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1. Introduction

We want to investigate the almost sure behaviour of weighted sums

Tn �
X

k

ank X k , n 2 N, (1:1)

with independently and identically distributed (i.i.d.) random variables X , X1, X2, . . . and a

matrix of weights A � (ank)1n,k�1 satisfyingX
k

a2
nk ,1 for each n 2 N, (1:2)

so that the sequence (Tn) is well de®ned provided that EX 2 ,1. In this case EjX j,1 and

we may set EX � 0. Those assumptions will be made throughout the paper without further

mention. The condition (1.2) is obviously satis®ed if with some sequence (rn) 2 N we have

ank � 0 for k . rn, n 2 N: We are interested in random variables X with relatively thin tails,

i.e. we will assume that for some p . 0,

Mp(t) :� Ee tg p(X ) :� E(e tjX j1= psign(X )) ,1 in a neighbourhood of t � 0: (1:3)

There is a huge literature on strong laws for weighted sums of i.i.d. random variables; see,

e.g., Chow and Lai (1973), Chow and Teicher (1978), Lai (1974a; 1974b), Bingham (1984),

Bingham and Tenenbaum (1986), Bingham and StadtmuÈller (1990), Bingham and Maejima

(1985), DeÂniel and DeÂrriennic (1988), Heinkel (1990) and references therein. The ®rst

starting point for this paper was a recent investigation by Li et al. (1995) on weighted sums

of i.i.d. random variables, mostly under moment conditions of type E(jX j p) ,1 for some

p . 1. The second starting point were results by the ®rst author on running means of random
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variables satisfying (1.3) for p . 1; cf. also related results by Bingham and Tenenbaum

(1986), Bingham and Goldie (1988), de Acosta and Kuelbs (1983). It was shown in

Lanzinger (1995; 1998), with Sn �
Pn

k�1 X k and t1, t2 . 0, that, assuming E(X ) � 0,

Mp(t) ,1 for ÿ t1 , t , t2 and Mp(t) � 1 for t 2 [ÿt1, t2]c (1:4)

implies

ÿ 1

t
p
1

� lim inf
n!1

Sn�[log p n] ÿ Sn

log p n
< lim sup

n!1
Sn�[log p n] ÿ Sn

log p n
� 1

t
p
2

(1:5)

and that (1.5) implies (1.4) provided that E(X ) � 0: We are going to show that the

implication from (1.4) to (1.5) holds also for (Tn) with a large class of weights. Hence the

weights

ank � 1 for n� 1 < k < n� 1� [log p n]

0 otherwise

�
are already showing the worst but typical case, meaning that our results are in particular of

interest if the weights are concentrated on a relatively short span. For a certain class of

weights we shall also discuss necessity of the moment condition (1.4).

2. Main results

We begin with the cases p > 1 and suf®cient conditions for almost sure convergence.

Theorem 1. Suppose in addition to our basic assumptions that with some p > 1 there exist

t1, t2 . 0 such that

Mp(t) ,1 for ÿ t1 , t , t2, (2:1)

and non-negative weights ank satisfyingX
k

a2
nk � o(log2 pÿ1 n) (2:2)

and

lim sup
n!1

sup
k

ank � r,1: (2:3)

Then we have

ÿ r
t

p
1

< lim inf
n!1

Tn

log p n
< lim sup

n!1
Tn

log p n
<

r
t

p
2

a:s: (2:4)

Corollary 1. Under the assumptions of Theorem 1 we haveX1
n�2

nrP(Tn . x log p n) ,1 for all x, r > 0 such that
x

(r � 1) p
.

r
t

p
2

, (2:5)
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and X1
n�2

nrP(Tn ,ÿx log p n) ,1 for all x, r > 0 such that
x

(r � 1) p
.

r
t

p
1

: (2:6)

Corollary 2. In the case r � 0 or t1 � t2 � 1 we have that

Tn

log p n
!a:s: 0: (2:7)

Remarks 1.

