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A `skewing' method is shown to effectively reduce the order of bias of locally parametric estimators,

and at the same time retain positivity properties. The technique involves ®rst calculating the usual

locally parametric approximation in the neighbourhood of a point x9 that is a short distance from the

place x where we wish to estimate the density, and then evaluating this approximation at x. By way of

comparison, the usual locally parametric approach takes x9 � x. In our construction, x9ÿ x depends in

a very simple way on the bandwidth and the kernel, and not at all on the unknown density. Using

skewing in this simple form reduces the order of bias from the square to the cube of bandwidth; and

taking the average of two estimators computed in this way further reduces bias, to the fourth power of

bandwidth. On the other hand, variance increases only by at most a moderate constant factor.
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1. Introduction

There is a wide variety of high-order methods for reducing the bias of kernel-type density

estimators. Jones and Signorini (1997) have reviewed the class of techniques that have bias of

order h4, where h denotes bandwidth, and showed that most are of one or other of six basic

types: classical fourth-order kernel methods (e.g. Bartlett 1963); `non-negativization' of

fourth-order kernel methods (e.g. Terrell and Scott 1980); multiplicative bias correction

methods (e.g. Jones et al. 1995); nonparametric transformation methods (e.g. Ruppert and

Cline 1994); variable bandwidth methods (e.g. Abramson 1982); and variable location

methods (e.g. Samiuddin and el-Sayyad 1990).

The approach of Samiuddin and el-Sayyad (1990) involves shifting the location of each

data value by an amount proportional to the square of bandwidth, and recomputing the

density estimate for the shifted data. Since the amount of shift depends on the unknown

density (and its derivative) as well as on the datum and the bandwidth, computation of a

pilot density estimator is required. In the present paper we suggest an entirely different

shifting technique that does not require a pilot estimator. The new approach is closely allied

to contemporary, locally parametric methods (e.g. Hjort and Jones 1996). It may also be

regarded as an application to density estimation of `skewing' methods suggested in the
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context of nonparametric regression by Choi and Hall (1998). A potential advantage of the

skewing approach is that it may be applied to a great many curve estimation problems, for

example to generalized linear models, the Cox proportional likelihood model, and

nonparametric estimation of survival functions, as well as to more conventional problems

in nonparametric density estimation and regression.

Skewing methods involve calculating a nonparametric curve estimator in a traditional way

by locally weighting in a region that is symmetrically placed on either side of the point x of

interest; and then computing the ®nal estimator in a skew way, at a point that is slightly to

one side or the other of x. If the extent of offset is chosen appropriately (it depends only on

the kernel and bandwidth), skewing reduces the order of bias, but incurs only a moderate

increase in variance. By averaging two skewed estimators one can reduce bias from O(h2)

to O(h4), still at the expense of only a constant-factor in¯ation of variance. In this paper we

show that skewing may be used with general two-parameter locally parametric methods for

density estimation, including methods based on a local likelihood or on local least squares.

Importantly, skewed estimators are guaranteed to be non-negative, since they are convex

combinations of evaluations of non-negative functions g(:, è) determined by a parameter

vector è. Therefore, skewing reproduces the bias-reduction effect of high-order density

estimation without risking the occurrence of negative estimates.

As a simple example of the method of skewing, let f̂ class be the classical kernel density

estimator constructed using the standard normal kernel and bandwidth h. Then, using the

skewing method for a local likelihood construction from an exponential model, we obtain

the estimators ~f� and ~fÿ given by

~f�(x) � f̂ class(x� h) exp[1
2
ÿ 1

2
f1� h( f̂ class)9(x� h) f̂ class(x� h)ÿ1g2], (1:1)

where the � signs and ÿ signs are chosen respectively. The following results are true: (a)

both ~f� and ~fÿ have bias of size h3 as estimators of f ; (b) the estimator ~f � 1
2
( ~f� � ~fÿ)

has bias of size h4; and (c) each of ~f�, ~fÿ, ~f has variance of size (nh)ÿ1. By way of

comparison, f̂ class itself has variance of size (nh)ÿ1 but larger bias, of size h2.

