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We study the asymptotic distribution of the likelihood ratio statistic to test whether the contamination
of a known density fj by another density of the same parametric family reduces to fy. The classical
asymptotic theory for the likelihood ratio statistic fails, and we propose a general reparametrization
which ensures regularity properties. Under the null hypothesis, the likelihood ratio statistic converges
to the supremum of a squared truncated Gaussian process. The result is extended to the case of the
contamination of a mixture of p known densities by ¢ other densities of the same family.
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1. Introduction

The determination of the number of components in a mixture of distributions of the same
parametric form has recently been investigated in a number of papers. However, many of
them concern computational aspects of the problem and the question of the asymptotic
behaviour of the likelihood ratio (LR) statistic has not been solved. In the natural
parametrization of the problem, several difficulties appear under the null hypothesis. One of
them is the fact that the null hypothesis lies on the border of the parameter space, whereas it
is classically assumed in its interior. This question has been studied by Chernoff (1954) and,
more generally, by Self and Liang (1987) and Geyer (1994). Another is the lack of
identifiability of some nuisance parameters which are present only under the alternative.
Redner (1981) extended the classical result due to Wald (1949) on the consistency of the
maximum likelihood estimator (MLE) to a quotient parameter space, and this method applies
to mixture models. In regular models with nuisance parameters, Davies (1977) studied the
score statistic at a fixed value of the nuisance parameters and then considered the maximum
of the Gaussian approximation over these parameters. The lack of identifiability is connected
to further difficulties in general mixture models. First, the null hypothesis, which concerns
parametric distributions, can be expressed in several different forms in the parameter space.
Secondly, for each of them, a component of the score equals zero function and the Fisher
information is singular if the nuisance parameters are equal to the true parameter values. To
rule out that singularity, Ghosh and Sen (1985) required a separation condition on the
parameters of a mixture (1 —A)fp, + Afp,. Along the same lines as Davies (1977), they
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derived the asymptotic behaviour of the LR test for A = 0 against an alternative of a mixture
of two separate densities.

Here we study that question in the simplest case of the contamination of known
distributions, then we discuss the general case of a mixture. We adapt an approach
introduced by Chernoff and Lander (1995) for binomial distributions. It is based on a
reparametrization which solves the initial identifiability problems.

Let © be an open subset of R¥ with compact closure and let .7 = {fy, O € O} be a
parametric family of densities with respect to some measure v on a measurable space
(X, .Z2"). We assume throughout that the parameter 6 is identifiable for .7 and that the

mixture densities are identifiable in the following sense. Let p =1 and ¢ =1, A, ..., A 44
be in [0, 1] with A; +---+ 4,1 =1, p1, ..., pp be in [0, 1] with p; +--- 4+ p, =1, and
let 01, ..., 0,14, &1,...,&, be in O with pairwise distinct &, ..., §,. If

Pty P

Zijf(?j = ijff/

=1 =1
then there exists a permutation 7 of {1, ..., p+ g} such that

Hn(p+1)€{§1,...,f;:p} or/ln(,,+,):0, ]ngq

We first study the contamination of a known density fy, from .7 by a density from the
same family, and we test the hypothesis that an observed sample has the density fj,
(Section 2). In Section 3, we extend this study to the contamination of a mixture of p
known densities from .7 by a mixture of ¢ other unknown densities from the same family.
In order to obtain a unique null hypothesis in ©, the idea is to mix the natural parameters
of the models under the alternative. In order to preserve the continuity of the score
function, we next map the parameter space ® into a compact set © of R¥!, which is in
fact a hypersurface of the topological dimension k. We may then assume that the models
are regular in the new parametrizations. We establish locally asymptotic normality in n~'/2-
neighbourhoods of the true parameter values and we prove that two times the log-likelihood
ratio converges in distribution to the supremum of a squared truncated Gaussian process on
©. Examples are given for Gaussian densities and binomial densities.

2. The contamination model

We consider the contamination of a known density fo = f5, €.7# by some unknown density
of .77. The contaminated density is

gro = (1 = A)fo + Afe, A€[0,1],0€0O.

