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We study the asymptotic behaviour of a system of interacting particles with space-time random birth.

We have propagation of chaos and obtain the convergence of the empirical measures, when the size of

the system tends to in®nity. Then we show the convergence of the ¯uctuations, considered as cadlag

processes with values in a weighted Sobolev space, to an Ornstein±Uhlenbeck process, the solution of

a generalized Langevin equation. The tightness is proved by using a Hilbertian approach. The

uniqueness of the limit is obtained by considering it as the solution of an evolution equation in a

greater Banach space. The main dif®culties are due to the unboundedness of the operators appearing

in the semimartingale decomposition.
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1. Introduction

In this paper we study a model of interacting particle systems with random birth which is

motivated by air pollution problems, arising for instance when there exist one or more

sources of pollution particles in a city. The emission of particles by the sources occurs

randomly in space-time. These particles travel through the air at random and interact together.

We wish to describe their behaviour during a ®nite time interval. Since the number of

particles is very large, we study more precisely the asymptotic behaviour of such interacting

systems, as the number of particles grows.

We consider for each n a system of n particles (Z i,n)1<i<n that arrive independently at

time ôi and location Y i
0 following a space-time distribution Ã. Immediately after their birth,

the particles move and interact together, following a diffusion with weak interaction. Our

aim is to describe the behaviour of this system when the number of particles becomes

in®nite. A simpli®ed model of independent Brownian motions with random space-time birth

has been studied in FernaÂndez (1990). A law of large numbers and the associated central
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limit theorem were proved with techniques related to Gaussian processes, which cannot be

adapted when interactions are present.

We prove here a propagation of chaos result, meaning that the distribution of every ®xed

k-particle subsystem of the n-particle system converges when n tends to in®nity the to k-

product Q
k of a probability measure Q de®ned on the path space. (One says that the law

of the n-particle system is Q-chaotic). This type of asymptotic behaviour is beginning to be

well known for systems of diffusion processes (see, for example, Sznitman 1984; 1991), and

in exchangeable cases it is equivalent to the convergence in law of the empirical measure of

the system to Q. The main difference with the usual cases is that the empirical measure of

the system (Z i,n) jumps when a particle appears and the limit law will take into account the

predictable projection of the processes N i
t � 1fôi< tg. We compare here the behaviour of the

particles (Z i,n)1<i<n with particles Y i,n which are born at time 0, stay at Y i
0 until time ôi

and begin to diffuse after ôi. Under Lipschitz continuity assumptions on the coef®cients of

the underlying diffusion, one has propagation of chaos for the system (Ni, Y i,n) and the Q-

chaoticity of the system (Z i,n) is deduced.

In the second part of the paper, we study the ¯uctuation process çn of the empirical

measure around the limit Q, when the birth law has a density with respect to the Lebesgue

measure on R� 3 Rd . Here, the ¯uctuations are the difference of two ®nite measures of

mass less than
���
n
p

and have jumps due to the birth phenomenon. Following FernaÂndez and

MeÂleÂard (1997), we prove the tightness of the ¯uctuation processes in a well-chosen

Sobolev space in which pathwise estimates are obtained. We show that for smooth

coef®cients of the underlying diffusion, the limit ¯uctuation processes are solutions in the

space W
ÿ(4�2D),D
0 (the dual space of the weighted Sobolev space of order 4� 2D and

weight 1� jxjD, with D � 1� [d=2]) of the equation

ç t � ç0 � Wt �
� t

0

L�s çs ds: (1:1)

W is a uniquely characterized white noise and L�s is the adjoint of an operator Ls acting on

W 4�2D,D
0 . But the operator L�s is not bounded in W

ÿ(4�2D),D
0 and a major dif®culty is to prove

the uniqueness of the solution of (1.1). (In FernaÂndez and MeÂleÂard (1997), the uniqueness

was obtained by a characterization of the ®nite-dimensional marginals already proved in

Sznitman (1985).) One considers Ls as the sum of a second-order differential operator L s

and a perturbation term (Ks ÿ Rs). We introduce the evolution system U (t, s) associated with

Ls and prove that if ~ç � ç1 ÿ ç2 is the difference of two solutions of (1.1), then ~ç is solution

of the evolution equation

~ç t �
� t

0

U�(t, r)(Kr ÿ Rr)
�~çr dr: (1:2)

The main trick is then to show that the linear operator U�(t, r)(Kr ÿ Rr)
� is bounded in

Cÿ(6�2D), the dual space of C6�2D
0 . The uniqueness is then deduced by Gronwall's lemma.

This method is inspired by Mitoma (1985).

We conclude this introductory section by introducing the notation we will need.

For a Polish space E, P (E) denotes the space of probability measures on E. For a
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measure m and a function j, hm, ji denotes the quantity
�
j(y)m(dy). C k

b (R2d) denotes the

space of functions of class Ck with bounded partial derivatives up to order k on R2d . K

denotes a constant which can change from line to line. All the notation and the main

properties we will use on weighted Sobolev spaces are developed in the Appendix.

2. The particle system

The n-particle system is obtained in two steps.

Let Ã be a probability measure on R� 3 Rd with ®nite second moments and b and ó two

bounded and Lipschitz continuous functions de®ned from R2d into respectively Rd and the

space of d 3 k matrices. We de®ne the functions ~ó and ~b on f0, 1g3 Rd 3 f0, 1g3 Rd

by:

~ó (x1, y1, x2, y2) � x1x2ó (y1, y2); ~b(x1, y1, x2, y2) � x1x2b(y1, y2):

For a probability measure m on f0, 1g3 Rd and a function f from (f0, 1g3 Rd)2 into R, we

denote f [x1, y1, m] � � f0,1g3Rd f (x1, y1, x2, y2)m(dx2, dy2).

Let us consider (R� 3 Rd 3 C0(R�, Rk))
n endowed with the product measure (Ã 

W )
n (W being the standard Wiener measure), and denote by ((ôi, Y i

0), Bi)i�1,:::,n the

canonical coordinates. We introduce the system (N i, Y i,n)i�1,:::,n de®ned by

N i
t � 1fôi< tg,

Y i,n
t � Y i

0 �
1

n

Xn

j�1

� t

0

N i
s N j

só (Y i,n
s , Y j,n

s ) dBi
s �

1

n

Xn

j�1

� t

0

N i
s N j

sb(Y i,n
s , Y j,n

s ) ds

� Y i
0 �

� t

0

~ó [N i
s, Y i,n

s , mn
s ] dBi

s �
� t

0

~b[N i
s, Y i,n

s , mn
s ] ds, (2:1)

where

mn
s �

1

n

Xn

i�1

ä(N i
s,Y

i, n
s ), 8s < T :

Then Y i,n is equal to Y i
0 if ôi . t and evolves following a diffusion interacting with the

other living particles if ôi < t.