These improvements in performance are available for general kernels and general

approaches to locally parametric estimation, for example those based on either local

likelihood or local least squares. They allow mean square error to be reduced from order

nÿ4=5, in the case of standard kernel or locally parametric methods, to order nÿ8=9, for ~f
and analogous estimators.

Local parametric methods in statistics have a particularly long history, if one includes

among them local linear and local polynomial techniques in nonparametric regression. In

this context the review paper of Hastie and Loader (1993), and monographs of Wand and

Jones (1995) and Fan and Gijbels (1996), should be particularly mentioned. The recent

surge of interest in locally parametric ®tting for density and regression estimation is largely

motivated by work of Copas (1995), Fan et al. (1996), Hjort and Jones (1996) and Loader

(1996), which in turn prompted the present paper. In our presentation and discussion we

have followed the development of Hjort and Jones, which applies in a particularly broad

setting. High-order methods in curve estimation include work of Ruppert and Wand (1994),

in the context of local high-order polynomial modelling in regression, as well as
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contributions by Hjort and Jones (1996) and Loader (1996) to high-order local log-

polynomial modelling in density estimation.

Section 2 will outline the methodology of skewing in the context of general locally

parametric methods for density estimation. Details of technical arguments which justify the

claims made there will be deferred to Section 4. Numerical properties of skewing for

locally parametric density estimation will be illustrated in Section 3.

2. Methodology

2.1. Locally parametric methods

Let X1, . . . , Xn denote a random sample from a distribution with density f , which we wish

to estimate. We follow the general prescription of Hjort and Jones (1996) for locally

parametric methods, based on two-parameter ®ts. Let g(:, è) be a family of two-parameter

functions, indexed by è � (è(1), è(2))T, which we wish to ®t to data in a neighbourhood of x.

Hjort and Jones suggest ®rst de®ning the parameter estimator è̂ � è̂(x) as the solution in è of

the equation

nÿ1
Xn

i�1

Kh(xÿ X i)v j(x, X i, è)ÿ
�

Kh(xÿ t)v j(x, t, è)g(t, è) dt � 0, (2:1)

where Kh(t) � hÿ1 K(t=h), K is the kernel function (here taken to be either the standard

normal density or a symmetric, non-negative, compactly supported density), h is the

bandwidth, and v j(x, t, è) for j � 1, 2 is a generalized two-parameter score function. See

(2.5) below for a `population version' of (2.1). Hjort and Jones (1996), noting similar

methods suggested by Copas (1995) and Loader (1996), take their estimator of f to be

f̂ (x) � gfx, è̂(x)g. Note that f̂ need not integrate to one.

One of the very attractive features of Hjort and Jones's approach is its considerable

generality, obtained partly through general interpretation of the score function. For example,

taking

v j(x, t, è) � (@=@è( j)) log g(t, è) or v j(x, t, ù) � (@=@è( j))g(t, è), (2:2)

we obtain a local likelihood estimator or a local least-squares estimator, respectively. As these

examples suggest, it is typically true that the dependence of v j(x, t, è) on x is degenerate.

Hjort and Jones argue that in this general setting, variance and bias admit the following

asymptotic approximations:

varf f̂ (x)g � (nh)ÿ1k1 f (x)� of(nh)ÿ1g, (2:3)

Ef f̂ (x)g ÿ f (x) � gfx, è0(x)g ÿ f (x)� Of(nh)ÿ1g

� 1
2
k2 h2[ f 0(x)ÿ g 0fx, è0(x)g]� Ofh4 � (nh)ÿ1g, (2:4)
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as h! 0 and nh!1, where k1 �
�

K2, k2 �
�

t2 K(t) dt, g( j)(x, è) (or g with j dashes)

denotes (@=@x) j g(x, è), and è0(y) � è0(y, h) is the solution in è of the equation�
Kh(yÿ t)v j(y, t, è)f f (t)ÿ g(t, è)g dt � 0, for j � 1, 2: (2:5)

We assume that, for each y and all suf®ciently small h, è0(y) exists and is unique. When we

intend h � 0 in è0(y), we write it as è0(y, 0); in all other cases, h is non-zero. Other

regularity conditions for (2.3) and (2.4) will be discussed in Section 2.3. They allow regular

mathematical expectations to be used, rather than simply expectations in the limiting

distribution of f̂ (x).