Let (X1, ..., X,,) be a sample having a density g. We want to test the hypothesis Hy : g = fo
against the alternative H, : g = g, with 1 # 0 and 6 # 6.
Under the identifiability assumption, the hypothesis Hy can be expressed as 1 =0, 6
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being a nuisance parameter which disappears under Hy; or Hj: 6 = 6, and 1 becomes a
nuisance parameter; or, finally, A =1 and 6 = 6,. Since the latter is a special case of the
previous one, there is a duality between A = 0 and 6 = 6, for Hy which could lead to two
different approaches. Moreover, the score function tends to zero and the Fisher information
becomes singular if 6 tends to 6y in the first case and if A tends to zero in the second one.
Therefore, we introduce the mixed parameter

u=A4[6 — 6,

which lies in a positive compact subset in R, and Hj is equivalent to u = 0.
Let Py be a probability with density f;, with respect to v. We will make use of the
following notations and conditions:

Condition 1. The map 6 — fy can v-almost surely be extended by continuity oni@, the

compact closure of ©®, and it is v-almost surely continuously differentiable on ©, with
derivative f§.

Condition 2. The function sup;cjo,1] Sup,.gllog g2,6| is Po-integrable.

Let 00 = 6,, let 6Y) be the k-dimensional vector having its first ; components equal to
those of 6 and its k — j last ones equal to those of 6, 8Y) = (6, ..., 0, 6ojs1, - .., Oor)s
and let /4 be the value at 6 of the jth partial derivative of f with respect to 6. We define
the k-dimensional function ¢ = (@1, ..., ¢x)" on © X X by

’ { (0; — 00) " { o) — fog-n}fo'  if 0, by,
w=9 . B .
Fhiog-ufo! if 6; = 6.

The function ¢ is therefore continuous on ©. Let %2 = {u € R¥; |Jul| = 1}, and for u € 7/ let
0,={0€0; =0+ ul|0— 60|} and K, = {||0 — 6|; 6 € ©,} which is a compact in
R;, and let

O = {(u, r); u € %, O+ ru € ©}.
Then for any 6€©, fy=fof{l+(0—0)"py} and for 0=00+rue®, gy is
reparametrized as
h“a"s# = f(){] + ;uuTgb@oer}-

Let ¥, be the k-dimensional process defined on ® by Y,(0) = n /23" ,¢a(X,), Zpe be
the covariance matrix E p0(¢9¢gr)(X 1) and Zg =Zpp. We will assume the following
conditions, which cannot be simply expressed in terms of the densities fy because they also
include conditions for their derivative with respect to 0:

Condition 3. For any 6 € ©, the matrix =, is positive definite and there exists a constant M,
such that for some 6 >0

Ep, suplgpa(X1)[* < M.
0cO
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Condition 4. For any positive € and # there exist ' >0 and an integer ny such that for any
n = ng, Po(supjo_g| <o | Ya(0) = Yu(0)]| = &) < n.

We consider the uniform topology on C(©), the space of continuous functions on © with
values in R*. A uniform metric is also defined on © by G, 7y = (', 7| = [l —u'|| +
|r — r'| and C(@) is the space of real continuous functions on . Using Billingsley’s Theorem
12.3 (Billingsley 1968, p. 95) if K =1, and Theorem A.1.19 in Ibragimov and Has’minskii
(1981, p. 372) otherwise, a moment condition can often be used to establish Condition 4.

Lemma 1. Under Condition 3, if there exist constants m = s > k and a function /on X with E p,
/(X1) < oo, such that for any 0, 0’ € © and x € X, |[pg(x) — po ()" < ||0 — 0'|*/ (%), then
Condition 4 is satisfied. Moreover, under Conditions 3 and 4 the process Y, is tight on C(©).

Under H; the log-likelihood of the sample (X7, ..., X,) is L,(A, 0) = > i<, log g1.0(X})
and is denoted L,(6y) under Hy. Let [,(u, r, u) = Z,-gnlog(fa]hu,,,ﬂ)(X[). The LR test
statistic is

Sy =2 sup sup {L,(4, 0) — L,(60)} =2 sup sup sup L,(u, r, ).
6O\ {6} A1€10,1] ue rek, uel0,r]

Lemma 2. Let A be a compact subset of RY and let 7" = {v,; a € A} be a family of real
functions defined on X such that sup,e 4|Uy| is Py-integrable and o — v,(x) is continuous for
each x. Then supye|n ™' 0a(X:) — Epva(X1)| — 0 Py-almost surely.