(i) The moment condition implies that for any c 2 (0, t2) and d 2 (0, t1) there exists

some M . 0 such that

1ÿ FX (s) < eÿcs1=p

and FX (ÿs) < eÿds1=p

for s . M : (2:8)

(ii) If the o(�) in condition (2.2) is replaced by O(�), the proof of Theorem 1 still yields

ÿ1, lim inf
n!1

Tn

log p n
< lim sup

n!1
Tn

log p n
,1 a:s: (2:9)

although the special form of the lim inf and lim sup given in (2.4) is not valid in general.

(iii) If we only are to prove the inequality on the right-hand side then it suf®ces to

impose the condition that X has a ®nite variance instead of Mp(t) ,1 for some t , 0 since

only these conditions are used in the proof of the upper inequality (compare in particular

the chain of inequalities preceeding (4.5)).

(iv) If the condition that the weights ank be non-negative is dropped a similar result

remains valid. With

r � lim sup
n!1

sup
k

jank j

we obtain

ÿ r
minft

p
1 , t

p
2 g

< lim inf
n!1

Tn

log p n
< lim sup

n!1
Tn

log p n
<

r
minft

p
1 , t

p
2 g

a.s.

(v) The results are best possible in a certain sense, namely the denominator log p n in

(2.7) can in general not be replaced by ën log p n with some sequence ën ! 0; see, e.g.,

(1.5).

Furthermore, setting

ank � 1 if k � n,

0 otherwise,

�
(2:10)

such that Tn � X n, the usual Borel±Cantelli argument shows that under the moment

conditions Mp(t) ,1 for t 2 (ÿt1, t2) and Mp(t) � 1 for t =2 [ÿt1, t2] we have
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lim sup
n!1

Tn

log p n
� 1

t
p
2

a:s:

This particularly means that the bounds given in Theorem 1 are sharp. But this is also the

case for a more interesting class of weights, as can be seen from Theorem 2 below.

Similarly, consider the weights

ank � (ÿ1)n if k � [n=2],

0 otherwise,

�
(2:11)

giving rise to the sequence T2n � X n, T2n�1 � ÿX n. As above we obtain

lim sup
n!1

T2n

(log 2n) p
� 1

t
p
2

and lim sup
n!1

T2n�1

(log 2n� 1) p
� 1

t
p
1

a:s:,

which implies the sharpness of the bounds in the version of Remark 1(iv).

Example 1. In the case of running means with an arbitrary sequence (án) > 0 and

ank � 1 for án � 1 < k < án � [log p n],

0 otherwise,

�
(9)

our assumptions are satis®ed for p . 1 with r � 1 andX
k

a2
nk � [log p n] � o(log 2 pÿ1 n)

for any such sequence (án).

In the case p � 1 we only haveX
k

a2
nk � [log p n] � O(log 2 pÿ1 n)

and thus Theorem 1 yields boundedness of the running means. But in this situation much

better results are known since the so-called ErdoÍs±ReÂnyi law applies; cf., e.g., CsoÈrgoÍ and

ReÂveÂsz (1981).

Example 2. In the context of some summability methods the following weights occur (see,

e.g., StadtmuÈller 1995):

ank � exp ÿ 1

2

k ÿ n

log p n

� �2
 !

:

For p . 1 our conditions are obviously satis®ed with r � 1 and
P

a2
nk �

log p n � o(log2 pÿ1 n). The centring sequence (n) can again be replaced by any non-negative

sequence (án). For the case p � 1 again an ErdoÍs±ReÂnyi law holds; see Kiesel and

StadtmuÈller (1996).

We now take a somewhat closer look at the special case where the weights are
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determined by some suitable sequence (ck)1k�1 generalizing a result by Chow and Lai

(1973).