By a standard contraction method, one can prove the existence and uniqueness of the

solution of (2.1).

We now construct the processes we are interested in. We denote by á an extra point (at

which the particles stay before they are born) and let R̂d � Rd [ fág. The space R̂d is a

Polish space (endowed with the metric r de®ned by r(z1, z2), which equals kz2 ÿ z1k ^ 1
2

if

z1 6� á and z2 6� á, 0 if z1 � z2 � á and 1 otherwise).

We introduce the continuous mapping ö de®ned from the Skorohod space D(R�,

f0, 1g3 Rd) into D(R�, R̂d) by
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ö(x, y) � z where, 8t > 0, zt � yt, if xt 6� 0,

á if xt � 0:

�
(2:2)

We de®ne the interacting particle system with space-time random birth (Z i,n)1<i<n

8i 2 f1, . . . , ng as follows:

For every t in R�, Zi,n
t � (ö(N i, Y i,n)) t � á if N i

t � 0,

Y i,n
t if N i

t � 1:

�
(2:3)

We want to study the asymptotic behaviour (when n tends to in®nity) of the empirical

measure ìn of the system (Z i,n)1<i<n which is the random probability measure on

D(R�, R̂d) de®ned by

ìn � 1

n

Xn

i�1

äZ i, n : (2:4)

3. The nonlinear limit process, existence and uniqueness

In this section, we prove the existence and uniqueness of the nonlinear processes which

appear as limit laws of the systems (N i, Y i,n) and (Z i,n).

Let us consider a probability space (Ù, F , F t, P) with a standard Rk-valued Brownian

motion (Bt) t>0 and a random vector (ô, Y0) with law Ã on R� 3 Rd , F 0-measurable and

independent of B.

Proposition 3.1. The solution of the nonlinear equation

Nt � 1fô< tg; Yt � Y0 �
� t

0

~ó [Ns, Ys, Ps] dBs �
� t

0

~b[Ns, Ys, Ps] ds (3:1)

exists and is unique, pathwise (given ô, Y0, B) and in law. The nonlinearity appears through

Ps , the marginal at times s of the distribution P of (N, Y).

Proof. We follow ideas of Sznitman (1991), but we need here to work on the Skorohod space.

For T . 0 we introduce the space M(D T ) of probability measures on D([0, T], f0, 1g3 Rd)

with marginal on D([0, T], f0, 1g) equal to the law of N . We consider the mapping

ø : M(D T )!M(D T ) which associates with every m 2M(D T ) the law of (N , Y m)

de®ned by for t < T by

Nt � 1fô< tg, Y m
t � Y0 �

� t

0

~ó [Ns, Y m
s , ms] dBs �

� t

0

~b[Ns, Y m
s , ms] ds:

Observe that if (Nt, Yt) is a solution of (3.1) then the law of (Nt, Yt) is a ®xed point of the

function ø, and conversely.

The space D([0, T ], f0, 1g3 Rd) is clearly closed in DT � D([0, T ], Rd�1) endowed

with the Skorohod topology. We consider on the space M(D T ) the Vasserstein metric ~DT

de®ned by
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~DT (m1, m2) � inf

�
DT 3DT

dCT (x, y) ^ 1m(dx, dy);

�

m 2 P (DT 3 DT ) having marginals m1 and m2

�
,

where dCT is the usual metric on C([0, T ], Rd�1). We know that if ÄT is the Vasserstein

metric for a complete metric inducing the Skorohod topology, then ÄT < K ~DT ; see Pollard

(1984) for details.

Let m1, m2 2M(D T ), and for i � 1, 2 let us associate the processes (Y i
t) as above, and

denote by Pi the law of (N , Y i). For all t < T , it is obvious that
~Dt(P1, P2) < EP(sups< tjY 1

s ÿ Y 2
s j). Then using as usual the Doob and Cauchy±Schwarz

inequalities and then Gronwall's lemma, we obtain

~D2
t (P1, P2) < KT

� t

0

~D2
s(m1, m2) ds:

This immediately gives the uniqueness of the solution of the system (3.1) on [0, T ].

Moreover, a recursive sequence de®ned by the mapping ø is Cauchy for ~DT and then for ÄT.

Since this last metric is complete, the recursive sequence converges and we get existence of

the law P solution of the system (3.1). Pathwise uniqueness immediately follows. h

Let us now describe the limit process Z on D(R�, R̂d). This is de®ned by Z � ö(N , Y ),

where (N , Y ) is the solution of (3.1) and ö is the mapping de®ned by (2.2). We call Q the

law of Z.

For every j : Rd ! R, we de®ne the extension ĵ : R̂d ! R by ĵ(x) � j(x) if x 2 Rd

and by ĵ(x) � 0 if x � á.

Observe that ĵ(Zt) � Ntj(Yt) and if we denote by Pt the law of (Nt, Yt), and by Qt the

law of Zt, we have�
R̂d

ĵ(z)Qt(dz) �
�

Rd

j(z)Qt(dz) �
�
f0,1g3Rd

xj(y)Pt(dx, dy): (3:2)

Moreover, Qt(fág) � 1ÿ hQt, 1̂i � 1ÿ hPt, xi � 1ÿ Pt(f1g3 Rd):
Let G � fG t, t > 0g be the natural ®ltration generated by the process Z. Following

Jacod and Shiryaev (1987, p. 98), we obtain that for any function j de®ned from Rd into

R,

Ntj(Y0)ÿ
� t

0

�
Rd

(1ÿ Nsÿ )j(y)
Ã(ds, dy)

Ã([s, 1] 3 Rd)
(3:3)

is a G t-martingale.