2.2. Skewing

Following standard practice in local curve ®tting, Hjort and Jones (and others working on

locally parametric methods) compute f̂ symmetrically. That is, they weight data on either

side of x in a symmetric way, and calculate f̂ at the `centre' of the weights. Skewing involves

using symmetric weights at an off-centre point x9, but nevertheless calculating the estimator

at x. Thus, we replace f̂ (x) � gfx, è̂(x)g by f̂ (xjx9) � gfx, è̂(x9)g. In the general setting of

Section 2.1, using this method with x9 � x� � x� k1=2
2 h (for either choice of the � and ÿ

signs) produces estimators ~f�(x) � gfx, è̂(x�)g whose bias is Ofh3 � (nh)ÿ1g rather than

Ofh2 � (nh)ÿ1g. Using the symmetric convex combination ~f � 1
2
( ~f� � ~fÿ) reduces bias

further, to Ofh4 � (nh)ÿ1g. More generally, employing the estimator

~f ë(x) � (2ë� 1)ÿ1fë f̂ (xjx� lh)� f̂ (xjx)� ë f̂ (xjxÿ lh)g,

where 0 < ë,1 and

l � l(ë) � f(1� 2ë)k2=(2ë)g1=2, (2:6)

also reduces bias to Ofh4 � (nh)ÿ1g. (Note that ~f � ~f1:) Thus, we have

E( ~f�) � f � Ofh3 � (nh)ÿ1g, E( ~f ) � f � Ofh4 � (nh)ÿ1g,

E( ~f ë) � f � Ofh4 � (nh)ÿ1g: (2:7)

The variance remains at order (nh)ÿ1 throughout these manipulations. Indeed, under

regularity conditions implicit in Hjort and Jones (1996) (see, for example, (2.10) below),

var( ~f�) � (nh)ÿ1(k1 � kÿ1
2 k3) f , var( ~f ë) � (nh)ÿ1V (ë) f , (2:8)

as h! 0 and n!1 in such a manner that nh!1, where k3 �
�

t2 K(t)2 dt and
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V (ë) � (2ë� 1)ÿ2 (2ë2 � 1)k1 � (6ë� 1)

�
K(uÿ l )K(u) du

�

� 1
2
(4ë� 1)2

�
K(uÿ l )K(u� l ) du

�ë(2ë� 1)kÿ1
2

�
u2fK(u)2 ÿ K(uÿ l )K(u� l )g du

�
:

Formula (2.8) for var( ~f ë) holds when ë � 1, so that var( ~f ) � (nh)ÿ1V (1) f .

These are the same variances that arise in skewed local linear approximation in

nonparametric regression (Choi and Hall, 1998). That is to be expected, given the

interpretation of nonparametric density estimation as regression with Poisson-distributed

errors. The size of V (ë), for 0 < ë <1, is discussed at length by Choi and Hall. Those

authors show that, depending on choice of K and ë, V (ë) can actually be smaller than k1,

although for most values of ë it is larger, up to 39% larger in the case of the normal

kernel.

To treat the particular case where g(y, è) � è(1) expf(yÿ x)è(2)g, ®rst de®ne ø to be the

moment generating function corresponding to the density K, put Ak(x) �
nÿ1
P

i Kh(xÿ Xi)(X i ÿ x)k and note that A0 � f̂ class (the classical kernel density estimator),

and let v j be given by the ®rst formula in (2.2). Then è̂(1), è̂(2) are the solutions of the

equations A0 � è̂(1)ø(hè̂(2)) and A1=A0 � hø9(hè̂(2))=ø(hè̂(2)); and

f̂ (xjx9) � A0(x9)øfhè̂(2)(x9)gÿ1 expf(xÿ x9)è̂(2)(x9)g:
When K is the standard normal kernel we have ø(t) � exp(t2=2) and è̂(2) � ( f̂ class)9= f̂ class,

and so for each constant c,

f̂ (xjx� ch) � f̂ class(x� ch) exp[1
2
c2 ÿ 1

2
fc� h( f̂ class)9(x� ch) f̂ class(x� ch)ÿ1g2], (2:9)

from which the estimators ~f�, ~f ë and ~f � ~f1 may be immediately constructed. Taking

c � 0 in (2.9) gives the local log-linear density estimator of Hjort and Jones (1996) and

Loader (1996).