Theorem 2. Apart from the basic assumptions, we assume that we are given a sequence

(ck)1k�0 of non-negative reals such that ck ! 0 as k !1 andXn

k�1

c2
k � o((log n)2 pÿ1) (n!1) (2:13)

for some p > 1. Let t1, t2 . 0 and set r � maxk2N ck . Then the following are equivalent:

(i) (moment condition)

Mp(t) ,1 for all t 2 (ÿt1, t2); (2:14)

(ii) (strong law)

ÿ r
t

p
1

< lim inf
n!1

1

log p n

Xn

k�1

cnÿk�1 Xk a:s: (2:15)

and

lim sup
n!1

1

log p n

Xn

k�1

cnÿk�1 X k <
r
t

p
2

a:s:; (2:16)

(iii) (Baum±Katz law)X1
n�2

nrP
Xn

k�1

cnÿk�1 Xk ,ÿx log p n

 !
,1 (2:17)

for all x, r > 0 such that x=(r � 1) p . r=t
p
1 andX1

n�2

nrP
Xn

k�1

cnÿk�1 X k . x log p n

 !
,1 (2:18)

for all x, r > 0 such that x=(r � 1) p . r=t
p
2 .

Remarks 2.

(i) If the moment condition in (i) is sharp in the sense that Mp(t) � 1 holds for

t 2 [ÿt1, t2]c, we have equalities in (ii) and divergence of the series in (iii) if the inequality

signs in the conditions on x are reversed.

(ii) The condition that ck ! 0 as k !1 is only needed for equivalences involving (ii).

Next we shall discuss the case p 2 (0, 1), i.e. the tails of FX are very thin. So these

distributions are no longer subexponential. We shall change the notation and use ~p � 1=p . 1

and the conjugate index ~q, i.e. 1=~q� 1=~p � 1.

Theorem 3. Besides the basic assumptions we assume that for some ~p . 1 there exists some

t0 . 0 such that
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E(e tjX j~p ) ,1 for jtj, t0: (2:19)

Suppose that for any k. 0 X
k:ja nk jlog1=~q n=dn , k

ank

dn

� � j

� o((log n)1ÿ j=~q), (2:20)

uniformly in j > 2 with d n :� (
P

k jank j~q)1=~q. Then we have

lim sup
n!1

jTnj
dn log1=~p n

<
1

t
1=~p
0

a:s:; (2:21)

in particular,

Tn

dn log1=~p n
!a:s: 0 in the case t0 � 1: (2:22)

Corollary 4. The assertion of Theorem 3 particularly holds if (2.20) is replaced by the

stronger condition

min
j:anj 6�0

janjj
dn

log1=~q n

� �
!1: (2:23)

Example 1 (continued). If ank � 1 for án � 1 < k < án � [log p n] and 0 otherwise, with

some sequence (án) > 0, then the corollary applies with d n � log 1=(~p~q) n. (Compare with de

Acosta and Kuelbs (1983, Theorem 8.1) in the case án � n; this result shows that (2.21)

cannot be improved in general.)

Example 2 (continued). If

ank � exp ÿ 1

2

k ÿ n

log1=~p n

� �2
 !� ����������������������

2ð log2=~p n

q
for k 2 N0,

then we obtain that d n � log ÿ1=~p2

n. This implies that for any k. 0 (uniformly in j)X
k:

ank
d n

log1=~q n , k

ank

d n

� � j

� O (log n)
1
~pÿ j

~q

� �
� o((log n)1ÿ j=~q):

Example 3. If ank � 1=(nÿ k � 1) for 0 < k < n and 0 otherwise, then we obtain 1 <
d n < d1,1 andX

k:a nk log1=~q n , k

a
j
nk �

X
k.log1=~qkÿ1

1

k j
� (log n)(1ÿ j)=(~q) � o((log n)1ÿ j=~q)

uniformly in j. So condition (2.20) is satis®ed for all ~p . 1.
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Example 4. If ank � cnÿk with some sequence (ck)10 2 l 2, then condition (2.20) readsX
k:ck log 1=~q n,k

c
j
k � o((log n)1ÿ j=~q) uniformly in j (2:24)

which is, for example, satis®ed if ck � O(kÿâ) and â. 1=~q � (~pÿ 1)=~p; this is somewhat

weaker than the related condition â � ~p=(~p� 1) in Chow and Lai (1973, Theorem 3), where

the special case t0 � 1 is discussed.

3. Discussion of special weighted sums

We shall discuss various strong laws based on summability methods and their speed of

convergence under our moment conditions

Mp(t) ,1 in a neighbourhood of t � 0 and E(X ) � 0 (3:1)

with some given p > 1. We shall assume this moment condition everywhere in this section

up to Theorem 4. The index k will now run through N0 to meet standard notation.