Proof. The supremum on A C R? can be restricted to the rational points Ag = {a € 4 N Q}
of 4. The map a — v,(x) being uniformly continuous on 4 for each x, Lebesgue’s theorem
implies that [|v, — vy|dPy tends to zero as |a —a’| — 0 in Ag and the same property
holds in 4. By the compactness of A4, it follows that, for any &> 0, the bracketing metric
entropy HB\(g, 7", Py) is finite. It is defined by HBi(e, 7, Py) = log NBi(e, 7", Py) with
NB(e, 7", Py) = mln{k eN; dvy, ..., v € Z1(Py) st. 77 C Ua,b[Ua, Upl, j|Ua — Ub| dPy
<e}. Then the Glivenko—Cantelli theorem applies: if P, is the empirical distribution
function of the observed sample, supgc 4| fva d(P, — Py)| — 0 Py-almost surely (Shorack and
Wellner 1986, p. 837). O

Lemma 3. Let jt,(u, r) be the value of w in [0, r] that maximizes 1,(u, r, u) as (u, r) is fixed
in ©. Then sup(u’r)e(;)/),,(u, r) converges Py-almost surely to zero under Conditions 1 and 2.

Proof. We consider the model with the new parametrization A, ,, in {(u, r, u); (u, r) € 0,
u €10, r]}. Conditions 1 and 2 imply that % is continuous with respect to the parameter
(u, r, ) and [logh| is Po-uniformly integrable. Let I(u, r, u) = Ep, log(falhu,,,ﬂ)(Xl).
Lemma 2 implies that SUP(, 116 sup‘ue[o,,]\nflln(u, r, u) — Il(u, r, u)] — 0 Py-almost surely.

Let M, = sup,,ft,(u, r) and Q, = {limsup, M, >a}. If M, did not converge P,-almost
surely to zero, we could find a>0 such that Py(Q2,) # 0; hence, for any w € Q,,
(o, u,(w), ry(w))>a for some sequence {u,(®), r,(w)},. By compactness, for any
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w € Q, and from any subsequence of {it,(w, u,(®), ry(®))},, we could extract a further
subsequence {it,(w, u,(w), ry(w))}, converging to some My(w)>a and a subsubse-
quence {u, (), r (@)}, from {u,(w), r,(w)}, converging to some {uo(w), ro(w)}.

For any (u, r) € 0, I(u, r, -) is a concave function on [0, r] having a unique maximum at
u(u, ry =0, therefore I(u, r, it,(u, r)) < l(u, r, 0) = 0. Moreover, for each (u, r) € O and
n=0, L(u, r, t,(u, r)) = L,(u, r, 0) = 0. In particular, on Q,,

-1 N
0=n" ln"(un”a Fn's ;un"(un"y rn"))

< sup ‘n”illn”(”a ry ) = lu, vy @ + [Wunr, Fory il (r, 7a7)) — o, 7o, Mo)|

u,r,u
+ l(ug, ro, Mo).

By continuity of / and Lemma 2, there would be a subset Q, of €, having the probability

zero such that l(up(w), ro(w), My(w)) =0 for any w € Q,\RQq, Using the concavity of

I(u, r, -), it follows that My =0 on Q,\Q,, which contradicts the property Py(R,) # 0.
O

Theorem 1. Assume that Conditions 1—4 hold. Then, under Hy, the LR statistic S, converges
weakly to

Sup~ Zz(ua r)[{Z(u,r)>O}:
(u,r)€O

where Z is a continuous Gaussian process on © having mean zero and covariance function K
given by

K(uy, 115 ua, 12) = u] 2o, g,u2(u] g, 1)~ 2 (13 Zg, 1) "2,
where 6, = 0y + riuy and 6, = 0y + ryu;.
Proof. Let Z,,(u, r, -) be the first derivative of /,(u, r, -) with respect to u. Since i,(u, r)

maximizes 1,(u, r, 1) under the constraint ft,(u, r) =0, n~ Y21, (u, r, itu(u, 1)) = &(u, ),
where the Lagrange multiplier {(u, r) satisfies

w26 it o g
Let
ai(u, r) = u' Po, 1 nu(X0). (2)
Using the identity
(I +pa)™" =1 — pa; + i a;(1 + pay) ™, 3)

and denoting

1 a
Ry, =n" —_—,
: " Zl+ﬂnai
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we have

ai(u, r)

n(us r)ai(u’ I")

Eu, r) = n P Lu(u, 7y fua(u, 1) = n'/2 Zl = @)

- uTYn(BO + Vll) - nl/zﬂn(u’ r){n_l Z[uT¢90+ru(Xi)]2 - /:tn(ua r)Rln(u, }")} (5)

Conditions 1-3 and Lemma 2 imply that

(a) supuer supygln > u [Pa(X)py(Xi) — > olu| converges Py-almost surely to zero;
() sup,, yeo in(tt, | Rin(u, r)] = 0p(1).