Hjort and Jones comment that in this example, when c � 0 the parameter estimate è̂(2) is

`only somewhat silently present'. That cannot be said of the case c 6� 0 in which we are

interested. Those authors also argue that è̂(2) might be computed separately from è̂(1), using

a larger bandwidth. Following that prescription here would destroy the bias-reduction

properties of estimators constructed by skewing.

While the estimator at (2.9) was derived in the special case of the standard normal

kernel, it is appropriate much more generally. Indeed, taking f̂ class to be a general kernel

estimator computed using a kernel with k2 � 1 (where, here and in the remainder of this

paragraph, k j is interpreted for the kernel used to compute f̂ class), and putting c � �1, the

estimator f̂�(x) � f̂ (xjx� ch) (with the right-hand side given by (2.9)) satis®es E( f̂�) �
f � Ofh3 � (nh)ÿ1g and var( f̂�) � (nh)ÿ1(k1 � k3) f . This is the analogue of (2.7) and

(2.8) (taken there for ~f�) in the case of f̂�. These results may be derived after little more

than Taylor expansion. Likewise, the versions of (2.7) and (2.8), for linear combinations of
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estimators such as f̂� and giving rise to analogues of ~f and ~f ë, may be derived. Similarly,

versions of (2.9) that arise for kernels other than the normal may be shown to produce a

variety of new estimators which enjoy good bias-reduction properties, provided the kernel is

suf®ciently smooth. (The smoothness is needed in the Taylor expansion part of the

argument.)

As is commonly the case with density estimators derived by locally parametric methods,
~f�, ~fÿ and ~f ë do not necessarily integrate to one. Correcting the estimators by dividing by

their respective integrals may improve ®nite-sample performance. For example, in the case

of standard normal data, the improvement in mean integrated square error of ~f is by 10%

when n � 100, with smaller increases for other densities in our simulation study. Similar

results were obtained by Jones et al. (1995) and Jones and Signorini (1997).

2.3. Assumptions on g and v j

The properties required of the parametric model and score functions in the two-parameter

case of Hjort and Jones (1996) are not stated explicitly there. Concise conditions are needed

if the outline technical arguments in the present paper are to be clear, however, and so we

shall be speci®c about them here.

Any successful candidate for g in a second-order locally parametric method has to be

capable of capturing the full range of potential values of both f and its derivative. If g

depends on its argument and parameters in a smooth way then this implies that, after a

suitable reparametrization, it should be approximately linear in small neighbourhoods of any

given point x:

g(y, è) � ù(1) � ù(2)(yÿ x)� Of(yÿ x)2g (2:10)

as y! x. Furthermore, the transformation which takes è to ù � (ù(1), ù(2))T should be one-

to-one and onto the whole of (0, 1) 3 (ÿ1, 1). (The transformation will of course depend

on x.) The differentiated forms of (2.10) must also be valid for as many derivatives of g (with

respect to y and è, with x held ®xed) as are required for other aspects of the proof. For

example, we need g9(y, è) � ù(2) � O(jyÿ xj) as y! x.

Of course, (2.10) is satis®ed by all standard two-parameter models that are used in

practice in locally parametric density estimation. In particular, if g is the log-linear model

employed as an example in Section 2.2 then (2.10) holds with ù(1) � è(1) and ù(2) �
è(1)è(2); and if g is the normal model,

g(y, è) � (2ð)ÿ1=2(è(2))ÿ1 expfÿ1
2
(è(2))ÿ2(yÿ xÿ è(1))2g,

then (2.10) is valid with

ù(1) � (2ð)ÿ1=2(è(2))ÿ1 expfÿ1
2
(è(1)=è(2))2g, ù(2) � ù(1)è(1)(è(2))ÿ2:

In the general formulation of locally parametric methods suggested by Hjort and Jones

(1996), no explicit connection is required between the score functions v j and the model g.