Let j 2 C2
b. Then by ItoÃ's formula, the independence of (ô, Y0) and (Bt, t > 0) and (3.3),

we obtain that
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ĵ(Zt)ÿ ĵ(Z0)ÿ
� t

0

=ĵ�(Zs)b̂[Zs, Qs] dsÿ 1

2

� t

0

=ĵ�(Zs)â[Zs, Qs]=ĵ(Zs) ds

ÿ
� t

0

�
Rd

(1ÿ Nsÿ)j(y)
Ã(ds, dy)

Ã([s, 1] 3 Rd)
(3:4)

is a G t-martingale, where b̂[Zs, Qs] � ~b[Ns, Ys, Ps], ó̂ [Zs, Qs] � ~ó [Ns, Ys, Ps] and

â[Zs, Qs] � ó̂ [Zs, Qs]ó̂�[Zs, Qs]. By taking expectations, we deduce that

hQt, ĵi � hQ0, ĵi �
� t

0

hQs, =ĵ�(:)b̂[:, Qs] dsi ds

� 1
2

� t

0

hQs, =ĵ�(:)â[:, Qs]=ĵ(:)i ds�
� t

0

�
Rd

j(y)Ã(ds, dy): (3:5)

4. Propagation of chaos

Let E be a separable metric space. A sequence un of symmetric probability measures on En

is said u-chaotic (u 2 P (E)) if for each k > 1 and ö1, . . . , ök 2 Cb(E),

lim
n!�1hu

n, ö1 
 . . . 
 ök 
 . . . 
 1i � Ðn
i�1hu, öii:

Let us consider a sequence of processes with u-chaotic initial conditions (for example,

independent initial data with the same law u). There is propagation of chaos if the laws of the

processes on a time interval are P-chaotic, P being a probability measure on the path space.

(The chaos propagates during time.) That is equivalent to the convergence in law of the

empirical measures of the processes to P (cf. Sznitman 1991).

Theorem 4.1. Given independent random variables (ôi, Y i
0)i2N with second-order moment

law Ã, given Lipschitz continuous functions ó and b, and letting Qn be the distribution of the

interacting particles with random birth (Z1,n, . . . , Z n,n) on D([0, T ], R̂d)n, then we have

propagation of chaos and Qn is Q chaotic. We deduce that the empirical measures ìn

converge in law (and in probability) to P.

We ®rst show the propagation of chaos for the system (Ni, Y i,n). We prove a stronger

result. Given (ôi, Y i
0)1<i<n and (Bi)1<i<n, we consider n independent copies (N i, Y i)1<i<n

of the solution of (3.1):

N i
t � 1fôi< tg; Y i

t � Y i
0 �

� t

0

~ó [N i
s, Y i

s, Ps] dBi
s �
� t

0

~b[N i
s, Y i

s, Ps] ds, (4:1)

where Ps is the law of (N i
s, Y i

s). Then the following proposition holds.

Proposition 4.2. For any i > 1 and T . 0, supn nE(sup t<T jY i,n
t ÿ Y i

tj2) ,�1, and then the

sequence (Pn) is P-chaotic, where Pn is the law of ((N 1, Y 1,n), . . . , (Nn, Y n,n)) on
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(D([0, T ], f0, 1g3 Rd))n.

The result is easily proved following the same lines as Sznitman (1991, p. 174)

(essentially Lipschitz continuity, Gronwall's lemma and independence properties). We obtain

Theorem 4.1 by the following continuity argument due to Sznitman (1991, p. 179):

Proposition 4.3. Let E and F be two Polish spaces and ö a continuous function from E to F.

If un is a sequence of laws on En which is u-chaotic, then vn � un � (ö
n)ÿ1 is v �
u � (ö)ÿ1-chaotic.

We apply Proposition 4.3 with E � D([0, T ], f0, 1g3 Rd), F � D([0, T ], R̂d) and ö
de®ned in (2.2). The law (Qn) of (Z1,n, . . . , Z n,n) is then equal to Pn � (ö
n)ÿ1 and the law

Q of Z is equal to P � öÿ1, P given by (3.1).

5. Tightness of the ¯uctuation process

In this section, we study the ¯uctuation processes çn � fçn
t , t > 0g de®ned by

çn
: � ���

n
p

(ìn
: ÿ Q:),

where ìn
: is the empirical measure of the n-particle system (Z1,n

: , . . . , Z n,n
: ) and Q the limit

law. For every t, the measures ìn
t and Qt are probability measures on R̂d but are considered

as ®nite measures on Rd (with mass less than 1) by identifying hìn
t , ĵi and hìn

t , ji (ĵ
de®ned in the previous section). Then the ¯uctuation process çn is considered as taking

values in the space of signed ®nite measures on Rd . Observe that ĵ(Zi,n
t ) � N i

tj(Y i,n
t ) and

hçn
t , ji � ���

n
p 1

n

Xn

i�1

ĵ(Zi,n
t )ÿ hQt, ji

 !
� ���

n
p 1

n

Xn

i�1

N i
tj(Y i,n

t )ÿ
�

xj(y)Pt(dx, dy)

 !
:

Throughout the following, let us consider the (N i, Y i)i>1 de®ned in (4.1) and the independent

copies Z i � ö(Ni, Y i) of Z.

Remark 5.1. Observe that since ĵ(Zi,n
t ) � N i

tj(Yi,n
t ),

jĵ(Zi,n
t )ÿ ĵ(Zi

t)j < jj(Yi,n
t )ÿ j(Y i

t)j, jĵ(Zi,n
t )j < jj(Y i,n

t )j and jĵ(Zi
t)j < jj(Yi

t)j:

In this section and the next we will require the following hypotheses.

Hypotheses H.

(H0) The probability measure Ã has a density ã(s, y) on R� 3 Rd .

(H90) Ã([T , �1] 3 Rd) . 0.

(H1) E[jY i
0j8D] ,�1, where D � [d=2]� 1.

(H91) sups2[0,T ]

�
Rd (1� jyjD)ã(s, y) dy ,�1,

� T

0

�
Rd (1� jyj4D)ã(s, y) dy ds ,�1.

(H2) ó , b 2 C1�D
b (R2d).
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We ®rst give pathwise estimates for the processes; the ®rst is standard and the second

can be proved following Hitsuda and Mitoma (1986, Lemma 1).

Lemma 5.2. We have the following inequalities:

sup
n

E sup
t<T

jY i,n
t j8D

� �
,�1 81 < i < n, E sup

t<T

jY i
tj8D

� �
,�1 8i > 1; (5:1)

E sup
t<T

jY i,n
t ÿ Y i

tj4
� �

<
K

n2
: (5:2)

Proposition 5.3. For every n and t, çn
t belongs to W

ÿ(1�D),2D
0 and

sup
n

sup
t<T

E[kçn
t k2
ÿ(1�D),2D] ,�1: (5:3)

Proof.

hçn
t , ji � ���

n
p 1

n

Xn

i�1

ĵ(Zi,n
t )ÿ hQt, ji

 !

� ���
n
p 1

n

Xn

i�1

(ĵ(Zi,n
t )ÿ ĵ(Zi

t))

 !
� ���

n
p 1

n

Xn

i�1

ĵ(Zi
t)ÿ hQt, ji

 !

