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For a real random variable X with distribution function F, define
A= {1 €R: KQ) := Ee™ <o0}.
The distribution F' generates a natural exponential family of distribution functions {F, A € A}, where
dF;(x) == e™dF(x)/ K (L), LeA.

We study the asymptotic behaviour of the distribution functions F) as A4 increases to A, := sup A. If
Ao = 00 then F) | 0 pointwise on {F < 1}. It may still be possible to obtain a non-degenerate weak
limit law G(y) = lim F(a; y + b;) by choosing suitable scaling and centring constants a; >0 and b,
and in this case either G is a Gaussian distribution or G has a finite lower end-point yy = inf{G >0}
and G(y — yo) is a gamma distribution. Similarly, if 1., is finite and does not belong to A then G is a
Gaussian distribution or G has a finite upper end-point y,, and 1 — G(y- — ») is a gamma distribution.

The situation for sequences 4, T A is entirely different: any distribution function may occur as the
weak limit of a sequence Fj,(a,x + b,).

Keywords: affine transformation; asymptotic normality; convergence of types; cumulant generating
function; exponential family; Esscher transform; gamma distribution; Gaussian tail; limit law; normal
distribution; moment generating function; power norming; semistable; stochastically compact; universal
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1. Introduction

Suppose X is a real random variable with distribution function (df) F. Let
A = { € RIK(1) := Ee*¥ < oo} (1.1)

be the set where the moment generating function (mgf) K(4) of X is finite. The set A is a
connected subset of R which contains the origin and on which the mgf A +— K(4) is
continuous and strictly positive. Associated with F is the natural exponential family
{F,;, A € A} where

dF;(x) == e*dF(x)/K (L), A eA. (1.2)

For convenience, we let X; be a random variable with distribution F,;. We study the
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asymptotic behaviour of the dfs F; for 1 — A, := sup A. Note that 1., = 0. We assume
Asx > 0.

If Ao € A then F; | F;_ pointwise; see Corollary 2.2. If A ¢ A, then F) | 1[0,
where xo, = sup{F <1} is the upper end-point of the df F; see Proposition 2.3. In the
latter case, the types in the exponential family {F), A € A}, may have a [limit law for
A — As. This means that it may sometimes be possible to normalize the variables X; of the
exponential family by translation and positive scaling so that for some non-constant random
variable Y,

Xi_bﬁiy, A= A (1.3)

Ay X; =
a;
Here LN denotes convergence in distribution.

This paper determines the possible non-degenerate limit laws in (1.3). Our main result,
Theorem 3.5, states that if there is a non-constant limit variable Y in (1.3), then one can
choose the centring constants b; and scaling constants @, so that Y is a standard normal
variable, or so that ¥ or —Y has a gamma distribution. In a subsequent publication, we
shall describe the domains of attraction of the limit laws.

This paper is partially motivated by Balkema er al. (1993), where it was found that
asymptotic normality of F; has useful implications for the study of sums of independent
random variables (rvs). A class of thin-tailed densities was identified which is closed under
convolution. This closure property is dependent on the fact that each density of the family
has an associated exponential family which is asymptotically normal. Rootzen (1987) and
Davis and Resnick (1991) use related ideas for applications to extremes of moving averages.
Feigin and Yashchin (1983) and Balkema et al. (1995) give Tauberian results based on the
asymptotic normality of exponential families. If asymptotic normality of exponential
families was useful for such things as convolution closure problems and Tauberian theory,
we wondered what other weak limits could arise when converging to the boundary of A and
what applications were possible when convergence was to a non-normal weak limit. The
present paper is a first step in the exploration of applications of non-normal limits.

The importance of exponential families in statistics and for asymptotics in probability
theory can hardly be overestimated. In analysis exponential families occur as Esscher
transforms and are used in Laplace’s principle and for saddlepoint approximations. Surveys
of their use in statistics are given by Barndorff-Nielsen (1978), Barndorff-Nielsen and Cox
(1994) and Brown (1986). For connections with saddlepoint approximations, see Barndorff-
Nielsen and Kliippelberg (1999) and Jensen (1995). The limit behaviour of F; is of
mathematical interest and, moreover, the exponential family offers an effective way to
investigate the asymptotic behaviour of the mgf K and the cumulant generating function
(cgf) k =log K.

Convergence in (1.3) depends on the behaviour of the cgf x at 1. The behaviour of the
analytic function k at a fixed point 19 <A, is well known:

k(Ao + ! Kk(Ao) tn i 0 (1.4)
— ) — — —_ — — 00. .
n <0 \/ﬁ) nic(Ao) — utv/n 7 n

Here u = pu;, = k'(Ag) is the expectation of X; and o2 :0%0 = k"(Ap) the variance.
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Relation (1.4) is the formula for the second derivative of x at 4. It is also the central limit
theorem for sums of independent observations from the df F), since n(ic(dg + &) — k(4o)) is
the cgf of the df F' j{o”. Teicher (1984) has investigated relation (1.4) for a sequence 1, — o0,
extending work of Feller (1969) on large deviations. More recently Broniatowski and Mason
(1994) have looked at very large deviations. There the behaviour of the mgf for 1 — A
plays a decisive role.