(i) CesaÁro methods Cá. Here we obtain, with Aâ
ì :� (

ì�â
ì ) for ì 2 N0 and â 2 R,Xn

k�0

Aáÿ1
nÿk

Aá
n

X k �a:s: O(nÿ1=2(log n)1=2) if á. 1
2

O(nÿá(log n) p) if 0 ,á < 1
2
:

(
This follows from Remark 1(iii), formula (2.9), using

ank �

Aáÿ1
nÿk

Aá
n

���
n
p

(log n) pÿ1=2, if á. 1
2
,

Aáÿ1
nÿk

Aá
n

ná, if 0 ,á < 1
2
:

8>>>><>>>>:
Observe that then r � 0 for á. 1=2 and r,1 if 0 ,á < 1=2 and

P
k a2

nk � O(log2 pÿ1 n)

in the case á. 1=2 or á � 1=2 and p � 1 and
P

k a2
nk � o(log2 pÿ1 n) in the other cases. If

á, 1=2, p � 1 and Mp(t) ,1 for all t, Li et al. (1995) have shown that O(:) can be

replaced by o(:) in the bounds above.

For á > 1 these rates are not optimal, since there exists a law of iterated logarithm (LIL)

yielding the rate O(nÿ1=2
�����������������
log log n
p

): For á 2 (1=2, 1), Li et al. (1995) conjectured that a

LIL is valid as well. This will be proven (with a somewhat different constant than

conjectured) next.

Theorem 4. For 1=2 ,á, 1 the following statements are equivalent:

(i) E(X ) � 0, E(X 2) � 1 and

E(jX j2=(2áÿ1)=(log log(ee � jX j))1=(2áÿ1)) ,1;

(ii) lim sup
n!1

�����������������������������������������������
n

2á2(2áÿ 1)ÿ1 log log n

r Xn

k�0

Aáÿ1
nÿk

Aá
n

Xk �a:s: 1.
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Remark 3. In the case á � 1 we have the classical law of iterated logarithm, where, however,

precisely the second moment is needed. For bounded random variables the cases á > 1 have

already been discussed by Gaposhkin (1965); for more general random variables, see Lai

(1974b). The problem remains of what happens in the cases á < 1=2:

Proof. The implication (i)) (ii) follows from a slightly more general version of StadtmuÈller

(1984, Theorem 1 and Corollary 1). Under our moment condition we have the following

approximation quality in strong approximation of Sn by a Wiener process W (n) (see, for

example, CsoÈrgoÍ and ReÂveÂsz 1981, Section 2.6):

Sn ÿ W (n) �a:s: o(náÿ1=2(log log n)1=2):

Putting ank � n1=2�EAáÿ1
nÿk=Aá

n and s2
n �

Pn
k�0a2

nk � n2E á2

2áÿ1
%1, condition (1.5b) in

StadtmuÈller (1984) reads as follows

náÿ1=2
�����������������
log log n

p Xn

k�1

jank ÿ an,kÿ1j � jannj
 !� ������������������������

n2E log log n
p

� O(1)

which is satis®ed since
Pn

k�1jank ÿ an, kÿ1j � jannj � O(n1=2�Eÿá). The other conditions

required in StadtmuÈller (1984) can be satis®ed easily since s2
n is a smooth function in n and

since (
Pm

k�0ank amk)=(
Pn

k�0a2
nk) is smooth in m=n.

The implication (ii)) (i) follows by standard arguments using the original weights. Since

X n=(náÿ1=2
�����������������
log log n
p

) !p 0 we obtain by Lemma 1 in Lai (1974b), with the variables

Z n � X n=(náÿ1=2
�����������������
log log n

p
) and Yn �

Xnÿ1

k�0

Aáÿ1
nÿk

Aá
n

X k

� �����������������������������
nÿ1=2 log log n

q
,

that

X n=(náÿ1=2
�����������������
log log n

p
) �a:s: O(1):