� S n
t (ĵ)� T n

t (ĵ):

We choose a complete orthonormal system (jp)p>0 in W
(1�D),2D
0 , and haveX

p>0

hçn
t , jpi2 < 2

X
p>0

S n
t (ĵp)2 �

X
p>0

T n
t (ĵp)2

 !
:

For the ®rst term,

E sup
t<T

X
p>0

S n
t (ĵp)2

 !
< E sup

t<T

X
p>0

Xn

i�1

jĵp(Zi,n
t )ÿ ĵ p(Zi

t)j2
 !

, by convexity

< E sup
t<T

X
p>0

Xn

i�1

jjp(Y i,n
t )ÿ jp(Y i

t)j2
 !

, by Remark 5:1

< KnE sup
t<T

jY 1,n
t ÿ Y 1

t j4
� �1=2

E sup
t<T

(1� jY 1,n
t j8D � jY 1

t j8D)
� �1=2

,�1,

by (7.4), Remark 7.2 and Lemma 5.2. For the second term,
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E
X
p>0

T n
t (ĵp)2

 !
<

1

n

Xn

i�1

E
X
p>0

ĵ2
p(Zi

t)

 !
<

1

n

Xn

i�1

E
X
p>0

j2
p(Y i

t)

 !

, KE(1� jY 1
t j4D) ,�1,

by (7.5) and Lemma 5.2. We conclude by using Parseval's identity. h

To obtain pathwise tightness, we need more than (5.3) and will use the stochastic

differential equation satis®ed by the process çn
: . Taking into account that Ã has no atoms,

we obtain that for every function j 2 C2
b,

hìn
t , ji � hìn

0 , ji �
� t

0

hìn
s , L (ìn

s )ji ds

� M̂ n
t (j)� 1

n

Xn

i�1

� t

0

�
Rd

(1ÿ N i
s)j(y)

ã(s, y)

Ã([s, 1] 3 Rd)
ds dy, (5:4)

where M̂ n
t (j) is a martingale, and the operator L is de®ned for every probability measure m

on R̂d by

L (m)j(z) � 1

2

Xd

i, j�1

aij[z, m]
@2j
@zi@zj

(z)�
Xd

i�1

bi[z, m]
@j
@zi

(z), (5:5)

where a[z, m] � ó [z, m]ó [z, m]�.
From (3.7) and (5.4) we deduce:

Proposition 5.4. For every j 2 C2
b,

M n
t (j) � hçn

t , ji ÿ hçn
0 , ji ÿ

� t

0

hçn
s , L(ìn

s )ji ds (5:6)

is a martingale with quadratic variation hMn(j)i t �
� t

0
V n

s (j) ds, where
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L(ìn
s )j(z) � L (ìn

s )j(z)� K(ìn
s )j(z)ÿ Rs(j),

K(ìn
s )j(z) � Qs,

Xd

j�1

@j
@zj

bj(:, z)

* +
� Qs,

1

2

Xd

j, l�1

@2j
@zj@zl

Ajl(:, z, ìn
s , Qs)

* +
,

Rs(j) �
�

Rd

j(y)
ã(s, y)

Ã([s, 1] 3 Rd)
dy (constant function in z),

V n
s (j) � ìn

s ,
Xk

h�1

Xd

j�1

@j
@zj

ójh[:, ìn
s ]

0@ 1A2* +
� Rs(j2)(1ÿ ìn

s (Rd)�,

Ajl(z9, z, ìn
s , Qs) �

Xk

h�1

(ójh(z9, z)ólh[z9, ìn
s ]� ólh(z9, z)ójh[z9, Qs]):

Proposition 5.5. Let (jp)p>0 be a complete orthonormal system in W 1�D,2D
0 of functions of

class C1 with compact support. Then

sup
n

X
p>0

E sup
t<T

M n
t (jp)2

� �
,�1; hence sup

n

E sup
t<T

kM n
t k2
ÿ(1�D),2D

� �
,�1 (5:7)

and (M n
t ) is a W

ÿ(1�D),2D
0 -valued martingale.

Proof.

X
p>0

E(M n
T (j p)2) <

X
p>0

E

�T

0

ìn
s ,
Xk

h�1

Xd

j�1

@jp

@zj

ójh[:, ìn
s ]

0@ 1A2* +
ds

0B@
1CA

�
X
p>0

E

�T

0

Rs(j2
p)(1� ìn

s (Rd)) ds

 !
:

The use of (7.6) and Lemma 5.2 leads us to obtain, as in the proof of Proposition 5.3, that the

®rst term on the right-hand side is ®nite uniformly in n. For s less than T ,X
p>0

Rs(j2
p) �

X
p>0

�
Rd

j2
p(y)

ã(s, y)

Ã([s, 1] 3 Rd)
dy �

�
Rd

kDyk2
ÿ(1�D),2D

ã(s, y)

Ã([s, 1] 3 Rd)
dy

< K

�
Rd

(1� jyj4D)
ã(s, y)

Ã([s, 1] 3 Rd)
dy (Lemma 7:1)

< K
1

Ã([T , 1] 3 Rd)

�
Rd

(1� jyj4D)ã(s, y) dy,
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and
P

p>0E[
� T

0
Rs(j2

p)(1� ìn
s (Rd)) ds] is ®nite thanks to hypotheses (H90), (H91) and since the

measure ìn is a ®nite measure with mass less than 1. h

The following lemma will drive us to prove the tightness of the laws of (çn) in the

bigger space W
ÿ(2�2D),D
0 .

Lemma 5.6. For every n, for every s < T, the random operators L (ìn
s ), K(ìn

s ) and Rs are

linear continuous mappings from W 2�2D,D
0 into W 1�D,2D

0 and, for all j 2 W 2�2D,D
0 ,

kL (ìn
s )jk2

1�D,2D < K1(T , ó , b)kjk2
2�2D,D, kK(ìn

s )jk2
1�D,2D < K2(T , ó , b)kjk2

2�2D,D;

kRs(j)k2
1�D,2D < K3(T , ó , b)kjk2

2�2D,D:

The constants K1, K2, K3 do not depend on n or on the randomness.

Proof. The proof of the two ®rst inequalities is the same as in FernaÂndez and MeÂleÂard (1997,

Lemma 3.7). For the last inequality, observe that Rs(j) is a constant function and

kRs(j)k2
1�D,2D �

�
Rd

�
Rd

j(y)
ã(s, y)

Ã([s, 1] 3 Rd)
dx

� �2

1� jxj4D
dx < K

�
Rd

j(y)
ã(s, y)

Ã([s, 1] 3 Rd)
dy

� �2

< Kkjk2
2�2D,D

1

Ã([T , 1] 3 Rd)2

�
Rd

(1� jyjD)ã(s, y) dy

� �
2

< Kkjk2
2�2D,D thanks to (H90), (H91): h

We can now prove a pathwise estimate on W
ÿ(2�2D),D
0 .