To understand the behaviour of the cgf k for 4 — 1., assume existence of the following
limit:

K3 (1) := k(A + t/o) — k(A) — ut/o — (), A= Ao (1.5)

The function x} in (1.5) is the cgf of the standardized variable X = (X; — u;)/0;, where
w;, = K'(A) is the expectation and of1 the variance of X; see Feigin and Yashchin (1983). It
also describes the convex function k around the point 4 normalized so as to have a horizontal
tangent at ¢ = 0 and curvature 1. It is not surprising that the parabola 7(#) = #>/2 occurs as a
limit — corresponding to the normal law for the limit variable Y in (1.3). The second limit
function, the logarithm, corresponds to two families of gamma distributions. In Theorem 3.6
we prove that weak convergence (1.3) entails convergence of the cgfs. Hence we may use the
first two moments of X; to normalize, thus obtaining the limit relation (1.5).

Statistical applications have motivated interest in exponential families closed under
certain transformation groups. Lehmann (1983) mentions exponential location families.
Casalis (1991) classifies natural exponential families on R? which are invariant under
certain groups of affine transformations, and Bar-Lev and Casalis (1994; 1998) describe
exponential families G,, y € I, on R which are invariant under certain groups of affine
transformations A’, r € R. For each ¢ € R there exists y € ' so that G,(x) = G(4 '(x)).

The paper is organized as follows. In Section 2 we first prove certain continuity results.
From these we derive a stability property for the limit variable ¥ which allows us to obtain
in Section 3 the possible limit distributions, the normal and gamma distributions. Section 4
comments briefly on limit relation (1.3) when convergence is only along sequences
An T Aso, which makes the situation complex since then the cgfs need not converge.
Example 4.6 shows that the Cauchy distribution may occur as weak limit and Theorem 4.8
shows that the behaviour of the convex function x may be quite bizarre.

In a later paper we shall describe domains of attraction and give an application to
saddlepoint approximations.

This paper treats the asymptotic behaviour of the exponential family in the
neighbourhood of the upper end-point of A. The transformation X' = —X allows us to
translate these results into statements about the asymptotic behaviour in the neighbourhood
of the lower end-point, inf A. If ¥ is a limit variable for the exponential family generated
by X in the upper end-point then —Y is a limit variable for the exponential family
generated by —X in the lower end-point.

Obviously the multivariate case is the really interesting situation. The setting there is
simple: the cgf of a random vector is a convex function defined (finite) on a convex subset
A C R?. For simplicity assume A is open. The cgf is analytic. What is its behaviour as one
approaches the boundary? Normalize the cgf for 4g € A so that the tangent hyperplane in
Ao is horizontal and the second derivative is the standard inner product. The associated
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random vector X has zero expectation vector and the identity matrix as covariance. What
happens to the distribution of X as A approaches a point on the boundary of A or tends to
infinity? Do there exist non-degenerate limit laws? Do the mgfs of X converge? Is it
possible that X ;k does not converge in distribution but that X, does converge for some other
normalization?

This paper will answer some of these questions in the univariate case.

2. Stability of the limit laws

Random variables arising from a limit procedure frequently satisfy a stability condition. For
the df G of the limit Y of the exponential family in (1.3), the stability relation takes on the
form

G,(x) = G(ax + b), a>0,becR. 2.1

Indeed, G satisfies a large number of such relations. The random variables Y, in the
exponential family of the limit variable Y all are of the same type! The essential step in
establishing this stability for the limit variable is Proposition 2.12.

We start by studying the behaviour of {F;} as A ] Aw, =supA without using any
normalization. We then consider the following question. Suppose a sequence of dfs F),
converges weakly to a non-degenerate df F. Let G, = (F,);, be a df in the exponential
family of F, and suppose G, — G weakly. What is the relation between the limit
distributions F and G? We answer this question in Theorem 2.7. In the second part of this
section we consider weak limit behaviour under positive affine transformations and consider
Fy(ayx + by) for L — A,. The norming constants a; >0 and b; may be chosen to vary
continuously with A. The limit distribution will depend on the normalization. By
Khinchine’s convergence of types theorem different non-degenerate limit distributions will
belong to the same type.

Proposition 2.1. For any fixed x for which 0 < F(x)<1 the function A — F(x) is strictly
decreasing on A and continuous. It is also true that A — F)(x—) is strictly decreasing and

continuous on A.

Proof. For monotonicity see Brown (1986, Corollary 2.22). For continuity, if 1 — Ao,
convergence of

Jum,x]ei"dF(u) = K(A)F3(x) — K(io)F3y(x)

follows by dominated convergence with dominating function e** \ e/, with a, 8 € A. The
continuity of the mgf K on A gives Fj(x) — Fj,(x). O

Corollary 2.2. If Ao = supA € A, then F) | F;_ for 1 | Aw.

The interesting case is when the upper end-point 1., does not lie in A.
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Proposition 2.3. Suppose Ao, ¢ A. Let xo, = sup{F <1} < oo denote the upper end-point of
the df F. Then F; | 1[x_ c0)-

Proof. If 1, is finite, then x,, = 0o and K(1) — oo for A — A«. (Otherwise K(As — 0) < o0
and 1, € A by Fatou’s lemma.) Hence for any x; >0,

Fi(x)) = J MdF(x)/K(A) < &1 /K(A) — 0, R

Now assume A, = oco. If F is degenerate the statement is obvious. Otherwise choose
X <xp <Xy so that F(x;)>0. Then 1 — F(x;) = p>0, and

J M dF(x)
1 - F/I(XZ) _ J(x,00)

= = — 00 A — oo.