Nevertheless, their arguments implicitly ask that
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for each x, each of the conditions v jfx, x, è0(x, 0)g 6� 0

and (@=@ t)v jfx, t, è0(x, 0)gj t�x 6� 0 holds for some

j � j(x) (not necessarily the same j in both cases), (2:11)

where, as before, è0(y, h) is de®ned as the solution of equation (2.5). In particular, without

the second part of (2.11), g9fx, è̂(x)g does not approximate f 9(x). Assuming that (2.10) holds

and v j is given by one of the formulae at (2.2), (2.11) is valid if and only if ù(1),

(@=@è( j))ù(1) and (@=@è( j))ù(2) are non-zero when evaluated at è � è0(x, 0).

If one ®ts only densities in a uniformly bounded two-parameter class G �
fg(:, è) : è 2 Èg, that is, one satisfying

sup
x

sup
è: g(x,è)2G

g(x, è) ,1, (2:12)

then all the bias and variance formulae in Sections 2.1 and 2.2 (for example, (2.7) and (2.8),

the latter provided that f (x) 6� 0) are correct as they stand, for the actual bias and variance.

They do not represent simply the bias and variance of asymptotic distributions of f̂ , ~f�, ~f ë
or ~f . This is in contradistinction to the case of local polynomial methods in nonparametric

regression, where the actual bias and variance are typically not well de®ned.

To establish this result we need a mild additional condition on the bandwidth. It is

suf®cient to ask that for some ä. 0 and all suf®ciently large n, h(n) > nÿ1�ä. In company

with assumptions already made, for example the condition that K be either compactly

supported or the standard normal kernel (see Section 2.1), this may be shown to imply that

for all å, ë. 0, the event E � fj ~f�(x)ÿ f (x)j. åg satis®es

P(E ) � O(nÿë): (2:13)

Standard arguments that would be employed to establish versions of (2.7) and (2.8) when

expectations are taken in asymptotic distributions, may be used to show that (2.7) and (2.8)

hold when, on the left-hand sides, the estimator ~f� (for example) is replaced by ~f� I( ~E ),

where ~E denotes the complement of E and I( ~E ) is the indicator of ~E . Since, by (2.12),

0 < ~f� < C for a ®nite constant C, then by (2.13), the mean and mean square error (in fact,

any ®nite moment) of ~f� ÿ ~f� I( ~E ) � ~f� I(E ) equal O(nÿë) for all ë. 0. This allows us to

make the transition from the versions of (2.7) and (2.8) for ~f� I( ~E ), to the actual formulae

(2.7) and (2.8). The cases of ~f or ~fë, rather than ~f�, may be treated similarly.

3. Numerical results

The simulation study is only summarized here; further details are available from the authors.

A wide range of other high-order kernel-type estimators, with bias O(h4), is compared

numerically by Jones and Signorini (1997), and so we limit ourselves to comparing ~f� and ~f
with (a) a standard second-order kernel estimator f̂ class, using the standard normal kernel ö,

(b) a fourth-order kernel estimator f̂ class,4, based on the kernel K(4)(x) � 1
2
(3ÿ x2)ö(x), and

(c) the shift-type estimator proposed by Samiuddin and el-Sayyad (1990). The latter is
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arguably the pre-existing method that is most closely related to our own. We shall choose the

version of Samiuddin and el-Sayyad's estimator employed by Jones and Signorini (1997),

f̂SS(x) � (nh)ÿ1
Xn

i�1

K[hÿ1fxÿ Xi ÿ 1
2
h2k2( ~f class)9(X i)= f̂ class(X i)g],

where K is taken as ö, and f̂ class is as de®ned in Section 1 ± that is, f̂ class is a standard

kernel estimator with kernel ö and bandwidth h. So as to directly compare f̂ class,4 and f̂SS

with ~f , we renormalized the latter by dividing by
�

~f . Note that both f̂ class,4 and f̂SS integrate

to 1. We do not alter the notation ~f , however, in the discussion below. Our simulation results

indicate that renormalization has minimal effects on ~f�, and hence we do not pursue

normalization of ~f� in our study.

We chose ®ve densities, f 1, . . . , f5, namely `Gaussian', `skewed unimodal', `bimodal',

`separated bimodal' and `asymmetric bimodal' as described by Marron and Wand (1992).