To prove (b) we consider, for 0 given by Condition 3, constants a and [ such that
1/4+0)<a<land 0<f<a—1/(4+6). We have

Py (n“ sup sup|a;(u, r)| > nﬁ> < Mon!~@+oNah)

i=n u,r

hence n~ % sup;<, supy,|a:(u, r)| converges to zero in probability.
Let Ry, = R .+ Ry,, with

1n>

— _ _ a
= X e T

pa; >0

By Lemma 3 and since 0 < R}, < n~'>_;|a;]> which is a uniform O,(1) under Condition 3,
inRY, = 0,(1) uniformly. To prove a similar convergence for R;,, we restrict our attention to
the values of (u, r) such that ji,(u, r) >0, and therefore {(u, ) = 0 in (4) and (5). For these
values, we write (5) as

V2 f1,(u, r){n1 Z[uT¢eo+,.u<X,-)] — fa(u, )R, (u, r)}

— uTYn(90+ ru) + n'?i 2(u R, (u, 7). (6)

By (a) and Condition 3 and because [t,R{, is a uniform o,(1), the left-hand side of this
equality is strictly positive on O if nis large enough. Moreover, by Condition 4 and weak
convergence of its finite-dimensional distributions, the process Y, converges weakly to a
Gaussian process Y in C(©), and it follows that sup, || Y,(60 + ru)| = O,(1). As R}, <0,
sup,, n'/2 i (u, r)Ry,(u, r) is necessarily O,(1); then, from (6), sup,,, n 3 fn(u, r) = Op(l).
As f1,(u, r)| Ry, (u, r)| = n'2i,(u, Pyn**2n724 Ry (u, )| and
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n- sup sup|a;(u, i’)|z{”1 Z %(”, ”)}
1 u,r

i;ai(u,r)<0 HUndi

i

2| Ry, (u, 1)

P iai(u,r)>0 1 + Hndi

n—2* sup sup|a,(u, r)|2{nl Z L(u, r)}, by (4),

I

n2e sup sup|a;(u, )[*sup n~! Z lai(u, )],
r u,r i

i ou,

we deduce that n “sup,.|R;,(u, )| = 0,(1) and therefore sup,, iL,(u, r)| Ry, (u, r)| =
0,(1), which ends the proof of convergence property (b).
From (5), (a), (b) and Lemma 3,
8, 1) = u" Yo(O + ru) — n' g, ){u" gy e} + 0p(1),
where the 0,(1) holds in Py-probability uniformly over O. Let Z, be the process defined on
® by
Zy(u, r) = (u" gy 1t uT V(00 + ru).

By weak convergence of ¥, to a Gaussian process Y in C(©) having mean zero and
covariance Xy, ¢, at 0, and 0,, the process Z, converges weakly to a centred Gaussian process
Z with covariance K(6y + riuy, 0y + ryup) at (uy, ri; uz, 7).

If jt,(u, 1)>0, (1) entails that n'/2i,(u, r) = (U Zgy s mtt) > { Zo(u, ¥) + &,(u, 1)},
where sup,, ,|&,(u, 7)| tends to zero in probability, and otherwise i,(u, ) = 0. Then

nl/zﬂn(ua r) = (uT200+rllu)71/2{Zn(u9 I’) + 811(”9 r)}l{Z,,(u,r)+Sn(u,r)>0}

= (U Zgys ntt) 2 Zy(uy 1) 2,000 >0) + 0p(1),

since |z,(1, | ~ 01z, >0)| = |20l {jz)= o3| < l€a| which tends to zero.

By integrating (3), we have
Li(u, v, i, (u, 7))
A n. _
= 0P, WY, 00+ ) = S e )y S u Go(Xogg(Xou + Rl 1),

where

itn s u? . *2 3
Rznzj 0 =g, 7#" ¥

0 i +//£(1,‘ i +1unai
using (2) and with u¥(u, r) in ]0, it,(u, r)[. The functions u +— a’(1 + ua;)~" are
decreasing; hence, for each i < n,

a
=

@ -
1+[4,,ai 1+,u>,fa,

a;,

which implies
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3
3 a; ~3 3
E i E p R .
’ } i 1 ﬂnai ) lun max( al , n| ln|>

Under Condition 3 and by Lemma 2, n~!|}",a?| is Py-almost surely uniformly bounded on
©. Moreover, fAn|R14| converges uniformly to zero in probability and sup,, i.(u, r) =
0,(n~'/?). Therefore,

| Ry, $ﬂflmax< Za

ln(”’ r, fan(ua r)) = nl/zli:tn(u’ r)uT Yl’l(00 + ru) - gﬂi(”; r)uT2490+ruu + OP(I)
uniformly on © and

Sy = sup Ly(u, r, fty(u, r) = sup [Z5(u, N{z,un=0]+ 0p(1).
(u,r)e(:) (u,r)E(:)

O

Remark 1. We could have expanded the log-likelihood for u in a neighbourhood of 0 and
with fixed 6 in ©. The process 6 — n~'/23".¢o(X;) is continuous on © as well as the
associated process Y, defined on © by Y,(u, r) = u" Y,(6y + ru). But with the parameter u,
the expansion of the log-likelihood depends on the process 6 +— n='/23" [0 — 6]~ (6 —
00)T¢9(X i), which is not defined at 6y, and it could be extended by infinitely many possible
values. Thus we cannot study directly weak convergence in C(©).