F,{(X]) J e/lxdF(x) - elxl ’
(—00,x1]

elxz p

Since 1 — Fj(x;) < 1, we have F(x;) — 0. Ol

For convenience, we associate to each 1 € A an rv X; with df F;. We shall write
X, =: E; X where E; denotes the Esscher operator. The Esscher operators E; satisfy the
additive law

EWE, = Ejry, A, A+ u€A.

Now suppose X, are rvs and Y, = E, X, for some sequence y,. Let X, converge to X
in distribution and Y, to Yy. Does it follow that y, — vy and Y = E, X?

Proposition 2.4. Suppose X, i>X0 and y, — yo. Let X, have mgf K, for n = 0. Assume
that K,(y,) is finite for n =1 and write Y, = E, X,.

@) If Kn(yn) — Ko(yo) <00, then Y, Yo.
(b) If Yni Y for some rv Y, then Y = E, Xy and K,(y,) — Ko(yo) <oo.

Proof. Let a, = K,(y,) and let z, be the distribution of X, for n = 0 and p, that of V,.
Then du,(x) = e’ dm,(x) = a,dp,(x). Convergence of [¢du, — [¢duy holds for con-
tinuous functions ¢ with compact support. This means that x4, — uy vaguely. To prove (a),
note that if a, — ag < oo, then u, — o weakly and hence p, — wo/ap weakly.

For (b), suppose a;, — a € [0, co]. Then e"°* dzy(x) = adp(x). It follows that a is finite
and positive, and that a, — a = [ " d7(x). O

Example 2.5. The sequence K,(y,) in Proposition 2.4 may converge to a finite limit a #

Ko(y0). 1

Take y, =1 for all n and let p, have mass 5 in the two points 0 and x, = n. Then

X, L Xo=0and a, =1/¢+e"/2) = a=2>1=a,.
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Example 2.6. It may happen that X, iX, Y,=E, X, 4 Y and y, — oc.

Let u be a finite measure which charges both (—oo, 0) and (0, o). Let 7, be the
probability measure c,(1 Ae™™)du(x) for n= 0. Take y, = n. The rv Y, = E, X, has
distribution dp,(x) = b,(e™ A 1)du(x). It is clear that X, converges in distribution to an rv
X with probability distribution dz = c¢l(_0jdu and Y, to an rv Y with distribution dp =
bl[O,oo) du.

We can now prove a kind of convergence of types theorem where ‘type’ has to be
interpreted as belonging to the same exponential family.

Theorem 2.7. Letd Y,=E, X, forn=1and a, = Ee”"X». Suppose X, iX with X non-
constant, and Y, — Y.
If (yn) is bounded, then y, — v, a, — a=Ee"* <oco and Y = E,X.
If supy, = oo then v, — 0o and there exists a point ¢ € R such that X < c¢ < Ya.s.
If infy, = —o0 then y, — —oco and there exists a point ¢ such that Y < c < Xa.s.

Proof. First consider the case y, — oo. Suppose the distributions overlap: there exist a <b
so that P{X >b}>0 and P{Y <a}>0. Let 0 denote the minimum of these two positive
numbers. Then P{X, > b} and P{Y, <a} eventually exceed d/2. Thus eventually

0/2 _ P{Yy<a} _"P{X,<a} _ 4010/
1-0/2 P{Y,>b} eP{X,>b} 6/2

This contradicts the assumption that y, — oo.

The case y, — —oo is treated in the same way.

There are three mutually exclusive alternatives: either (i) X <c =< Y, or (ii)) ¥ <sc < X,
or (iii) neither (i) nor (ii) holds. Hence the sequence y, is bounded, or it diverges to +oo or
it diverges to —oo. If (y,) is bounded, then by Proposition 2.4, y, converges to some value
y since the Esscher transforms E,X and EgX are different for a # 8 if X is not constant.

O

Now return to the exponential family {X;, A € A} and assume that A, ¢ A. To obtain a
non-degenerate limit distribution for the variables X; in the case A ¢ A, we have to
normalize these variables, so assume (1.3) holds, (X; — b3)/a; — Y for some non-constant
random variable Y. By Proposition 2.1 the family {F;} of X, is weakly continuous in A.
This makes it possible to choose the coefficients a; >0 and b; € R to be continuous on A.

Lemma 2.8. The constants a; and by in (1.3) can be chosen to be continuous functions of A
on the set A.

Proof. Write Y = y(U) with ¢ increasing and U uniform (0, 1). One may take for 1 the
left-continuous inverse of the df of Y. Choose p € (0, 3) so small that y(p) <y(1 — p). Set

1-p/2 1-p/2 P
b:= J Y(u)du, a:= J Y(u)du — J Y(u) du.
p/2

r/2 I-p
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Let Y’ denote the normalized variable (Y — b)/a. Similarly, write X; = ¢;(U) and define the
smoothed median b; and smoothed range a; as above with ¢, replacing . Then a; >0
eventually and convergence A;X; — Y for some family of normalizations A; implies
convergence (X; — b;)/a; — Y'. (The norming constants ¢ and b depend continuously on the
increasing function 1 and hence on the df.) Weak continuity of 1 — ¢, is equivalent to weak
continuity of the exponential family F,; and implies continuity of the norming constants a;
and b;. O

We will need the fact that Esscher operators react in a simple way with scaling and
translation:

Ejja(aX + b) L aE; X + b (2.2)

for A€ A, a>0 and b € R. This follows since both sides of (2.2) have the same mgf
z +— e¥K(az + 1)/ K(L).