We used sample sizes n � 50, 100, 200, 500 and 1000, although only results for n � 100

and for the `Gaussian' and `skewed unimodal' densities will be discussed in detail. Results

for other values of n and other densities are similar, and their mean integrated square error

(MISE) performances are summarized in Figure 3.1. We employed the local log-linear

parametric model g(y, è) � è(1) expf(yÿ x)è(2)g because of its popularity (e.g. Hjort and

Jones 1996; Loader 1996), its simplicity (e.g. the availability of the closed-form estimator

(2.9)), and the central position occupied by local linear methods in contemporary curve

estimation.

To calculate MISE curves we used a grid of bandwidths consisting of 51 logarithmically

equally spaced points in the interval [0.1, 1.0]. Each MISE curve was obtained by averaging

1000 replications of integrated square error (ISE) curves. For each bandwidth h in the grid,

we calculated the pointwise square errors of the estimates at 201 equally spaced points on

the interval [ÿ3, 3]. The trapezoidal rule was employed to evaluate ISE. The MISE curves

for n � 100 and for the densities f 1 and f 2 are depicted in Figures 3.2 and 3.3 respectively.

For the sake of clarity, only bandwidths in the interval [0.15, 1.0] are displayed. Vertical

lines are drawn through the minimizers of the MISE curves, and have the same line types

as the respective curves.

For the Gaussian and skewed unimodal densities, the estimator ~f performs better than ~f�
in MISE terms throughout the range of bandwidths considered. In the case of small

bandwidths, the MISE curves for the standard kernel estimator f̂ class and the standard

locally parametric estimator f̂ 0 � f̂ (xjx) are almost identical, whereas discrepancies are

noted for large h. This is to be expected since, as mentioned by Hjort and Jones (1996), for

small to moderate h the locally parametric estimator utilizes primarily local properties of

the model g, and hence the estimation method is essentially nonparametric. As h increases

the method becomes more parametric, and the difference between MISE curves is best

explained by errors in approximating the true density by the model. Note, however, that the

minimum MISEs for f̂ class and f̂ 0 are approximately equal in all our simulations.

The performance of ~f� improves on that of f̂ 0 for large n, although not necessarily for

smaller sample sizes. This is illustrated in Figures 3.2 and 3.3, where the minimum MISE

for f̂0 is seen to be less than that for ~f� in the case n � 100. From the theory, ~f�

176 M.-Y. Cheng, E. Choi, J. Fan and P. Hall



Figure 3.1. Relative ef®ciencies. The vertical axis gives ratios of the minimum MISE values of f̂ 0,
~f�, ~fÿ, ~f , f̂ class,4 and f̂SS relative to the standard kernel estimator f̂ class, calculated for ®ve of the 15

Gaussian mixture densities of Marron and Wand (1992): (a) Gaussian; (b) skewed unimodal; (c)

bimodal; (d) separated bimodal; (e) asymmetric bimodal. The vertical axes in all panels have the same

range and scale.
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outperforms f̂ class when the sample size n is large enough, and this is demonstrated by the

increasing ef®ciency as a function of n in Figure 3.1. Nevertheless, the asymmetric quality

of ~f� is re¯ected clearly in the MISE performance when estimating the skewed unimodal

and asymmetric bimodal densities.

The substantial improvements offered by ~f are clear even for the small sample size

n � 100. Among the high-order methods we compared, ~f has a better overall performance

than ~fSS, and both estimators have greater ef®ciency than f̂ class,4 in all cases, as indicated in

Figure 3.1. Moreover, our skewed estimator ~f has advantages over f̂SS from a

computational viewpoint. To appreciate why, assume that the data are not binned, and

that the density is estimated at M grid points. Then the number of kernel evaluations

needed to compute ~f is of size O(nM), whereas that for f̂ SS is of size O(n2 M).