Also, the result of Theorem 1 cannot be stated in the original space ® though for any
r#0, Z(u,r) is transformed back in the space © as W(0) = {(0 — 0p)TZy(0 —
00)}~'/2(6 — 6p)"Y(0) with 0 = 0y + ru # 6. The covariance matrix K" of W is defined

by
K" (01, 05) = (01 — 00) =0, 6,(02 — 00){(01 — 60)" =, (61 — 6p)}"/*
X {(6: — 00)"Z4,(6, — 60)} /7,

for 6, and 6, # 6y, and it is undefined if 6, or 6, equals 6,. The distribution of the variable
SUP <5 0460, WZ(B)I{ w()>o) is therefore undefined.

Remark 2. By the arguments used in the proof of Theorem 1, we derive that for any (u, r)
in O, the log- llkellhood ratio at u,(u, r) = m{n290+,u} /2 has an expansion

Z,,OlﬁuY (u, r) 2m + o(m?), where the o holds uniformly on ©. From Ibragimov and
Has’minskii (1981, p. 120), the optimal convergence rate for u, for fixed (u, ), is therefore
n~'/2. However, when r # 0 is fixed, estimation of u at rate Op(n~'/?) is equivalent to
estimation of A at rate Op(n~'/?) and this approach does not allow us to study the
asymptotic behaviour of the LR test statistic under the alternative without a separation
condition, as in Ghosh and Sen (1985). Since H, may be expressed as A =0 or 6 = 6,
two kinds of alternative should then be considered: either 6, — 6y = O(n='/?) with
A €[0,1]; or A, — Ay = O(n~'/?) with 6 € © (cf. Lemdani and Pons 1995, for the binomial

case).
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Proof of Lemma 1. Assume K = 1. For 0 and 6’ in ©®, we have E{Y;.(6) — Yj,,,(H’)}2 <
E\(pig(Xl)—¢.,~,9(X1)¢j,9r(X1)| + E|¢§’9,(X1)—¢.,~,9(X1)¢j,9r(X1)| and each term of the
right-hand side is bounded by sup,_gE{¢;o(X1)}*{E/(X))||6 — 6'[*}*/™. The process Y,
therefore satisfies Billingsley’s moment condition (12.51) (Billingsley 1968, p. 95) under the
conditions of Lemma 1. Moreover, for any 0 € 0, Y,(0) converges in distribution to a
Gaussian variable and it is therefore tight on R*. Then, from Theorem 12.3 of Billingsley
(1968, pp. 95-96), Condition 4 holds true and the process ¥, is tight in C(®). The proof is
similar for K > 1. O

If 0 is a one-dimensional parameter, the unit vector set 77 reduces to {+1, —1} and the
test statistic becomes

S, = 2max[ sup Zlog{l + upo(X)}, sup Zlog{l — ﬂ¢0(X,')}] .

w>0,0>6 u>0,0<6,
Then we obtain the following corollary:

Corollary 1. Under Conditions 1—4 and if ® C R, the statistic S, converges weakly under
Hy to

S = max[sup 22(0)1{2(9)20}, sup ZZ(G)I{Z(BKO}] ,
0=0, 0<6,

where Z is a continuous Gaussian process on © having mean zero and covariance function K
: _ ~1/2
given by K(01, 0,) = 2, 0,(Z6,Zs,) 2,

Example 1. Let © = ]a, b[, with >0 and » <1, and let 6y € ® and k € N. Consider the
binomial distribution B(k, 6)) and the contamination model (1 —A)B(k, 6y) + AB(k, 0),
A €0, 1] and 0 € O, which extends the model studied by Chernoff and Lander (1995). From
Teicher (1963), we assume that k£ =2 so that Condition 1 holds. Under B(%, 6), the
probability of an observation x € {0, ..., k} is C36%(1 — ) and its density fy with
respect to the uniform discrete measure v on {0, ..., k} satisfies Condition 1. For 0 # 6, the
function ¢ is defined as above by ¢y = (6 — 90)_1(f9f0_1 — 1) if 8 # 6y and it is extended by
continuity at 6y as ¢g,(x) = (x — k6p){6o(1 — )} ~'. The covariance function X is defined
by