We now discuss the stability property of the limit variable Y in (1.3). Let M(y) = Ee?”
be the mgf of Y, and {Y,, y € '} the associated exponential family with T' = {M < oo}.
We shall see below that there exist many pairs (y, C) with y € I" and C in the group ¢ of
positive affine transformations x — C(x) = (x — b)/a with a>0 and b € R which satisfy
the stability relation

E,yLcy. (2.3)

Example 2.9. The extended gamma family.
The following variables satisfy (2.3) for all y for which the mgf of Y is finite:

(a) If Y is distributed as N(u, 0?) then Y,,i Y+o%y foryel'=R

(b) The standard exponential rv satlsﬁes the relation Y, Ly /(1 —v) for y <1. Similarly,
Z = —Y satisfies the relation Z, = Z/(l + ) for y>—1.

(c) More generally, if ¥ (or —2) has a gamma density x*~'e=*/I'(s) on (0, co) then
ny/(I—)/) for y<1 (and Z, = Z/(l—i—y) for y>—1).

These rvs generate exponential families whose dfs are all of the same type.

Since the gamma distribution with shape parameter s is asymptotically normal for
¢=1/s — 0 we have a continuous three-parameter family of dfs H.(ax 4+ b), >0, b and
c real. Here H, is the standard normal df, H_.(x) =1 — H.(—x) for ¢>0, and H. is the
df of the normalized gamma variable V. = (Y — s)/4/s, with ¢ = 1/s, where Y has density

e~ /T'(s) on (0, co).

Our main result states that this three-parameter extended gamma family is the set of limit
laws for exponential families, both for A — sup A and for 1 — inf A.

Note the resemblance to extreme value limit theory where there also is a continuous
three-parameter family of limit distributions; see de Haan (1970, p. 104). This resemblance
is not due to some innate relation between extremes and exponential families, but results
from the structure of the group ¥ of positive affine transformations on R. The group &
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has two kinds of elements: translations, and multiplications with a given centre. The normal
distributions are stable for translations; the gamma distributions with a given endpoint are
stable for multiplications having the end-point as centre. The extended gamma family
reflects this structure.

We now want to show that the limit variable Y in (1.3) has to satisfy a number of
stability relations of the form (2.3).

With the positive affine transformation A4 in &, given by Ax = (x — b)/a, we associate
the point (loga, b) in the plane. It is then natural to set

[4]] := [|(log a, b)[|l2 = /(log a)* + b?. (2:4)

The function ||-|| is not a norm on the group &, in particular || A~'|| # || 4|, but it does
describe the topology of & adequately for our purpose.

Proposition 2.10. Let U,, y € I', be the exponential family generated by the non-constant rv
U. Suppose C, € &, v, €I, C,U,, — Z with Z non-constant, y, — y>0. Then

IC.|| — oo if and only if y ¢ I'.

Proof. Suppose y € I'. Then E, U gE},U by Proposition 2.1. The convergence of types
theorem implies that Z = CU, and C, — C with ||C|| <oc. For the converse, assume that
(C,) contains a convergent subsequence, say C, — C as n — oo. Then E, U— c'z.
Proposition 2.4 implies y € T. ]

In order to characterize the possible limit distributions in (1.3), we need equation (2.3) to
hold for a large collection of y-values.

Lemma 2.11. Suppose (1.3) holds. For any r>0 and u € [0, Ay) there exists A € (U, Ao)
such that

4,47V A — wyay, = r. (2.5)

Proof. Write Y* = A4;.X;. (The upper index notation is used here to avoid confusion with the
exponential family generated by the variable Y.) Fix u € A. Use (2.2) and write

A AT YL EG 00 YY, €A (2.6)

By assumption Y* LY for A — Aso. Apply Proposition 2.10 with E_,),, Y* in the role of
U,, and (4, 4;")~" in the role of C, to conclude that ||(4,4;")~"|| — 0o as 4 — . Check
that ||C,|| — oo if ||C,'|| — co. By Lemma 2.8 the quantity ||4,4;"'| varies continuously
from 0 to oc as A increases from u to A. So the leftmost term in (2.5) will equal r before A
reaches the value 1. O

Fix r>0. Let u, — A and choose 1, > u, as in Lemma 2.11. Choose a subsequence
k1 <k,<--- so that
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Ckn = A,Ltk,,A;kln — Ce f,(;, Vi, ‘= (/lkn — ukn)a#kn — Y.

This is possible since ||dC,,H and y, are bounded by 7. Then Cj, Y* iEM Y#in by (2.6).
Theorem 2.7 gives CY =Y, with ||C|| V y = r by continuity. This establishes the next result.

Proposition 2.12. If (1.3) holds and Y is non-degenerate then for each r>0 there exists a
constant y >0 and a positive affine transformation C with ||C|| V v = r such that (2.3) holds:
E,Y=CY.

The question whether all distributions in the exponential family of the limit distribution
are of the same type will be settled by algebraic arguments in the next section.

3. Solutions of the stability equation

The stability equation (2.3), E,Y Lcy , allows us to determine the possible limit laws for the
exponential family X, for 1 — 4.