Now we use the fact that the sequence (X k) is i.i.d and apply the Borel±Cantelli lemma to

obtain, for some x large enough,X1
n�1

P(jX1j. xnáÿ1=2 (log log n)1=2) ,1,

which in turn gives the desired moment condition. We then must have EX � 0 and

EX 2 � ó 2. h

(ii) Euler methods E p. Here we haveXn

k�0

n

k

� �
pk(1ÿ p)nÿk Xk �a:s: O nÿ1=4

����������
log n

p� �
: (3:2)

Again Remark 1(iii), formula (2.9), applies with ank � n
k� � pk(1ÿ p)nÿk n1=4(log n) pÿ1=2:

Then we obtain r � 0 and
P

k a2
nk � O(log2 pÿ1 n): The rate in (3.2) is optimal since there is
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a law of the single logarithm ± see, for example, Lai (1974b) and a discussion of the correct

constant in Bingham (1984) ± saying

lim sup
n!1

�������������
2
������
ðn
p

log n

s Xn

k�0

n

k

� �
pk(1ÿ p)nÿk X k �a:s:

����������������������������������������
var(X 1)

���������������������
( pÿ 1)=p

pq
,

which, however, requires a more detailed analysis.

(iii) Random walk methods. If we de®ne pnk � P(Tn � k), where Tn �
Pn

j�1Y j with

i.i.d. non-periodic random variables (Y j), Y : Ù! N0, having ®nite third moments, a

maximal span of 1 and satisfying E(Y ) � ì and E(Y 2) � ó 2, then we haveX1
k�0

pnk X k �a:s: O(nÿ1=4
����������
log n

p
),

and in particular this gives for the Borel method
P1

k�0eÿn n k

k! X k �a:s: O(nÿ1=4
����������
log n
p

): All

these rates are optimal since there is again a law of the single logarithm ± see, for example,

Bingham (1984) and Lai (1974a). Our result above follows from the following facts:

(a) X n �a:s O(log p n);

(b) a local central limit theorem (see, for example, Petrov 1975) holds, according to

which

pnk � 1��������������
2ðnó 2
p exp ÿ 1

2

k ÿ nì���������
nó 2
p

� �2
 !

1� ã3

6ó 3
���
n
p H3

k ÿ nì���������
nó 2
p

� �� �
� o

nÿ1

1�
���� k ÿ nì���������

nó 2
p

����3
0B@

1CA
uniformly in k with ã3 being the third cumulant of Y and H3 the third Hermite

polynomial, yielding Tn � V ���
n
p � o(nÿ1=2 log p n), where V ���

n
p is de®ned below;

(c) the results on Valiron (V ���
n
p ) means discussed next.

(iv) Valiron means Vön
. Here we use a positive sequence (ön) satisfying ön= log p n!1

and we shall show that

Vö(n) �
X1
k�0

1������������
2ðö2

n

q exp ÿ 1

2

k ÿ n

ön

� �2
 !

X k

�a:s:
O(öÿ1=2

n

����������
log n
p

), if ön= log2 pÿ1 n > ä. 0,

O((log n) p=ön), if ön= log2 pÿ1 n! 0:

8<:
Therefore we have to consider

ank � 1������
2ð
p

ön

exp ÿ 1

2

k ÿ n

ön

� �2
 !

bn

where
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bn � ö1=2
n log pÿ1=2 n, if ön=log2 pÿ1 n > ä. 0,

ön otherwise:

�
Special cases are ön �

���
n
p

and ön � log p n; however, the second case was discussed in

Section 2 and does not satisfy the basic assumption on ön here.

(v) Running means. Here we are going to verify that for the same sequences (ön) as in

(iv) we have, for any u . 0,

1

uön

X
n , k<n�uön

Xk � O(öÿ1=2
n

����������
log n
p

) if ön= log2 pÿ1 n > ä. 0

O((log n) p=ön) if ön= log2 pÿ1 n! 0:

�
This follows from the choice

ank � öÿ1=2
n log pÿ1=2 n, for n , k < n� uön, if ön= log2 pÿ1 n > ä. 0

1, for n , k < n� uön, otherwise:

�
The case ön � c log p n was discussed in Section 2. The rates are optimal again in the case