Proposition 5.7. Let (øp)p>0 be a complete orthonormal system in W 2�2D,D
0 . Then

sup
n

E
X
p . 0

sup
t< t

çn
t , øp


 �
2

 !
,�1, hence sup

n

E sup
t<T

kçn
t k2
ÿ(2�2D),D

� �
,�1: (5:8)

Proof.

E
X
p>0

sup
t<T

hçn
t , ø pi2

 !
< K E(kçn

0k2
ÿ(2�2D),D)� E

� t

0

X
p>0

hçn
s , L(ìn

s )øpi2 ds

 ! 

� E
X
p>0

M n
T (øp)2

 !1A:
Considering the random linear form H n

s (ø) de®ned on W
ÿ(2�2D),D
0 by H n

s (ø) �
hçn

s , L(ìn
s )øi, we deduce from Lemma 5.6 that
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kH n
s k2
ÿ(2�2D),D �

X
p>0

hçn
s , L(ìn

s )øpi2 < Kkçn
s k2
ÿ(1�D),2D everywhere:

Then by Proposition 5.3, supnE(
� T

0

P
p>0hçn

s , L(ìn
s )øpi2 ds) ,�1, and we conclude with

Proposition 5.5. h

Proposition 5.8. For every integer n, the processes çn and Mn have paths respectively in

D([0, T ], W
ÿ(2�2D),D
0 ) and D([0, T ], W

ÿ(1�D),2D
0 ).

Proof. The proof is immediate by using (5.8) and (5.10) and the fact that for every test

function j, the processes hçn
t , ji and M n

t (j) are cadlag. h

Applying ItoÃ's formula to ĵ(Zi,n
t )ø̂(Z

j,n
t ), we obtain that çn is a semimartingale

with values in the Hilbert space W
ÿ(2�2D),D
0 , the solution of the following

stochastic differential equation (in Wÿ(2�2D),D
0

):

çn
t ÿ çn

0 ÿ
� t

0

L(ìn
s )�çn

s ds � M n
t , (5:9)

where L(ìn
s )� is the adjoint operator of L(ìn

s ), and M n
t is a square-integrable martingale

belonging to Wÿ(1�D),2D
0

with Doob±Meyer process hhMnii t taking values in L (W 1�D,2D
0 ,

Wÿ(1�D),2D
0

) and de®ned for every j, ø 2 W 1�D,2D
0 by:

hhMnii t . j(ø) � hMn(j), Mn(ø)i t

�
Xk

h�1

� t

0

ìn
s ,

Xd

j�1

@j
@xj

ó jh[:, ìn
s ]

0@ 1A Xd

j�1

@ø

@xj

ó jh[:, ìn
s ]

0@ 1A* +
ds

�
� t

0

h(1ÿ ìn
s (Rd))Rs(jø)i ds: (5:10)

Proposition 5.9. The integral term
� t

0
L(ìn

s )�çn
s ds in (5.9) is for every n well de®ned as a

Bochner integral in W
ÿ(2�2D),D
0 .

Proof. Following Yosida (1978, p. 132), and since W
ÿ(2�2D),D
0 is separable, it suf®ces to

verify that:

1. for every ö 2 W 2�2D,D
0 , the mapping s! hL(ìn

s )�çn
s , öi is measurable;

2.
� T

0
kL(ìn

s )�çn
s kÿ(2�2D),D ds ,�1.

The ®rst assertion is immediate. For the second, we consider a function j in W 2�2D,D
0 and

remark that

jhL(ìn
s )�çn

s , jij � jhçn
s , L(ìn

s )jij < kçn
s kÿ(1�D),2DkkL(ìn

s )jk1�D,2D

< Kkçn
s kÿ(1�D),2Dkkjk2�2D,D by Lemma 5:6,
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and kL(ìn
s )�çn

s kÿ(2�2D),D < Ksups<Tkçn
s kÿ(1�D),2D, which is ®nite almost surely. Indeed,

following the proof of Proposition 5.3, one can show that E(sup t<Tkçn
t k2
ÿ(1�D),2D) < Kn.

Then the integral is ®nite almost surely. h

We now recall a tightness criterion for Hilbert-valued processes due to Joffe and MeÂtivier

(1986, p. 35).

Lemma 5.10. A sequence of (Ùn, F n
t )-adapted cadlag processes (Y n)n>1 with values in a

Hilbert space H is tight in D([0, T ], H) if both following conditions hold:

I. There exists a Hilbert space H0 such that H0 HS H and such that for all t < T,

supnE[kY n
t k2

H0
] ,�1.

II. (Aldous condition). For every å1, å2 . 0 there exists ä. 0 and an integer n0 such that

for every (F n
t )-stopping time ôn < T , supn>n0

supè<äP[kY n
ôn�è ÿ Y n

ôn
kH > å1] < å2.

Theorem 5.11. The sequences of laws of (Mn) and (çn) are tight in D([0, T ], W
ÿ(2�2D),D
0 ).

Proof. By Propositions 5.4 and 5.7, Condition I is satis®ed for (Mn) and (çn) with

H0 � W
ÿ(1�D),2D
0 and H � W

ÿ(2�2D),D
0 , since the embedding W

ÿ(1�D),2D
0 Wÿ(2�2D),D

0
is of

Hilbert±Schmidt type (see Appendix).

Condition II will hold for (Mn) if it holds for the processes (An), where An
t is the trace

in W
ÿ(2�2D),D
0 of hhMnii (Rebolledo's theorem, cf. Joffe and MeÂtivier 1986, p. 40). If,

furthermore, II also holds for the processes
� :

0
L(ìn

s )�çn
s ds, then it holds for (çn) as well.

The previous estimates easily imply these properties. h

We conclude this section with a regularity result:

Proposition 5.12. All the accumulation points of (çn) in D([0, T ], W
ÿ(2�2D),D
0 ) are

continuous.

