (5.24). u

Using this lemma we get

X
h2H

h�
h

�1

0

P(ĥ(t) < h, h , h f (t)) dt <
X
h2H

2h

h� < 4:

In view of (5.22) and (5.30), statement (5.26) can now be reduced to

sup
f 2Bs

p,q(M)

Rf < C 0

where

Rf �
X
h2H

h�
h

�1

0

1(h f (t) < h) dt:

Note that, for each t,

X
h2H ,h>h f ( t)

h�
h

<
2h�
h f (t)

,

so that we obtain

Rf �
�1

0

X
h2H ,h>h f ( t)

h�
h

 !
dt < 2

�1

0

h�
h f (t)

dt:

By de®nition (3.4) we have h�=h < ø2(h)=ø2(h�) and it suf®ces to prove that

sup
f 2Bs

p,q(M)

R9f < C -

with

R9f �
�1

0

����ø(h f (t))

ø(h�)

����2 dt:

By (5.29)
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R9f < 1�
X

h2H ,h,h�

�1

0

���� ø(h)

ø(h�)

����21(h f (t) � h) dt

< 1�
X

h2H ,h,h�
øÿ2(h�)jø(h)j2ÿ p

�1

0

3 p=2Ä p
f (2h, t)1(h f (t) � h) dt

< 1� 3 p=2øÿ2(h�)
X

h2H ,h,h�
jø(h)j2ÿ p

�1

0

Ä p
f (2h, t) dt:

The properties of the Besov class Bs
p,q(M) imply the following bound (Lepski et al. 1997,

(5.9)):

sup
f 2Bs

p,q(M)

�1

0

Ä p
f (h, t) dt < Lhsp

with some constant L � L(s, p, q, M). This gives

R9f < 1� 3 p=2øÿ2(h�)
X

h2H ,h,h�
jø(h)j2ÿ p L(2h)sp

< 1� 3 p=22sp LE2

h�
X

h2H ,h,h�
E2ÿ p hspÿ1� p=2 ln

h�
h

� �
:

Since spÿ 1� p=2 . 0 for sp . 1
2
, the latter expression is estimated as follows:

R9f < 1� constant Eÿ p h�ÿ1 h� spÿ1� p=2;

by substituting h� from (3.2) we get

R9f < 1� constant E1=(2s�1ÿ1= p) � 1� oE(1),

which completes the proof of (5.26) and hence of (5.15).

Now we verify (5.19) by means of the same method as that applied above for estimating

RE. Let t 2 [0, 1] and let h f (t) be de®ned by (5.27). We consider separately the cases when

ĥ(t) < h f and ĥ(t) . h f (t).

For simplicity we write below ĥ and h f instead of ĥ(t) and h f (t) respectively. Also set

h� � 2h f � 2h f (t). The de®nition of h f yields

j f (t)ÿ f ĥ(t)j21(ĥ < h f ) < Ä2
f (h f , t)1(ĥ < h f ) < jø(h f )j2ÿ pÄ p

f (h f , t): (5:31)

Next, for the inverse case of ĥ . h f we apply decomposition (5.9) and the de®nition of ĥ

getting

j f (t)ÿ f ĥ(t)j21(ĥ . h f ) � j f (t)ÿ f h f
(t)� ~f h f

(t)ÿ ~f ĥ(t)ÿ (îh f
(t)ÿ îĥ(t))j21(ĥ . h f )

< jø(h f )� ø(h f , ĥ)� ø(ĥ)� jîh f
(t)ÿ îĥ(t)i21(ĥ . h f ):
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ø(h f , ĥ) < ø(h f ),

ø(ĥ) < ø(h f ):

Since îh(:) and ĥ(:) are independent, we have

Êjîh f
(t)ÿ îĥ(t)j2 � ó 2(h f , ĥ) < ø2(h f , ĥ) < ø2(h f ):