29’9/ =

{ {(6 — 60)(6" — 60)} ' [{(6 — 66)(6" — 60)0, ' (1 — Bp)~' + 1} — 1], if 6 and 6" # 6y,
k{Oo(1 — 6p)} 1, otherwise;

therefore, =y = g, = k{6p(1 — 00)}’1 >0 for any 0 € [a, b]. Moreover, the integrability
properties of Conditions 2 and 3 hold and Condition 4 is also satisfied by Lemma 1, since the

function 6 — ¢y is continuously differentiable on ® with a derivative ¢y such that
Esup, _gllos(X1)[* < oo, where
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Do (x) = [32f0) " = {(x — k60)* — x(1 —260)H{265(1 — 60)*} "

Example 2. Consider the family .7 of Gaussian densities f,,, with mean m and variance o>

with respect to Lebesgue measure, and suppose that § = (m, o) belongs to an open bounded
set ® where the compact closure of {o; Im such that (m, o) € ®} does not contain zero.
For any 6y = (my, 0¢) € O, the two-dimensional function ¢ is defined by

Pro(x) = {(’" = m0) oo @ = 1}, if m £ mo,

062()( — my), if m = my,

(0 =00 o = Fnoe} oo, if 0 # 00,
fmao(x)f() (x){(x - m)2 02— 1}, if 0 = 0y.

Let Z119, 2129 and 2pnp be ‘@e elements of the matrix 2y. Its determinant is
2110200 —2?2’9>0 for any 0 € © since the functions ¢;p and ¢, are never almost
surely proportional and therefore Xy is positive definite. The integrability assumptions of
Conditions 2 and 3 are satisfied, and Lemma 1 applies for the same reason as in Example 1.

$2.6(x) = {

3. Testing for the contamination of a mixture of p known
distributions by a mixture of ¢ distributions

For integers p =1 and ¢ = 1, let # ,,; be the set of functions from {1, ..., ¢} into a subset
of {l,..., p} and let ., ={(p1,...,pp)" €10,11%; p1 +- -+ p,=1} and f/; =
5 N ]0, 1]17. We denote a mixture of p 4 ¢ densities from the family 7 by
ptg 7
E ptq:h0 = Z’ljfﬂ,-s A= (j‘ln B lp-ﬁ—q) € ‘Vp+qa 01, ..., 9p+q € 0.

J=1

Let 6° = (00, R 0(;) € ©7 be known parameter values of densities from .7, 6° having
pairwise distinct components. For a sample (X, ..., X,) with density g, we wish to test

whether g is a mixture of the known densities f(,o 1 < j < p, against the alternative of a
mixture of p + ¢ densities from .7, including the p densities f(,o that is,

Hy: g= gpuem where (A, ..., 4,) € (//j;,

Hi:g=gpi0000 where 1 € ./*

ot q, , 044 are pairwise distinct in ©;

and 6 = (67, .. ef,w) is such that @ = (6°T, EN)T with & € ©9,

up to a permutation of mixture components Let A% € / be the actual value of the mixture
proportions and let go = >.% = ll fgo be the true dens1ty under H,. By the identifiability
assumption, there exists a map ¢ € p.q such that under H, the parameters of a density
g p+qa,0 of the alternative satisfy
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Op1 = 0% 0r Apys =0, 1<i=<g.

Moreover, ; + Y9 |1 ()= pt1 = /1_(])., for 1 =< j < p. We adopt the same notation as in the
previous section and now

S, =2 sup sup Z{log 2.0/ Xi) — log go(X))}
AEYS prg 0=(00T ETYT€@P+a

is denoted

2 sup sup {Ln(p + q; la 6) - Ln(/loa 00)}
AEY piq O=(0T.ETTe®rtd

For any map c € 4,4, let

q
CC = {()'9 0)’ A € '7’p+qs 0c ®P+qs 0] = 0(])5 j'j + Z[{c([):j}ip+l = j'(/)a 1 $] < D
=1

Opr1 =00 0rdpy =0,1<1<gq}

and C = Uccyz,, C. be the subset of .7, X @P9 yielding the density go. From Redner
(1981), for any closed subset S of the parameter space not intersecting C,
lim, sup(,l,g)esl_[,-gn(gg ! gp+q,0)(Xi) = 0 almost surely and therefore, if n is large

enough,

Sn = 2 Sup Sup {Ln(p + q) la 9) - Ln(j‘oa 00)}9
cEY pq g8A.0)EN(C,)

where ./ (C,) is a neighbourhood of C..