For statistical applications it is of importance to characterize exponential families which
are invariant under a given group .77 of transformations. Lehmann (1983, p. 35) observes
that the normal distributions with fixed variance form the only natural exponential family
which also is a location family. For natural exponential families Casalis (1991), in a very
readable paper, has solved the characterization problem when .77 is a group of translations
on R’ and for some other classical groups of affine transformations on R¢. Bar-Lev and
Casalis (1994; 1998) solve the problem for the case when .77 is a subgroup of the group of
affine transformations on R. We are grateful to a referee of a previous version of this paper
for pointing out these two references. The second paper contains full proofs and hence we
restrict ourselves here to a short exposition of the results of this paper which are relevant to
us.

If a natural exponential family Y; & € I, is invariant under a group .77 of positive affine
transformations, and the dfs are non-degenerate, then .77 is a closed commutative subgroup
of . If # is the group of translations then Y has a Gaussian distribution. If .77 is the
group of all multiplications with centre ¢ then there exists a constant d # 0 such that
(Y — ¢)/d has a gamma distribution on (0, o).

In the present paper we are concerned with the more elementary question of describing
all dfs G which satisfy one or more stability relations of the form (2.1).

Example 3.1. There exist rvs V which satisfy the relation 7, v+ p only if v and f are
integers.
To see this, let V be the random integer with distribution

PV=ki=pi=e¢¥")c, keZ, (3.1)

with ¢ a norming constant. The rv V has distribution P{Ve=k}=e *12/C(&). If y
is an integer then V,, =V + v, but if y is not an integer then J and V) are not of the same

type.
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Let .7 (y, C) denote the set of all dfs G which satisfy the relation G(ax + b) = G,(x) for
Cx =(x—a)/b. Let Yg, £€T, be the natural exponential family generated by the rv Y
with df G. Given the df G, what one can say about the set £(G) of all C € & for which
there exists y € I' so that G € .7 (y, C)?

Proposition 3.2. Suppose Y has df G. Any posmve affine map A € 5(G) determines a
bijection § — &y = Ax(§) = &a+ a on T by AY; Ye,.

Proof. Let £ € T. Then (2.2) determines an element &, = Ax& in T by
AE:Y L EeAY = EE,Y = Eero¥ = Ye,,  E€T. (3.2)

In the same way the inverse relation 47'Y, 2 ¥ defines a map 43! on T. Apply 47! to (3.2)
to see that (47'), = (4x)~'. Hence A« is a bijection on T. O

Corollary 3.3. The set <(G) is a group and the map C — Cx is a homomorphism of < (G)
into the group of positive affine bijections on T.

Proof. Apply B to (3.2) to see that (BA)y = BxAx. Ol

The exponential family generated by G is invariant under the group .77 = £(G). Bar-Lev
and Casalis show that the group .77 is a discrete group A*, k € Z, or the continuous group
A" of all translations or all multiplications with a common centre c.

Proposition 3.4. Let (/’(G) be a continuous one-parameter group A', t € R. For any E €T
define E(t) € T by A’Yg Yer. The map t — &(t) is a homomorphism from R to T.

Proof. Observe that &(f) = (Ax)'E for all € R by a continuity argument. So the map
t — &(t) is continuous and strictly monotone. It is onto since &(n) — y € I' would give the
sequence (4"Yg), a non-degenerate limit Y,. So &(¢) tends to an end-point of I" for # — oo
and to the other endpoint for t — —oo by monotonicity. UJ

For the normal distribution £(G) is the group of translations, and for the gamma
distribution on (0, c0) or on (—oo, 0) it is the group of all multiplications with centre
¢=0. Hence Z(G) is a continuous one-parameter group for all distributions in the
extended gamma family. The formulae below give explicit expressions for CLE when

CY with Cx = (x — b)/a. Suppose a<f. A straightforward calculation gives, for
yo €T and any integer ¢,
d vo+ (B — o, if a=1,
c'y, = , f)= Clyy, = r_1 3.3
vo v (@) ro a'yo + a 1 B — aa), if a# 1. 3-3)
a4 —

If 2(G) is a continuous group then (3.3) holds for all # € R. In that case y(¢) is an
increasing bijection from R to I' by Proposition 3.4. It satisfies the differential equation
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y = (loga)y, 7(0) = yo, y(1) = a(yo — ) + .

We now return to the basic limit relation (1.3). Let the limit ¥ have df G. By Proposition
2.12 the set £(G) is not discrete. Hence £ (G) is a continuous one-parameter subgroup of
. Then from Bar-Lev and Casalis (1994; 1998) we have the following:

Theorem 3.5. Let F), A € A, be the exponential family (1.2). If Ao, = sup A does not belong
to A and if there exist constants a; >0 and b; € R such that Fy(a;x + b)) — G(x) weakly
for some non-degenerate df G, then G belongs to the extended gamma family introduced in
Example 2.9.

The exponential families of gamma distributions are generated by Radon measures with
densities x*1(,«) on R, with s> —1. They converge to the Gaussian exponential family if
s — oo provided we apply a proper normalization. What happens if s — —1? For s < —1
the measure x*1~(x)dx is no longer a Radon measure on R. However, one can truncate
this measure and ask for the limit behaviour of the exponential family of probability
measures with densities f,(x) = c(s, y)e"*x*1[1,5)(x), as ¥ T Yo = 0. For s < —1 the answer
is simple: y lies in I' and Corollary 2.2 applies. If s = —1 the situation is more delicate.
There exists a non-degenerate limit distribution, but only under nonlinear normalization. See
Example 4.10.