Proof. Since the law Ã has a density, (3.5) implies that the ¯ow (Qt) t>0 is continuous. The

jumps of çn and ìn happen at the same time and the absolute continuity of Ã implies that a

unique particle jumps at every jump time. Then for every function j in W 2�2D,D
0 ,

jhçn
t , ji ÿ hçn

tÿ , jij < sup
1<i<n

jj(Y i
0)j���

n
p < Kkjk2�2D,D sup

1<i<n

1� jY i
0jD���

n
p ,

and sup t<ukçn
t ÿ çn

tÿkÿ(2�2D),D < Ksup1<i<n(1� jY i
0jD)=(

���
n
p

). But

P sup
1<i<n

1� jY i
0jD���

n
p . å

" #
< K

1

n2å4
E sup

1<i<n

(1� jY i
0j4D)

� �

< K
1

n2å4
E

X
1<i<n

(1� jY i
0j4D)

 !
< K

n

n2å4
, thanks to (H1):

#

#
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Thus (sup t<ukçn
t ÿ çn

tÿkÿ(2�2D),D) converges in probability to 0 for every real number u less

than T , and by Jacod and Shiryaev (1987, Proposition 3.26) we deduce that ç 2 C([0, T ],

W
ÿ(2�2D),D
0 ) for every limit point ç. h

6. Characterization and uniqueness of the ¯uctuation limit
process

This section contains the most original part of our work. We prove the uniqueness of the limit

¯uctuation process. The ®rst step is to obtain the limit values as solutions of a stochastic

differential equation. It is not possible to take the limit as n tends to in®nity of each term of

equation (5.9) in W
ÿ(2�2D),D
0 since by the properties of L(ìn

s ), tightness of çn in W
ÿ(2�2D),D
0

does not imply tightness of L(ìn
s )�çn in this space. So we need to consider the processes çn

as taking values in W
ÿ(4�2D),D
0 , and the limit equation is obtained in this space, under more

restrictive assumptions on ó and b. The second dif®culty is related to the unboundedness of

the linear operator L(Qs). We consider it as the second-order differential operator L (Qs)

perturbed by K(Qs)ÿ Rs, and express the limit values of çn as solutions of an evolution

equation in the space W
ÿ(4�2D),D
0 . Estimates given by Kunita (1984) about the ¯ow of

solutions of the stochastic differential equation associated with L (Qs) allow us to show that

the corresponding evolution system is continuous in Cÿ(6�2D) and to prove uniqueness of the

limit ¯uctuation process in this space.

Theorem 6.1. The sequence (Mn)n>1 converges in law in D([0, T ], W
ÿ(2�2D),D
0 ) to a

continuous Gaussian process W with covariance given for all j1, j2 2 W 2�2D,D
0

by

E(W t(j1) . Ws(j2)) �
� s^ t

0

Xk

h�1

Qs,
Xd

j�1

@j1

@xj

ó jh[:, Qs]

0@ 1A Xd

j�1

@j2

@xj

ó jh[:, Qs]

0@ 1A* +
ds

�
� s^ t

0

Rs(j1j2)(1ÿ Qs(R
d)) ds: (6:1)

Proof. Equation (5.9) implies that çn and Mn have the same discontinuities as processes

belonging to D([0, T ]W
ÿ(2�2D),D
0 ). Then Proposition 5.12 implies that the accumulation

points of the sequence (Mn) are continuous. On the other hand, it is easy to prove that the

covariance process of Mn de®ned in Proposition 5.4 converges to the covariance process

de®ned by (6.1), arguing the convergence of ìn to Q (as a consequence of the propagation of

chaos). The limit points of the sequence (Mn) are thus square-integrable continuous

martingales with a deterministic covariance process and are then equal to the Gaussian

process with covariance given by (6.1). h

Let us now characterize the limit points of the sequence of ¯uctuation processes.

Theorem 6.2. Let us assume Hypotheses H and assume, moreover, that ó and b belong to
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C2�2D
b (R2d). Then each limit point ç of the sequence (çn) is an Ornstein±Uhlenbeck process

solution of the following stochastic differential equation in W
ÿ(4�2D),D
0 :

ç t ÿ ç0 ÿ
� t

0

L(Qs)
�çs ds � Wt, (6:2)

where W is de®ned in Theorem 6.1 and L(Qs)
� is the adjoint of L(Qs) de®ned in Proposition

5.4.

Proof. Let us consider equation (5.9). The sequence (çn) is tight in W
ÿ(4�2D),D
0 because of

the continuous embedding of W
ÿ(2�2D),D
0 in W

ÿ(4�2D),D
0 .

If we assume that ó and b are in C2�2D
b (R2d), we can easily prove that the operators

L(ìn
s ) and L(Qs) are continuous from W

(4�2D),D
0 into W

(2�2D),D
0 , and, more precisely,

kL(ìn
s )jk2�2D,D < Kkjk4�2D,D, kL(Qs)jk2�2D,D < Kkjk4�2D,D, (6:3)

K being independent of n and of the randomness as in Lemma 5.6. We deduce from these

inequalities that the integrals
� t

0
L(ìn

s )�çs ds and
� t

0
L(Qs)

�çs ds appearing in (5.9) and (6.2)

are well de®ned as Bochner's integrals in Wÿ(4�2D),D
0

, and that çn is the solution of (5.9)

in W
ÿ(4�2D),D
0 . Let us now consider ç an accumulation point of the sequence (çn) and

prove that ç is the solution of (6.2), meaning that for every j 2 W (4�2D),D
0

, hçn
t , ji ÿ

hçn
0 , ji ÿ � t

0
hçn

s , L(ìn
s )(j)i dsÿ M n

t (j) tends to hç t, ji ÿ hç0, ji ÿ � t

0
hçs, L(Qs)(j)i ds ÿ

Wt(j).

ç0 is well de®ned as the limit in W
ÿ(4�2D),D
0 of

���
n
p

(ìn
0 ÿ P0). Indeed, (çn

0 ) is tight by

projection at time 0 (there is no jump at time 0), and the values hç0, ji are characterized

by the central limit theorem.

The mapping á! há t, ji ÿ há0, ji ÿ � t

0
hás, L(Qs)(j)i ds is a continuous functional on

C([0, T ], W
ÿ(4�2D),D
0 ) and the sequence (çn) is C-tight by Proposition 5.12, so for every

j 2 W
(4�2D),D
0 , hçn

t , ji ÿ hçn
0 , ji ÿ � t

0
hçn

s , L(Qs)(j)i ds converges to hç t, ji ÿ hç0, ji ÿ � t

0hçs, L(Qs)(j)ids when n tends to in®nity. It remains to prove that
� t

o
hçn

s , L(ìn
s )(j) ÿ

L(Qs)(j)i ds tends in law to zero.