ön � ���
n
p

(see, for example, Lai 1974a). A discussion of relations between (iii) and (v) can

be found in StadtmuÈller (1995). We remark that the result on running means contains

situations not yet discussed in the literature, such as p � 2, ön � log p�1=2 n: For both cases,

the Valiron and the running means, the centring at (n) can be replaced by a non-negative

sequence (án):

4. Proofs

Proof of Theorem 1. It suf®ces to prove the inequality for the upper limit. Let E 2 (0, t2) and

s2 � t2 ÿ E. Consider the decomposition X k � X 9nk � X 0nk with

X 9nk � X k � 1fX k <s
ÿ p

2
((1�E) log n) pg (4:1)

and X 0nk � X k ÿ X 9nk . Note that EX 9nk � EX 0nk � 0 and

Tn

log p n
�
X1
k�1

ank

log p n
(X 9nk ÿ EX 9nk)�

X1
k�1

ank

log p n
(X 0nk ÿ EX 0nk) � I n � IIn: (4:2)

Markov's inequality implies

P(IIn . E) <
1

E2log2 p n

X1
k�1

a2
nkEX 0nk

2

� 1

E2 log2 p n

X1
k�1

a2
nk

�
f t . s

ÿ p

2
((1�E) log n) pg t

2eÿs2 t1= p

es2 t1= p

dFx(t)

<
1

E2 log2 p n

X1
k�1

a2
nkeÿ(1�E) log nE(X 2es2 g p(X )),

and hence
P1

n�1 P(IIn . E) ,1. Thus we obtain
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lim sup
n!1

IIn < E a:s: (4:3)

by the Borel±Cantelli lemma.

Note that ìn � EX 9nk < 0 and

ÿìn �
�
f t . s

ÿ p

2
((1�E)log n) pg te

ÿs2 t1= p

es2 t1= p

dFx(t) < eÿ(1�E)log nE(jX jes2 g p(x)) � cnÿ1ÿE:

Turning to I n, we set t � s
p
2 =((r� E)(1� E) pÿ1) and x � (1� E)=t. Noting that x <

r=t
p
2 � kE, with k independent of E, we obtain

P(I n . x) < nÿ tx
Y1
k�1

E exp t
ank

log pÿ1 n
(X 9nk ÿ ìn)

� �� �
: (4:4)

Now we have

E exp
ank t

log pÿ1 n
(X 9nk ÿ ìn)

� �� �
� exp

ÿank t

log pÿ1 n
ìn

� �
E exp

ank t

log pÿ1 n
X 9nk

� �� �

< exp
r� E

log pÿ1 n

ct

n1�E

� �
E exp

ankt

log pÿ1 n
X 9nk

� �� �
� eo(1)E exp t

ank

log pÿ1 n
X 9nk

� �� �
:

Choose q such that pÿ1 � qÿ1 � 1 and set H(x) � maxf1, exg. By ìn < 0, using

successively (2.3), (2.2), (2.1) and the obvious inequality ex < 1� x� (x2=2)H(x), we also

have

E exp t
ank

log pÿ1 n
X 9nk

� �� �

< 1� t2a2
nk

2(log n)2 pÿ2
E (X 9nk)2 H t

ank

log pÿ1 n
X 9nk

� �� �

< 1� t2a2
nk

2(log n)2 pÿ2
� EX 2 � E X 2X fX >0g exp t

ank

log pÿ1 n

(1� E) log n

s2

� � p=q

jX j1= p

( ) !( )

< 1� t2a2
nk

2(log n)2 pÿ2
O(1) < exp

t2a2
nk

2(log n)2 pÿ2
O(1)

( )
:

Together with (4.4), we have

P(I n . x) < nÿ tx exp
X1
k�1

t2a2
nk

2(log n)2 pÿ2
O(1)

( )
� nÿ txeo(log n) (4:5)

which yields a convergent series since tx . 1. Thus we have proved
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lim sup
n!1

I n < x <
r
t

p
2

� kE a:s:, (4:6)

with some k. 0. Therefore

lim sup
n!1

Tn

log p n
<

r
t

p
2

� kE� E a.s. (4:7)

Since the choice of E 2 (0, t2) was arbitrary, this proves the assertion. h

Proof of Corollary 1. This only requires a look at the proof above. Let x=(r � 1) p . r=t
p
2 .