Weak convergence in (1.3) implies convergence of the mgfs. The significance of this
result will become apparant in the next section.

Theorem 3.6. Let (1.3) hold. Suppose Y is non-constant and A~ ¢ A. Then the mgfs of the
normalized variables A;X; converge to the mgf of the limit variable Y on the interval
= {y: Be"Y <oo}.

Proof. Let v € T'. There exists a unique positive affine transformation C = C(y) such that
cyd Y, by Proposition 3.4.

Let u, T As and set Y, = A4,,X,,. We write A)x = (x — b;)/a, and assume that a; >0
and b; depend continuously on A. We claim that there is a sequence A, — A, such that
Yn=An— pn)a,, — vy and C, = A4,,4;,' — C.

First assume y <0. Set r := sup{HC(§)|| |y < &= 0}. Then ||4,,| — oo by Proposition
2.10 and hence ||4,,4,"'||>r+1 and u, >0 for n = ny. Let n = ny. Let A decrease from
Un to 0. By continuity there is a maximal value A, for which y, := (1, — u,)a,, =y or
ICull == ||A/,nA;n1|| =r+1. (In the latter case y, €[y, 0].) Note that 1, — A, since
Ak, = A € [(0, A») implies that ||C,|| — oo by Proposition 2.10. Now assume y, — f and
C, 7 B. (Take subsequences if need be.) Then E, Y, iC v % By by (2.6). Hence
By < EgY and Ee’"'» — EefY by Proposition 2.4. So B = C(f), and B € [y, 0] implies
| B|| < r. Hence eventually ||C,|| <r+ 1 which implies y, = y. Thus we see that y, — y.
The proof for y = 0 is similar. O

Corollary 3.7. If (1.3) holds, convergence to a non-degenerate limit still takes place if F, is
centred and scaled by expectation and standard deviation.
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4. Sequential limits

In this section we only assume that the limit relation (1.3) holds for a sequence 1, T 4. As
above, Ao, = sup A ¢ A. We adapt the notation slightly. 7 is a non-degenerate rv such that

Vii= AgXs, = (Xo, — bo)/an-5 V. 4.1

We treat two questions. First, what information does the sequence (4,) give about the
distribution of the limit variable V? Second, what limit distributions are possible in (4.1)?

Proposition 4.1. Suppose (4.1) holds. If AHIA;I = id then (1.3) holds: There exist
functions a(A) >0 and b(A) so that (X; — b(L))/a(X)— V.

Proof. Khinchine’s convergence of types theorem implies 4,X;, LY. Set A(A) = A, for
An < A<A,.1. Monotonicity of A — F,(x) (see Proposition 2.1) ensures that A(A)X; — V
for A — . O

Now assume AnHA;l — C #1id. In the asymptotic theory of sums or maxima this
implies that the limit, if it exists, is semi-stable (see Hazod and Scheffler 1993). For
exponential families semi-stability means that the limit distribution belongs to .7 (y, C) for
some y # 0. However, the situation for exponential families is more complex than for sums
or maxima. We shall investigate the behaviour for translations.

Example 4.2. An integer-valued limit variable.

Let the random integer X have a log -concave distribution with P{X = k}
=pr=e%>0 for all k. So pi_1pr+1 < pi. Agsume Pit1Pi—1/p5 — €7 €(0, 1) for
k — oo. Let pi = (a1 + @i+1)/2. Then X, —n—V with P{V =k} =e rR12e(y); see
(3.1). Now suppose (/1 —pn)/y —pER Then X, — nd V', where V' has distribution
P{V' =k} = e v=b) /z/c(ﬂ) All limit variables V' belong to .7 (v, C) where C is the
translation Cx = x + 1.

The exponential family F; of the rv X in the example above gives rise to a one-
parameter exponential family of limit distributions G;, 4 € R. We are only interested in
limit #ypes. Since Gji,(x) = G)(x — 1) the limit types in this example form a compact
family. Topologically this family is a circle. Let [F] denote the type of the df F. As in the
case of semi-stable limit distributions for sums and maxima one may describe the behaviour
of the family of types [F;], 1 € A, for 1 — A as a curve which spirals to a limiting circle
in the space of distribution types.

For exponential families there is an additional limit family. This limit family has no
counterpart in the asymptotic theory of sums or maxima.

Choose the weights py above so that 0y = pyr1pi—1/p3 — 0. The possible non-constant
limit distributions of the sequence X; — n are then members of the exponential family of
Bernoulli variables, P{V: = 1} = 1/(1 +e %) = 1 — P{V: = 0}, together with the constant
variable /' = 0. Any two-valued random variable can occur in the limit. There are no other



Limit laws for exponential families 963

limits. In the sequence pi(A) = pye*¥/K(A) the maximum occurs in k(A) — oo, and since
O — 0 there is at most one other point which makes a non-negligible contribution.

We shall now adapt this example so as to obtain a compact ‘circle’ of non-degenerate
limit types.

Example 4.3. Here we shall exhibit an rv X such that the set of limit types of the exponential
Sfamily is a ‘circle’ consisting of the types of the following rvs: U,, y€R, E, W,
—1<y <1, —E. Here E is exponentially distributed, U, is the exponential family generated
by the uniform (0, 1) rv U and W, is the exponential family generated by the rv W with
Laplace density e /2.