But L(ìn
s )(j)ÿ L(Qs)(j) � L (ìn

s )ÿL (Qs)� K(ìn
s )ÿ K(Qs) and does not depend on

Rs. The proof of this convergence is the same as in the proof of FernaÂndez and MeÂleÂard

(1997, Theorem 5.5) and we do not repeat it here. h

Our next step is to prove the uniqueness of the solution of (6.2). We will prove the

pathwise uniqueness. If ç1 and ç2 are two limit points of the sequence çn in

C([0, T ], W
ÿ(4�2D),D
0 ), the difference ~ç � ç1 ÿ ç2 is the solution of

~ç t �
� t

0

L(Qs)
�~çs ds:

Since the operator L(Qs) is not bounded in W
ÿ(4�2D),D
0 , we cannot directly apply Gronwall's

inequality to obtain ~ç t � 0, 8t 2 [0, T ].

Let us prove that ~ç is solution of an evolution equation and show the uniqueness of the

solution of this equation in the bigger Banach space Cÿ(6�2D).

Interacting diffusion processes with space-time random birth 105



Let Bt be a standard Brownian motion. Assume that ó , b 2 C
j�1
b (R2d) for j a positive

integer. Then (see, for example, Kunita 1984, p. 227), the ¯ow (X st(x)) de®nes a Cj-

diffeomorphism, where X st(x) is the unique solution of the ItoÃ stochastic differential

equation starting from x 2 Rd at time s:

X st(x) � x�
� t

s

ó [X sr(x), Qr] dBr �
� t

s

b[Xsr(x), Qr] dr:

For any j 2 C2
b, let U (t, s)j be de®ned by

(U (t, s)j)(x) � E(j(Xst(x))): (6:4)

Taking expectations of both sides of ItoÃ's forward and backward formulae, using Fubini's

theorem and the fact that

sup
x2Rd

sup
0<s< t<T

E[jDi Xst(x)j2] ,�1, 8i < j, (6:5)

(cf. Gihman and Skorohod 1972, p. 61, Theorem 1), we obtain the backward and forward

equations for every j in C
j
b, j > 3 and x 2 Rd:

@

@ t
(U (t, s)j)(x) � (U (t, s)L (Qt)j)(x)

@

@s
(U (t, s)j)(x) � ÿL (Qs)(U (t, s)j)(x): (6:6)

We will show that equations (6.6) are satis®ed in the Banach space C4�2D
0 , by interpreting the

integrals
� t

s
U (r, s)(L (Qr)j) dr and

� t

s
L (Qr)U (t, r)j) dr in C4�2D

0 .

We study the properties of L (Qt), K(Qt), Rt de®ned in Proposition 5.4 and considering

as operators on the functional spaces C
j
0, j > 0. We need a a regularity property for Rt and

introduce for this reason a new assumption on Ã:

(H3) There exists a function g 2 L1(Rd), and such that for every t 2 [0, T ], for every

y 2 Rd , ã(t, y) < g(y), and the mapping t! ã(t, y) is continuous on [0, T ].

Lemma 6.3. Assume Hypotheses H and (H3) and ó , b 2 C
j
b(R2d), for a given integer j. Then

for each t 2 [0, T ], L (Qt) is de®ned from C
j�2
0 into C

j
0 and K(Qt) from C

j
0 into itself. The

operator Rt sends C0
0 (and then every space C

j
0, j > 1) into the space of constant functions

which is included in all C
j
0, j > 0. Moreover, we have

kL (Qt)jkC
j

0
< K1kjkC

j�2

0

, (6:7)

kK(Qt)jkC
j

0
< K2kjkC2

0
< K2kjkC

j

0
, 8 j > 2, (6:8)

kRt(j)kC
j

0
< K3kjkC

j

0
; (6:9)

and if ó and b are in C
j�1
b (R2d) and j in C

j
0, j > 3,

kK(Qt)jÿ K(Qs)jkC
j

0
< Kjt ÿ sj1=2kjkC3

0
< Kjt ÿ sj1=2kjkC

j

0
: (6:10)

The proof is easy and left to the reader.
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Lemma 6.4. Assume that ó and b belong to C
j
b(R2d). Then

8j 2 C
j
0, sup

0<s< t<T

kU (t, s)jkC
j

0
< Kkjkc

j

0
, (6:11)

8j 2 C
j�1
0 , kU (t, s)jÿ U (t, r)jkC

j

0
< Kjsÿ rj1=2kjk

c
j�1

0

: (6:12)

Proof. As detailed in the Appendix, kjkC
j

0
�P

k< j
supx2Rd jDkj(x)j. Observe that

sup
x

jE(j(Xst(x)))j < sup
x

E(jj(X st(x))j) < sup
z

jj(z)j

and

sup
x

j=xE(j(Xst(x)))j < sup
x

Xd

i�1

E

���� @@xi

(j(Xst(x)))

����
 !

< sup
x

Xd

i�1

E

����j9zi
(Xst(x))

@

@xi

(X st(x))

����
 !

< sup
z

Xd

i�1

jj9zi
(z)jsup

x

E

���� @@xi

(Xst(x))

����
 ! !

< sup
z

j=j(z)j, by (6:6):

For the other terms we obtain similar bounds.

The proof of the second assertion (the continuity property) is obtained in the same way

by using the mean value theorem and Kunita (1984, p. 211), which asserts that

sup
x2Rd

E(jX st(x)ÿ X rt(x)j p) < Kjsÿ rj p=2 for any p . 2: h

Thus we deduce from Lemmas 6.3 and 6.4 that if j belongs to C6�2D
0 , the functions

U (r, s)(L (Qr)j) and L (Qr)(U (t, r)j) are Bochner integrable in the Banach space C4�2D
0

and we obtain (6.6) in C4�2D
0 :� t

s

U (r, s)(L (Qr)j)dr � U (t, s)jÿ j; ÿ
� t

s

L (Qr)(U (t, r)j) dr � jÿ U (t, s)j: (6:13)

Theorem 6.5. Assume Hypotheses H and (H3) and take ó, b 2 C2�2D
b (R2d). Then the

sequence (çn) converges in law to a continuous process ç in D([0, T ], W
ÿ(2�2D),D
0 ), which is

the unique Ornstein±Uhlenbeck process solution of the generalized Langevin equation (6.2)

in Wÿ(4�2D),D
0

.

Proof. As can be seen in Jacod and Shiryaev (1987, p. 484), the white noise in (6.2) is a

Gaussian martingale with respect to the ®ltration generated by (W , ç), if ç is a limit point of

(çn). Then we can adapt to our context the Yamada±Watanabe theorem (cf. Revuz and Yor

1991) and the pathwise uniqueness in (6.2) will imply the uniqueness in law. Let us now

prove the pathwise uniqueness. Let us consider two solutions, ç1 and ç2, of (6.2) in

C([0, T ], W
ÿ(4�2D),D
0 ), driven by the same white noise. So
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~ç t � ç1
t ÿ ç2

t �
� t

0

L(Qs)
�~çs ds,

and this equation also makes sense in Cÿ(4�2D) since W
ÿ(4�2D),D
0 � Cÿ(4�2D) (see the

Appendix).