Choose s2 2 (0, t2), c . r � 1 and ä. 0 such that

xÿ ä

c p
.
r� ä

s
p
2

: (4:8)

Replace (1� E) log n by c log n in the truncation used in the proof above, set t � c=(xÿ ä)

and observe that for all large n and all k

tank(c logn) pÿ1

(log n) pÿ1s
pÿ1
2

<
c

xÿ ä
� c

pÿ1(r� ä)

s
pÿ1
2

, s2: (4:9)

Now the proof of Theorem 1 implies

P(Tn . x log p n)

< P
X1
k�1

ank(X 9nk ÿ ìn) . (xÿ ä) log p n

 !
� P

X1
k�1

ank(X 0nk � ìn) . ä log p n

 !

� O(nÿ t(xÿä))� O(nÿc) � O(nÿc)

which yields the desired conclusion. h

Proof of Remark 1(iii). Checking (4.5) again, we ®nd that the result holds for x large

enough. h

Proof of Theorem 2. That (i) implies (ii) as well as (iii) is an immediate consequence of

Theorem 1 and Corollary 1. On the other hand, it is obvious that (iii) implies (ii) by the

Borel±Cantelli lemma. So only for (ii)) (i) is there anything left to prove. Thus we assume

(ii). Let k0 be an index with ck0
� r. If we decompose (log n)ÿ pTn into

Yn �
Xnÿk0�1

k�1

cnÿk�1

log p n
X k

and

Z n �
Xn

k�nÿk0�2

cnÿk�1

log p n
X k ,
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then Lai (1974b, Lemma 1) shows that

ÿ r
t

p
1

< lim inf
n!1 Yn < lim sup

n!1
Yn <

r
t

p
2

a.s. (4:10)

Now continue by decomposing Yn further into the summands

Un �
Xnÿk0

k�1

cnÿk�1

log p n
X k

and

Vn � ck0

log p n
X nÿk0�1 � r

log p n
X nÿk0�1:

Since EX 2 ,1 and EX � 0, it is easy to see that Un!p 0 as n!1, for example, by

Markov's inequality.

Fixing E. 0, an application of a result by Martikainen (1982, Lemma 3) to the events

An � fVn . r=t
p
2 � 2Eg and Bn � fUn .ÿEg shows that

P Yn .
r
t

p
2

� E i:o:
� �

> P Vn .
r
t

p
2

� 2E i:o:
� �

(4:11)

By independence and Borel±Cantelli this means thatX1
n�1

P X .
1

t
p
2

� 2E
r

� �
log p n

� �
,1: (4:12)

Thus recalling that g p(y) � sign (y)jyj1= p we have

E(expftgp(X )g) ,1 (4:13)

for all t 2 (0, (1=t
p
2 � 2E=r)ÿ1= p). Since E. 0 was arbitrary, (4.13) holds for all t 2 (0, t2). A

corresponding result for negative t can be proved similarly. This yields the conclusion. h

Proof of Theorem 3. We start by proving Corollary 4. Without loss of generality we may

assume that d n � 1 (we only have to convince ourselves that all conditions hold for the

modi®ed weights ~ank � ank=d n) and ank � 0 for k > rn with some rn 2 N, because if ank

has in®nitely many non-vanishing terms then we can cut the series into two pieces

Tn �
Xrn

k�1

ank Xk �
X1

k�rn�1

ankX k � T (1)
n � T (2)

n (4:14)

with arbitrarily large rn so that T (2)
n =(log n)1=~p ! 0 a.s. as n!1.