Let X have density f =¢ %, where ¢: R — R is a convex function which is piecewise
linear on each interval [k, k + 1] with slope aj such that a;.; — a; — oo for k — oo. Let
An — Ax and set 9,(x) = @(x) — A,x. There are two cases of interest:

(@) Yk, +%) — B €R for some integer sequence k, — oco. Then Y; — k, iEﬂ U,
where U is uniformly distributed on (0, 1).

(b) ¥, is minimal in k, — oo and y,(k, £3) = +75, where 0, =7} AT, — co and
0./t VT,)— p€[0,1]. Then 0,(Y;, — k,) converges to an rv Y with density
/P ooy + e P 1 gn0))/c with BH VB~ =1, BEAB =B and c =B+ + 5. If
B =0 then Y or —Y is exponential, otherwise Y belongs to the exponential family
generated by a Laplace density.

The rv X with density f = e~ ? in the example above has the following property. There is
a continuous family of non-degenerate limit distributions G?, 0 < 6 < 2, all of different
type, except that G° = G*"; a continuous curve 4: A — &; and a continuous strictly
increasing function y: A — R tending to infinity for A — A, so that for each 6 € [0, 2x]

AGDX;, S V0~ GO

whenever A, T Ao and et») — ¢if,

In particular, the set of dfs F;, 1 € AN[0, co), is stochastically compact: any sequence
F;, contains a subsequence which may be normed to converge weakly to a non-degenerate
limit distribution; see de Haan and Resnick (1984). The family of all possible limit
variables aV’? + b is closed under the Esscher transform. It contains certain rvs from the
extended gamma family but also bounded rvs and unbounded rvs which are not semi-stable.

These two examples give an indication of the behaviour of the sequence X;, under the
condition that A,,A;}rl — C #1id. However, in order that the limit distribution in (4.1)
belongs to the class .7 (y, C) it is not necessary that the sequence A,,A;il converge. Large
gaps may occur. From Section 2 we know that the limit ¥ belongs to .7 (y, C) if there exist
integer sequences ¢, — oo and k,>g, so that Aan;nl — C and (Ag, —Ag,)aqy, — 7. We
therefore introduce the set .77 of all C € &, C # id, which are the limit of a sequence
Cn = Ag,A;" with k,> g, — .

Relation (2.6) gives

CoViy S Ey Vs (4.2)
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where we write C, = 4,,4;' as above and y, = (A, — 4,,)a,,. Since we assume that
C, — C, Theorem 2.7 applles yn— y €10, oo] Ify=0 there exists a constant ¢ such
that V' < ¢ < CV and the rv V is bounded. If y is finite then C yd V, and V belongs to the
set .7 (y, C).

This yields the following dichotomy:

Theorem 4.4. If .77 is non-empty then either V is bounded and y = oo for each C € 7,
or V is unbounded and vy is finite for each C € 7.

Our next result extends Proposition 4.1 and is a partial converse to Theorem 3.5.

Theorem 4.5. Suppose (4.1) holds and the sequence (|A,A,1,|) is bounded. If the limit
variable belongs to the extended gamma family then (1.3) holds.

Proof. The limit variable V satisfies the stability relations C'V 4 EynV, teR; see
Proposition 3.4. Write (A,,.1 — 4,)a, = v, = y(¢,). The sequence (t,) is bounded. Equivalent
are ty, — to and yx, — yo = Y(t). Indeed,

_ d
Ap, A Vi = Ak, Exy -2, X0, = Ey Vi, — Ey V= CO.

Hence AknA;n'+1 — C" and by Proposition 2.4 Ee’"in— Ee?o V.
Now define

AA) == C %4, A=21,+y(s)/ an, 0<s<t,.

We have to prove that A(u,)X,, LV for any sequence U, | Aso. It suffices to consider
sequences i, = A;, + a,/a;, with a, = y(s,) — ay = y(so) for 0 < s, <t;. Then

AW X, S C Ay, Egyya, Xoy = CEq V.

a,V; agV

Now observe Sy — 8o, O, — 0. Thg: bound 0 < a,, < v, implies Ee*""/» — Ee and
hence E, V;, —anV and A(u,)X,, — C0Eyq, )V V. O

The condition that the limit variable belongs to the extended gamma family is less
restrictive than it seems. Since the sequence AnA;}rl is bounded, the set .77, is non-empty.
Hence the condition will be satisfied if (a) .77, contains a sequence C, — id, or (b) V is
unbounded and .77 is not contained in a discrete subgroup C*, k € Z, of ¥.

Without conditions on the sequence A, every limit law is possible in (4.1).

Example 4.6. A Cauchy-distributed limit variable V is possible in (4.1).

To exhibit this, we shall construct an rv X with density f so that X; — A4, converges to
an v V with density 1/(m(1 + x?)) for 4, = n%

Let I, be the interval [—+/n, v/n] and define

e142/2

h(u) = 2+

17, (w), n=1.
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Now introduce % as maximum of translates of the functions 4,: set A(n*> + u) = h,(u) for
n=1and uc I, and set h(x) = 0 elsewhere. Similarly, define #*(n> 4+ u) =e” for n =1
and uel, and h*(x)=0 elsewhere. Then h < h*. Define g(x):= h(x)e’)‘z/2 and
2(x) == g(x)e*/ 2 A simple computation gives

nw) = g1, +u) = h(n® + e/,

This means that g*(u) = 1/(s(1 + u*)) on I, and g*(u) = 0 for \/n<|u| < n. The tails of
g* are negligible: Lemma 4.7 below implies that

g w) < W (n* + u)e_“z/2 <e /0, n=4,|ul = n.