We first consider ¢ as fixed in %2 ,, and we define the (p — 1)-dimensional parameter
A(c) and the g-dimensional parameter a(c) in the following way:

q
Aj(c)=A;+ Z Ley=pApi1 — /l(j)-, I<j=<p,
=

anc) =Apiill0p1 — Gg(l)Ha I=sl=sgq

Let A(e)=(A1, ..., Ap-1)'(c) and a(c)=(ay,...,a,)'(c), and let u(c) be the
{p + q — 1}-dimensional vector u(c)= (AT, a")T(c). Since Zf;l/l(/). = Zf:lq/lj =1, we
have Y27 | Aj(c) =0 and (Ay, ..., A,)T = MA, where M is the p X (p — 1) matrix having
an identity upper (p — 1) X (p — 1) block and —1 for each element of the last row. As the
hypothesis H, is equivalent to u(c)=0, we now use the reparametrization

AT, 0T — (u, 61T, where u = u(c), and we plug ©9 into
(:)c,q ={(u, )= (ur, 11, ..., ug, 1q); u € %, 0(3,(1) +ru €0,1<1<q}.

With the functions fo = (fgo, - .-, [y )T, and f§ = ((f(’,?)T, s (FoDY, g pigap is written
P »
as
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P q q
Eptaao = &0+ Z Aj— /12 + Z/lp+l[{c(l):j} fog. + Z’lerl(fOz —Jo )
=1 =1

- ol
Jj=1

q
= g0+ ATMTfy + ;lpw(fe, —Je,)

As in Section 2, for any | < /=< g and c € 7, there exists a k-dimensional function ¢ ()

on © X .2 such that for any 6 € ©, fy —feo = (60— 941)) @ (.0go- Then we consider the

family of functions 4, . indexed by c € V‘pq, by (u, r) = (u1, r1, ..., ug, 74) € @cq and

by the parameter u,

9
hﬂ,u,r,c = 820 (1 + ATMTg(;lfO + Z alu;qﬁcu),gg”ﬁ,]m) .
=1

Let ¥, = (YT an)T be the (p 4+ g — 1)-dimensional process defined by

1n>
n n

Vi, =072y (Mg f)X) =072y Ly U — [ ) XD hi=j<
i=1 i=1

and, for c€ Z,, and (u, r) € (E)C,q, ?Zn(u, r, ¢) is now the g-dimensional vector with
components

VauiCus v, &) = 0" 2N " ui{p i )X 1<I<gq.

(1)
We also denote by 2(u, r, ¢) the covariance matrix of Y;(u, r, ), with a block decomposition
according to the components of Yi,

i B 3 Si(u, 7, c)
Swr o= (5,00 0 S 9)

Conditions 1-4 are not modified, except that Condition 2 now says that the function
SUPies .y SUPQ:(QOT,ET)Teﬁwq“Og gp+q;,1,9| is Py-integrable.

Theorem 2. Assume Conditions 1—4 hold. Then, under H,, the LR statistic for testing a
mixture of the densities fg, 1 < j < p, against the alternative of p + q densities from .7
J
including (fp)i1<j<p, converges weakly to
J

sup  sup A (u, r, ) Z(u, r, c)I{Z(u,C)>0},
CEL pq (4,r)EO 4

where Z is defined by Z = 252 (221 Y1+ 30 Y,), and where Y = (YT, Yg)T is a continuous
centred (p + q — 1)-dimensional Gaussian process with covariance Z.

Proof. By the same arguments as for Theorem 1, for fixed c € 47, , and (u, r) € @C,q, the
MLE ji,(u, r, ¢) of u under the constraints a; =0, for 1 <[/ =<g, is Py-almost surely
uniformly consistent (as the function 7 is still linear with respect to the parameter u, Lemma 3
extends to multidimensional parameters). An expansion of the log-likelihood derivative leads to
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nl/zﬂn(u, r,¢)=3u, r, &) Yolu, r, ) u(u, r, ) Jrifll Yia(1 = I(u, r, ¢)) + o0,(1),

where 1, is the indicator of the set {~(i*l Y0),>0,..., ! Y1) pig-1>0} and where the o,
is uniform with respect to (u, r) € O,.

Under Ho, gpu00 = g0+ 3.0 (4; —A)(fp — fi) and the MLE of 2= (4, ..., 4,)
satisfies ! !

n'20, = Vi, + 0,(1).
Hence, by a Taylor expansion, the LR statistic satisfies

S, = sup sup {f’n(u, r, c)Ti_l(u, 7, c)f/,,(u, r, c) — f/lnil’ll 171,,}1,, + 0,(1).