By independence and Markov's inequality we ®nd that, for ë. 0,

P(Tn . x(log n)1=~p) < expfÿxë(log n)1=~pg
Yrn

k�1

E(eëjankkX k j): (4:15)

We now borrow an idea from de Acosta and Kuelbs (1983, Lemma 8.1) and use the
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arithmetic±geometric mean inequality. Then we obtain, with ~t0 . 0 and á � (1=~q)(1=~p ~t0)~q=~p,

that for y, ë > 0,

yë < ~t0 y~p � áë~q: (4:16)

This yields, for ~t0 , t0,

E(eëja nkkX j) < E(e
~t0jX j~p )eáë

~qja nk j~q : (4:17)

For any E. 0 there exists some ë0(E) such that, for all ë > ë0(E)=jank j,
E(eëjankkX j) < e(á�E)ë~qja nk j~q : (4:18)

The last inequality is obviously true for any ë if ank � 0. Hence we ®nd that for suf®ciently

large ë: Yrn

k�1

E eëjankkX j� � < exp (á� E)ë~q
Xrn

k�1

jank j~q
( )

� e(á�E)ë~q

, (4:19)

since d n � 1. The inequality (4.15) can be minimized putting

ë � x

á�~q

� �1=(~qÿ1)

(log n)1=~q (4:20)

with á� � á� E. Under our assumption (2.23) ëjank j > ë0(E) eventually and our inequalities

above apply. Hence we obtain

P(Tn . x(log n)1=~p) < expfÿ log n (x~q=(~qÿ1)(á�~q)ÿ1=(~qÿ1)(1ÿ ~qÿ1))g

� exp ÿ log n x~p (á�~q)ÿ1=(~qÿ1) 1

~p

� �� �
:

If

x~p 1

á�~q

� �1=(~qÿ1)
1

~p
. 1,

that is

x . ~p1=~p 1

~p ~t0

� �~q=~p

� E~q

 !1=~q

� 1

~t0
1=~p
� ~E, (4:21)

we have for any x .
1

~t0
1=~p

that X1
n�1

P(Tn . x(log n)1=~p) ,1 (4:22)

which implies that

lim sup
n!1

Tn

(log n)1=~p
<

1

t
1=~p
0

a.s. (4:23)
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Turning to the proof of Theorem 3 itself, let us split Tn � Tn,1 � Tn,2 where

Tn, j �
X

k2 I n, j

ank X k , j � 1, 2, (4:24)

with I n,1 containing all indices with jank j. k= log 1=~q n with some constant k to be speci®ed

below. We begin to estimate P(Tn,1 . (xÿ E) log 1=~p n). Now we proceed with this part as in

(a) using

k � k(E) � max ë0(E)
á�~q

x

� �1=(~q(~qÿ1))

, 1

( )
:

Observe that in (4.19) we only need
P

k2 I n,1
jank j~q < 1. Hence

lim sup
n!1

T n,1

(log n)1=~p
<

1

t
1=~p
0

� E a:s:, (4:25)

for all E. 0. For the second part observe that

P(Tn,2 . E log 1=~p n) < eÿEë log 1=~p n
Y

k2 I n,2

E eëa nk X k� �: (4:26)

If
P1

j�2(c j= j!)ë j, ë 2 R, is the cumulant generating function of X (observe that EX � 0, thus

c1 � 0) we have for the cumulant generating function of ank X k :

jn,k(ë) �
X1
j�2

c ja
j
nk

j!
ë j (4:27)

and therefore Y
k2 I n,2

E eëank X k� � � exp
X1
j�2

c j

j!
ë j
X

k2 I n,2

a
j
nk

( )
, (4:28)

and by (2.20) we ®nd that for any k. 0 there exists n0 2 N such that, for n > n0,Y
k2 I n,2

E eëank X k� � < exp o(1) �
X1
j�2

jc jj
j!

(log n)1ÿ j=~që j

( )
: (4:29)

Since (log n) j=~q � (log n)1ÿ j=~q � log n for all n and j > 2 we ®nd that with

ën � 2=E � (log n)1=~q,Y
k2 I n,2

E eë n a nk X k� � < exp o(log n) �
X1
j�2

jc jj
j!

(2=E) j

( )
< eo(log n): (4:30)

Hence we obtain, with ën � 2=E � log 1=~q n in (4.26), that

P(Tn,2 . E log 1=~p n) < kEnÿ2�E, (4:31)

yielding that
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lim sup
n!1

Tn,2

(log n)1=~p
< E a.s. (4:32)

Since E. 0 was arbitrary, we obtain the desired result. h
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