For j 2 C6�2D
0 and t < T, let us consider

d

dr
h~çr, U (t, r)ji � h d

dr
~çr, U (t, r)ji � h~çr,

d

dr
U (t, r)ji

� hL(Qr)
�~çr, U (t, r)ji ÿ h~çr, L (Qr)U (t, r)ji

� h~çr, (K(Qr)ÿ Rr)U (t, r)ji: (6:14)

The ®rst derivative is obtained by a differentiation theorem for the Riemann integral and the

second derivation is obtained thanks to (6.13). The continuity of r ! K(Qr)j, r! Rrj and

r! U (t, r)j in C4�2D
b , and r! ~çr in Cÿ(4�2D), proved respectively in Lemmas 6.3 and 6.4

and Proposition 5.12, implies that the term h~çr, (K(Qr)ÿ Rr)U (t, r)ji is continuous in r for

every function j in C6�2D
0 . Then we can integrate (6.17). The equality being satis®ed for

every function j 2 C6�2D
0 , we deduce that in Cÿ(6�2D),

~ç t �
� t

0

U�(t, r)(K(Qr)
� ÿ R�r )~çr dr:

The integral term is well de®ned as Bochner's integral since 8j 2 C6�2D
b , 8r 2 [0, T ],

jhU�(t, r)(K(Qr)ÿ Rr)
�~çr, jij � jh~çr, (K(Qr)ÿ Rr)U (t, r)jij

< k~çrkÿ(2�2D),Dk(K(Qr)ÿ Rr)U (t, r)jk2�2D,D

< k~çrkÿ(2�2D),2Dk(K(Qr)ÿ Rr)U (t, r)jkC2�2 D
0

by (7:2)

< k~çrkÿ(2�2D),2D K(T , ó , b)kU (t, r)jkC2�2 D
0

by Lemma 6:3

< k~çrkÿ(2�2D),2D K(T , ó , b)K(S)kjkC2�2 D
0

by Lemma 6:4

< K(T , ó , b)k~çrkÿ(2�2D),2DkjkC6�2 D
0

:

Proposition 5.7 implies that at the limit, supr<Tk~çrkÿ(2�2D),2D is ®nite almost surely and

kU�(t, r)(K(Qr)
� ÿ R�r )~çrkCÿ(4�2 D) is integrable. The proof is concluded by using Theorem 1

of Yosida (1978, p. 133). h

Since the operators U�(t, r), K(Qr)
� and R�r are linear continuous mappings from

Cÿ(6�2D) into Cÿ(6�2D) (thanks to Lemmas 6.3 and 6.4), we obtain by Gronwall's inequality

that

~ç t � 0, for t 2 [0, T ]:
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Appendix: Weighted Sobolev spaces

For every integer j, á 2 R�, let us consider the space of all real functions g de®ned on Rd

with partial derivatives up to order j such that

kgk j,á �
X
k< j

�
Rd

jDkg(x)j2
1� jxj2á dx

0@ 1A1=2

,�1,

where j:j denotes the Euclidian norm on Rd , and if k � (k1, k2, . . . , kd), then k �Pd
i�1 ki

and Dk g � @ k g=@xk1

1 . . . @xkd

d . Let W
j,á
0 be the closure of the set of functions of class C1

with compact support for this norm. W
j,á
0 is a Hilbert space with norm k:k j,á. We will denote

by W
ÿ j,á
0 its dual space.

Let C j,á be the space of functions g with continuous partial derivatives up to order j and

such that limjxj!1jDk g(x)j=(1� jxjá) � 0 for all k < j. This space is normed with

kgkC j,á �
X
k< j

sup
x2Rd

jDk g(x)j
1� jxjá

and C j,0 is denoted by C
j
0. Let Cÿ j,á be the dual space of C j,á; for á � 0, Cÿ j is the dual

space of C
j
0.

We have the following embeddings (see Adams 1978 ± in particular, the proofs of

Theorem 5-4 case C and Theorem 6-53 can be adapted without dif®culty for weighted

Sobolev spaces):

W
m� j,á
0 C j,á for m .

d

2
, j > 0 and á > 0, and kgkC j,á < Kkgkm� j,á

C
j
0 W

j,á
0 , for á. d=2, j > 0, and kgk j,á < KkgkC

j

0
: (A:1)

We also have

W
m� j,á
0 HSW

j,á�â
0 m .

d

2
, j > 0, á > 0, â.

d

2
,

where HS means that the embedding is of Hilbert±Schmidt type, and

kgk j,á�â < Kkgkm� j,á: (A:2)

We deduce the following dual embeddings:

Cÿ j,á W
ÿ(m� j),á
0 , m .

d

2
, j > 0, á > 0,

W
ÿ j,á
0 Cÿ j, á. d=2, j > 0,

W
ÿ j,á�â
0 HSW

ÿ(m� j),á
0 , m .

d

2
, j > 0, á > 0, â.

d

2
:

In the following lemma, we consider some linear operators appearing in Sections 5 and

#
#

#
#

#
#
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6. The parameter D is the ®rst integer strictly greater than d=2, so D � [d=2]� 1. (The

above inequalities justify the rule of D.)

Lemma 7.1. For every ®xed x, y 2 Rd the linear mappings Dxy, Dx, Hx : W 1�D,2D
0 ! R

de®ned by Dxy(j) � j(x)ÿ j(y), Dx(j) � j(x) and Hx(j) �Pd
j�1

@j
@x j

(x) are continuous and

kDxykÿ(1�D),2D < K1jxÿ yj(1� jxj2D � jyj2D), (A:3)

kDxkÿ(1�D),2D < K2(1� jxj2D), (A:4)

kHxkÿ(1�D),2D < K3(1� jxj2D): (A:5)

Proof. Let j be a function of class C1 with compact support on Rd . Then

jj(x)ÿ j(y)j < jxÿ yjsup
u

����Xd

j�1

@j
@xj

(u)

����, where juj < jxj � jyj

< Kjxÿ yj(1� (jxj � jyj)2D)kjk(1�D),2D from(7:1)

< K1jxÿ yj(1� jxj2D � jyj2D)kjk(1�D),2D:

Then (A.4) follows from the de®nition of k � kÿ(1�D),2D and by a density argument.

Inequalities (A.5) and (A.6) are proved in a similar way. h
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