€% pg (u,r)€0.4

Writing
- U
== (221 222)

and using the relation s = 21_]] + 21222_2] 221, we obtain
17,,(14, r, c)Ti_'(u, 7, C) f’n(u, r, c) — )71,,21_11 171,, = Z;Z,,,
where Z,, = 22_21/ 2(221 171,, + 5122 )72,,). Hence the LR statistic is
Sy= sup sup Z,(u, r, ) Z,(u, r, C)[{Zn(u,r,c)>0} + 0,(1).

CEL pq (u,r)EB.,

4. The mixture of two distributions

It is not obvious that a similar simple reparametrization allows to study the asymptotic
behaviour of the LR statistic under general assumptions. We consider the mixture of two
densities from the family .77,

8£1,01,0, = (1 - /’L)f(% + j‘f@p

with 4 € [0, 1] and 6y, 6, € O. Let (X, ..., X,,) be a sample with density g. The problem is
to test the hypothesis of a single unknown density Hy: g €.7 against the alternative of a
true mixture H; : g = g39,0, for some A #0, 1 and 6, # 0,. By symmetry of (1 —4, 6))
and (4, 6,) in the mixture, we may assume without loss of generality that A € [0, 3]. Under
this restriction and by the identifiability assumption, H, can be viewed as 1 = 0 or 6; = 0,,
when 6, or A are respectively nuisance parameters, and in both cases 6; = 6. We assume
that there is no restriction on the parameters of f| and f>: this is, for example, the test of a
normal density against a mixture of two normals with a priori different means and variances.
Let 6y be the true unknown value of the parameter under Hy, fo = f4,, and Py a probability
with density f, with respect to v.

Let L,(4, 01, 6,) be the log-likelihood of (X}, ..., X,) under the mixture density g4, 4,
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With the restriction 4 € [0, 1] and by Redner’s consistency result, the MLEs have the
following properties: . converges to the true parameter value 6, and /1 — 0 or 65, — 6y,
in Py-probability. Using the reparametrization u = A||6; — 6|, the score function for 6;
determines the score for u if 6, is close to 0y, and we cannot ensure that the information
matrix remains uniformly positive definite as 0; and 6, are both in a neighbourhood of 6.

The above approach can be modified with the parameters o = (1 —1)0; + 416, and
B = A6, — 6|]> = 0 (6, being unknown, we could prefer to define B = ||#, — 6;]]> but the
problem is similar). With 1 € [0, %], Hy is then equivalent to [ =0; furthermore,
0) = 0y = a under H,. The function ¢ is replaced by a k X k continuous matrix function
W on O X X satisfying fo — fo = (6 — 00) £ + fo(6 — 0))TWy(0 — 6y), for any 6 € ©.
If 6, =00+ ru, the mixture density gzg,0 is written as hgp,, +5(1 —A)(6; —
Qo)Tfé'* (91 - 6()), where

u,B u,r fO{l + (a - OO)TfOfO ﬁuTlpeoeru}

and where 6 is between 6, and 6y. Under the assumption that the map 6 — fj is twice
continuously differentiable on © and because E, f4# (X;) = 0, we have supy Yoo (X)) =
o(n) Pp-almost surely, using the arguments of Lemma 2. With further integrability
assumptions, L,(4, 01, 65) = 31 1og(fy " hapu NXi) + op(n]|01 — 6p[*), uniformly on ©.
However, the components (1 — 1)(6; — 6y) and A(6, — 6;) may balance in a and each may
have a larger norm than « so that, generally, ||@; — 6y|> cannot be compared to
lell? + 2.

In the special case where ® is convex and where 6 lies on the border of the parameter
space O = ©\O, there exists a constraint for the sign of the components of 6 — 6, for
any 6 € ©. The same constraint holds for the components of a — 6y, therefore
|aj - 00j| =(- /1)|01j — 9()]“ +ﬂ.|02j - 9()]“ and ||01 — 00” = 2||(1||,~With A€ [0, %] Then
Ly, 01, 6) = Y7 1og(f o hapur)Xi) + op(n]al?) uniformly on © and an expansion of
the first term of the right-hand side of this expression leads to a result similar to Theorem
1, but taking into account the constraint that 6, belongs to 0O (cf. Geyer 1994). As this
constraint is very restrictive, we do not detail that case. The limiting behaviour of the LR
test for homogeneity in a mixture of two densities from the same family, without any
restriction, is still an open question.
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