Hence ||g¥||; — 1. Now let the rv X have density /' = g/c, with ¢ = ||gl||;. Then X, — n?

has density g*/c, for n =1 where ¢, = | g¥|l; — 1.

Lemma 4.7. The function h* in Example 4.6 satisfies the inequality

WP uy<=eS Jul=n =4

Proof. Introduce the concave piecewise linear function y: [0, oo) — [0, co) with the value n
in n> —n for n= 1. Then h* <e¥ and y(m? + u) < u?/3 for |u| = m and m = 4. (The
inequality holds in u = £+m and y'(m* + u) = 1/2(m + 1) < 2u/3 in u = m +0.) O

Doeblin introduced the concept of universal distributions in his study of the asymptotic
behaviour of sums of independently and identically distributed rvs. Let S, be the sum of
the first #n terms of a sequence of independent samples from the df F. The distribution F is
universal if for each rv V there exists a subsequendce k1 <ky<--- and a sequence of
positive affine normalizations A4, such that A4,S;, — V. Doeblin (1946) established the
existence of universal distributions. See Feller (1966, Section XVIIL.9) for details. One can
introduce a similar concept for exponential families. An exponential family X;, A € A, is
universal if for each rv V there exists a sequence A, [ Ao =supA and a sequence of
positive affine transformations 4, such that 4,X; — V. O

Theorem 4.8. Universal exponential families exist.

Proof. First note that there exists a sequence of dfs O, on R which is dense in the space of
all probability distributions with the topology of weak convergence; see Parthasarathy (1967,
Theorem 11.6.2). We can choose the dfs O, to have a continuous density ¢, which is bounded
by e"/?> and which vanishes outside the interval I, = [—+/n, v/n]. The construction of
Example 4.6 yields an rv X with density f such that X;, — A, has density g% /c,, where g*
agrees with ¢, on [—n, n] and ¢, — 1 since the function g’ is bounded by e"/6 outside the
interval [—n, n] for n = 4. As in the example, we take 1, = nZ.

Let V' be an rv with df Q. There is a sequence k, T oo such that Oy, — O weakly. Then

Xy, — Un N V if we choose u, = ki (|

Universal exponential families have the property that any df QO(x) is limit of some
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sequence F) (a,x+b,) with 4, 1 Aw. With more effort one can show that this is also
possible under the additional restriction that the sequences A, are asymptotically dense:
Ani1 — A, — 0. This result will be published elsewhere.

A further question of interest is whether there exist non-degenerate dfs F such that only
degenerate limit distributions are possible in (4.1).

If the df F of X has a jump in its upper end-point x, then P{X; = x,.} — 1 and only a
degenerate limit is possible in (4.1). Less trivial examples are the following:

Example 4.9. Let F have density f(x)=ce /x on x = 1. Then (4.1) will hold only for
constant limit variables V.

To show this we proceed as follows. Z, = eX|_, has density f.(x) = c(e)e /x on
[e, 00). If €| 0 then fi(x)/c(e) e */x on (0,00) and c(g) ~ 1/log(1/¢). Hence
Fo(e"y—=1—u for ue(0,1) for ¢ | 0. Take 0<u <« 1. The half-line [¢“, co) carries
weight u >0, but a large part, 1 —2u, of the probability lives on the relatively short
interval [0, £2%]. Since &% = o(e") there is an atom of weight =1 —2u in the limit.
Because u >0 is arbitrary the limit can only be degenerate.

Note that F.(¢*) — 1 — u implies that log(Xl_g)/log(l/e)i U, where U is uniformly
distributed on (0, 1). This means that the exponential family X; has a non-degenerate limit
under power norming. To see this, take c(d) = —log(1 — 1); then

X}l/c('l)ieu, A—1.

For recent work on power norming for extremes, see Pancheva (1984) and Ravi (1991). With
the arguments of Example 4.9 one may show:

Example 4.10. Let F have density f(x) = ce *(logx)*/x on (e, 00). For a = —1 the limit
relation (4.1) has only constant limits. Let U be uniformly distributed on [0, 1]. If a> —1
then

log X d a4
—— U @), A=l =1
log(1/(1 = 2))
If a = —1 then even power norming yields only constant limit variables but

(loglog X7)/loglog(1/(1 = A) S U, 2 — 1.

Let [F] denote the type of the non-degenerate df F. In this paper we have studied the
behaviour of the curve [F;] in the space of non-degenerate probability types. Introduce
E(F) as the set of limits of sequences [F},] with 4, T A. If [F] converges to a point [G]
then E(F) is a singleton and [G] belongs to the one-parameter extended gamma-type family
of Example 2.9. We have seen examples where the limit set E(F) is a circle, a line, the
whole space of types (for universal exponential families) and the empty set (Examples 4.9
and 4.10).

The asymptotic behaviour of the tail of the df F' is reflected in the asymptotic behaviour
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of the tail of the mgf. The exponential family F) for 4 T A, describes the tail behaviour of
F. In terms of the cgf x the exponential family consists of translates of the graph of this
convex function . It is not clear how the wide range of behaviour of the curve [F}] hinted
at in this section is reflected in the asymptotic behaviour of the convex analytic function .
More insight into this question should lead to a better understanding of the relation between
the tail behaviour of a df and its mgf.
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