The improvements in performance offered by skewing methods over standard kernel

estimators are generally apparent in both the body of the distribution and the tails. For
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Figure 3.2. Comparison of MISE curves for the Gaussian density f 1 with sample size n � 100. The

®gure is plotted on a log±log scale, for the sake of clarity. The line types in the legend correspond to

the estimators f̂ class, f̂0, ~f�, ~fÿ, ~f , f̂ class,4 and f̂SS.
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example, if n � 100 and the target density is normal (e.g. density f1); and if we use

globally optimal bandwidths in each estimator, then the pointwise mean square error

(PMSE) of f̂ class exceeds that of ~f over the range �3 standard deviations from the mean,

and the excess of PMSE for f̂ class relative to that for ~f equals 86%, 36% and 54% at 0, 1

and 2 standard deviations from the mean, respectively. The relatively low ®gure at 1

standard deviation re¯ects the fact that the bias of f̂ class is of order h4 there.

In practice the bandwidth would be selected empirically, but in a comparison of

estimators using different bandwidth choice methods, the performance of estimators would

be confounded with the performance of bandwidth selectors. A cross-comparison, of both

bandwidth selectors and estimators, is beyond the scope of this paper. However, we note

that standard bandwidth choice methods, such as cross-validation, are applicable without

change to our skewing estimators.
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Figure 3.3. Comparison of MISE curves for the skewed unimodal density f 2 with sample size

n � 100. Again, the ®gure is plotted on a log±log scale. The line types in the legend correspond to

the estimators f̂ class, f̂0, ~f�, ~fÿ, ~f , f̂ class,4 and f̂SS.
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4. Outline of technical arguments

4.1. Biases of skewed estimators

Here we show that ~f�, ~f ë and ~f have biases of orders h3, h4 and h4, respectively. Assume

that (2.11) and (2.12) hold, and that f , g, v1, v2 have four bounded derivatives with respect

to each variable. (Only three derivatives are required to derive the Ofh3 � (nh)ÿ1g bias of
~f�.) Arguing as in Hjort and Jones (1996), we may deduce that for any constant c the bias of

gfx, è̂(x� ch)g, as an estimator of f (x), equals

gfx, è0(x� ch)g ÿ f (x)� Of(nh)ÿ1g, (4:1)

where è0(y), assumed uniquely de®ned in a neighbourhood of x, is the solution of (2.5). Put

ä � ch and Taylor-expand ã(ä) � gfx, è0(x� ä)g around ä � 0, as a power series in ä. The

coef®cient of ä in the expansion equals

è(1)9(x)g10fx, è0(x)g � è(2)9(x)g01fx, è0(x)g � (@=@x)gfx, è0(x)g ÿ g9fx, è0(x)g, (4:2)

where

gjk(y, è) � f@ j�k=(@è(1)) j(@è(2))kgg(y, è):

To evaluate the right-hand side of (4.2) observe that, on setting y � x and è � è0(x) in (2.5),

Taylor-expanding, and differentiating with respect to x the left-hand side, we obtain

(@=@x)(v jfx, x, è0(x)g[ f (x)ÿ gfx, è0(x)g])� O(h2) � 0:

Using the product rule to evaluate the differential on the left-hand side, employing (2.4) to

prove that the term f (x)ÿ gfx, è0(x)g that forms part of the result equals O(h2), and

choosing j so that v jfx, x, è0(x, 0)g 6� 0 (see (2.11)), we deduce that

f 9(x)ÿ (@=@x)gfx, è0(x)g � O(h2): (4:3)

Again Taylor-expanding the left-hand side of (2.5) with è � è0(x) � è0(x, h), this time

not differentiating but choosing j such that

(@=@ t)v jfx, t, è0)gj t�x 6� 0 (4:4)

(see (2.11)), we obtain

v jfx, x, è0(x)g[ f (x)ÿ gfx, è0(x)g]
� 1

2
k2 h2(v jfx, x, è0(x)g[ f 0(x)ÿ g 0fx, è0(x)g]

� v 0jfx, x, è0(x)g[ f (x)ÿ gfx, è0(x)g]
� 2v9jfx, x, è0(x)g[ f 9(x)ÿ g9fx, è0(x)g])� O(h4) � 0,

where v(k)
j (x, t, è) (or v j with k dashes) denote (@=@ t)kv j(x, t, è). Using (2.4), we deduce

that the left-hand side equals

k2 h2v9jfx, x, è0(x)g[ f 9(x)ÿ g9fx, è0(x)g]� O(h4),

whence it follows from (4.4) that
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f 9(x)ÿ g9fx, è0(x)g � O(h2): (4:5)

Combining (4.3) and (4.5) we see that the right-hand side of (4.2) equals O(h2). Hence, the

term in ä in the Taylor expansion of ã(ä) is of size O(äh2) � O(h3).