Hence

j f (t)ÿ f ĥ(t)j21(ĥ . h f ) < Ef3ø(h f )� jîh f
(t)ÿ îĥ(t)jg2

< 18ø2(h f )� 2Ejîh f
(t)ÿ îĥ(t)j2

< 20ø2(h f ):

The event fĥ . h f g implies that h f , h� and, by (5.29),

ø2(h f ) < 3ø2(h�) < 3jø(h�)j2ÿ pjÄ f (h�, t)j p:
This inequality together with (5.31) allows us to conclude that

Ej f (t)ÿ f ĥ(t)j2 < constant fjø(h f )j2ÿ pÄ p
f (h f , t)� jø(h�)j2ÿ pjÄ f (h�, t)j pg

< constant
X
h2H

jø(h)j2ÿ pÄ p
f (h, t)

and thus that

EQE � rÿ2
E

�1

0

Ej f (t)ÿ f ĥ(t)j2 dt

< constant rÿ2
E

X
h2H

jø(h)j2ÿ p

�1

0

Ä p
f (h, t) dt

< constant rÿ2
E

X
h2H

jø(h)j2ÿ p hsp:

Similarly to the above,

constant rÿ2
E

X
h2H

jø(h f )j2ÿ p hsp < constant rÿ2
E jø(h�)j2ÿ p h� sp

� constant
E2

(h�)1=2

 !ÿ1
E

(h�)1=2

� �2ÿ p

h� sp

� constant:

The last inequality obviously yields (5.19) and it remains to check (5.16). We proceed in the

same way as we did when estimating RE. We have
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ãE �
X
h2H

�1

0

f h(t)îh(t)1(ĥ(t) � h) dt

� E21=2 iK i
X
h2H

hÿ1=2

�1

0

f h(t)æh(t)1(ĥ(t) � h) dt:

Once more making use of Lemma 5.3, we obtain

Êã2
E � 2E2 i K i2

X
h2H

X
ç2H

(hç)ÿ1=2

3

�1

0

�1

0

f h(t) fç(s)Efæh(t)æç(s)g1(ĥ(t) � h, ĥ(s) � ç) dt ds

< 4C1(K)E2 iK i2
X
h2H

X
ç2H ,ç<h

hÿ1

3

�1

0

�1

0

f h(t) fç(s)1(jt ÿ sj < 2bh)1(ĥ(t) � h, ĥ(s) � ç) dt ds:

(5:32)

The elementary inequality ab < (a2 � b2)=2 leads to�1

0

�1

0

f h(t) fç(s)1(jt ÿ sj < 2bh)1(ĥ(t) � h)1(ĥ(s) � ç) dt ds

< 1
2

�1

0

�1

0

f 2
h(t)1(jt ÿ sj < 2bh)1(ĥ(t) � h) dt ds

� 1
2

�1

0

�1

0

f 2
ç(s)1(jt ÿ sj < 2bh)1(ĥ(s) � ç) dt ds

< 2bh

�1

0

f 2
h(t)1(ĥ(t) � h) dt � 2bh

�1

0

f 2
ç(s)1(ĥ(s) � ç) ds:

By (5.32) we arrive easily at

Êã2
E < 4C1(K)i K i2E22r

X
h2H

X
ç2H ,ç<h

�1

0

f 2
h(t)1(ĥ(t) � h) dt �

�1

0

f 2
ç(s)1(ĥ(s) � ç) ds

 !

< 4C1(K)i K i2E22r#H
X
h2H

�1

0

f 2
h(t)1(ĥ(t) � h) dt

< constant E2Ŝ#H ,

where #H is the number of points in the grid H . Clearly #H < 2 ln Eÿ1 and we get, for

any ä. 0,
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P(ãE . ä(Ŝ � r2
E )) < P(ãE . 2ärEŜ1=2)

<
Êã2

E

4ä2Ŝr2
E

<
constant E2 ln Eÿ1

ä2r2
E

! 0, E! 0:

The theorem is proved.
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