Next we deal with the coef®cient of 1
2
ä2, which may be shown by an analogue of the

argument leading to (4.2) to equal

(@=@x)2 gfx, è0(x)g � g 0fx, è0(x)g ÿ 2(@=@x)g9fx, è0(x)g: (4:6)

Formally, differentiating (2.4), we deduce that (@=@x)2[gfx, è0(x)g ÿ f (x)] � O(h2). This

result may be obtained rigorously by making minor modi®cations to arguments of Hjort and

Jones (1996). Re®ning the argument leading to (4.5), we may identify the right-hand side and

show that, after one differentiation, it is still of order O(h2). Therefore, f 0(x) ÿ
(@=@x)g9fx, è0(x)g � O(h2). Combining the last two results, we see that the quantity at

(4.6) equals g 0fx, è0(x)g ÿ f 0(x)� O(h2). From this formula for the coef®cient of 1
2
ä2 in the

Taylor expansion of ã(ä), and from the result in the previous paragraph for the coef®cient of

ä, we deduce that

gfx, è0(x� ä)g ÿ gfx, è0(x)g � 1
2
ä2[g 0fx, è0(x)g ÿ f 0(x)]� O(h3): (4:7)

Using (2.4) and (4.7), we ®nd that the quantity at (4.1) (equal to the bias of gfx,

è̂(x� ch)g) equals

1
2
h2(k2 ÿ c2)[ f 0(x)ÿ g 0fx, è0(x)g]� Ofh3 � (nh)ÿ1g:

Since ~f� is de®ned by taking c � �k1=2
2 in gfx, è̂(x� ch)g then, for either choice of the �

and ÿ signs, its bias equals simply Ofh3 � (nh)ÿ1g.
Appealing to symmetry properties when evaluating Taylor expansions, it may be proved

by a similar but longer argument than that leading to (4.7) that

gfx, è0(x� ch)g � gfx, è0(xÿ ch)g ÿ 2 f (x) � h2(k2 ÿ c2)[ f 0(x)ÿ g 0fx, è0(x)g]� O(h4):

From this formula and (2.4) we deduce that

(2ë� 1)ÿ1(ë[gfx, è0(x� ch)g � gfx, è0(xÿ ch)g]� gfx, è0(x)g)ÿ f (x)

� h2

2
(2ë� 1)ÿ1f(2ë� 1)k2 ÿ 2ëc2g[ f 0(x)ÿ g 0fx, è0(x)g]� O(h4): (4:8)

The left-hand side equals the bias of f̂ ë, up to terms of order (nh)ÿ1. Taking c � l, where l is

de®ned by (2.6), the right-hand side of (4.8) equals O(h4). Hence, E( ~f ë)ÿ f �
Ofh4 � (nh)ÿ1g. Similarly, we may prove that the bias of ~f � ~f1 equals Ofh4 � (nh)ÿ1g.

4.2. Variance of skewed estimators

We assume (2.10), and also (without loss of generality) that the original parametrization was

è � ù. We further assume (2.10) and its differentiated form, and (2.12). Then, following the

argument in Section 4.2 of Hjort and Jones (1996), the variance of ~f� is seen to be

asymptotic to (nh)ÿ1ô(K)2 f (x), where, in place of Hjort and Jones's formula for ô(K)2, one

has ô(K)2 � wT Mÿ1
1 M2 Mÿ1

1 w, with wT � (1� o(1), ch� o(h)), M1 � diag(1, h2k2), M2 �
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diag(k1, h2k3) and c � �k1=2
2 . It follows that ô(K)2 � k1 � c2kÿ2

2 k3 � k1 � kÿ1
2 k3, as had to

be proved. Formulae for the variances of ~f ë and ~f may be derived by similar but more

elaborate arguments, which are detailed in the ANU Ph.D. thesis of E. Choi (1998).
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