
Stochastic integral equations without

probability

T H O M A S M I KO S C H 1 and RIMAS NORVAISÏ A2

1Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700 AV Groningen,

Netherlands and EURANDOM, Eindhoven, Netherlands
2Institute of Mathematics and Informatics, Akademijos 4, 2600 Vilnius, Lithuania

A pathwise approach to stochastic integral equations is advocated. Linear extended Riemann±Stieltjes

integral equations driven by certain stochastic processes are solved. Boundedness of the p-variation

for some 0 , p , 2 is the only condition on the driving stochastic process. Typical examples of such

processes are in®nite-variance stable LeÂvy motion, hyperbolic LeÂvy motion, normal inverse Gaussian

processes, and fractional Brownian motion. The approach used in the paper is based on a chain rule

for the composition of a smooth function and a function of bounded p-variation with 0 , p , 2.

Keywords: chain rule; extended Riemann±Stieltjes integral; fractional Brownian motion; LeÂvy process;

p-variation; stable process; stochastic integral equation

1. Introduction

Most parts of the current theory of stochastic differential or integral equations (we prefer here

the latter notion because it is more appropriate) are based on the notion of stochastic integral

with respect to a semimartingale. Given a local martingale M and a stochastic process V with

sample paths of bounded variation, the stochastic integral with respect to the semimartingale

Y � M � V is the sum of the ItoÃ integral with respect to M and the Lebesgue±Stieltjes

integral with respect to V. The integrand in the stochastic integral must be a predictable

stochastic process. In this paper we consider stochastic integral equations based on an

extended Riemann±Stieltjes integral. It is de®ned for a large class of stochastic processes as

integrands and integrators. Both, integrand and integrator, may have sample paths of

unbounded variation. Moreover, there are no requirements on the type of ®ltration the

processes are adopted to. In particular, extended Riemann±Stieltjes integral equations are

perfectly suited for some classes of pure jump semimartingales, but also for certain non-

semimartingales such as fractional Brownian motion with parameter H 2 (0:5, 1).

For the present approach to stochastic integral equations, the notion of p-variation plays

a central role. The p-variation of the sample paths of a stochastic process is an indicator of

its extended Riemann±Stieltjes integrability. The p-variation, 0 , p ,1, of a real-valued

function f on [a, b] is de®ned as

vp( f ) � v p( f ; [a, b]) � sup
k

Xn

i�1

j f (xi)ÿ f (xiÿ1)j p, (1:1)
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where the supremum is taken over all subdivisions k of [a, b]:

k : a � x0 , . . . , xn � b, n > 1: (1:2)

If v p( f ) ,1, f is said to have bounded p-variation on [a, b]. The case p � 1 corresponds

to the usual de®nition of bounded variation of f. Recall the difference between 2-variation

and the quadratic variation of a stochastic process. The latter is de®ned as the limit of the

quantities
Pn

i�1j f (xi)ÿ f (xiÿ1)j2 along a given sequence of subdivisions, provided this limit

exists almost surely or in probability.

Since L. C. Young's (1936) paper on Stieltjes integration, it has been known that the

Riemann±Stieltjes integral may exist even if both integrand and integrator have unbounded

variation. Young (1936) proved that, if f has bounded p-variation and h has bounded q-

variation with pÿ1 � qÿ1 . 1, then the integral
� b

a
f dh exists: (1) in the Riemann±Stieltjes

sense whenever f and h have no discontinuites at the same point; (2) in the Moore±

Pollard±Stieltjes sense whenever f and h have no one-sided discontinuities at the same

point; (3) always in the sense de®ned by Young. Integrability in the Riemann±Stieltjes

sense means existence of the limit as the mesh of the subdivisions tends to zero, while

existence of the limit under re®nements of the subdivisions gives rise to the Moore±

Pollard±Stieltjes integral. Dudley (1992) clari®ed the de®nition of Young's integral ®rst by

complementing it at the end-points a, b, and then by giving its alternative variant. Dudley

and NorvaisÏa (1999a) proved a number of properties of Young's integral and further

suggested two modi®cations, the left and right Young integrals. These two integrals are used

in the present paper. Their de®nition can be found in Section 2.3. Both integrals are well

suited for solving certain linear integral equations driven by possibly discontinuous

functions.

We consider two forward linear equations with additive and multiplicative noise: for each

t 2 [0, T ],

Z(t) � Z(0)� c

� t

0

Z(s) ds� (LY)

� t

0

D(s) dX (s), (1:3)

Z(t) � Z(0)� c

� t

0

Z(s) ds� (LY)

� t

0

ó Z(s) dX (s), (1:4)

whenever the integrals with respect to X � (X (t)) t2[0,T] exist as left Young integrals, and the

remaining two integrals exist in the Riemann sense. Here c, ó are constants and D is a

suitable function or stochastic process. Right Young integrals are used for the corresponding

backward linear integral equations. Typical examples of processes X are in®nite-variance

stable LeÂvy motion, fractional Brownian motion, hyperbolic LeÂvy motion or LeÂvy processes

generated by normal inverse Gaussian processes. These and related processes are used to

model turbulence in physics, stock price changes in mathematical ®nance, traf®c in high-

speed networks, failure-generating mechanisms in reliability theory as well as various

phenomena running under the heading of `fractal'.

The left Young integral equations (1.3) and (1.4) are correctly de®ned and have unique

solutions under conditions stated below in Sections 4 and 5. In particular, equation (1.4)

with c � 0 and ó � 1 reduces to the Moore±Pollard±Stieltjes integral equation
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Z(t) � 1� (MPS)

� t

0

Z(sÿ) dX (s), t 2 [0, T ], (1:5)

whenever the sample paths of X are right-continuous. If in addition almost all sample paths

of X have bounded p-variation with 0 , p , 2, then equation (1.5) is correctly de®ned in the

class of processes Z having sample paths of bounded q-variation with pÿ1 � qÿ1 . 1 due to

the aforementioned results of Young. Its solution is then given by

Z(t) � eX ( t)ÿX (0)
Y

0 , s< t

(1� ÄX (s))eÿÄX (s),

where ÄX (t) describes the jump of X at t. See Section 4 for details. Recall that the

corresponding stochastic integral equation driven by a semimartingale Y � M � V has the form

Z(t) � 1� (I)

� t

0

Z(sÿ) dM(s)� (LS)

� t

0

Z(sÿ) dV (s), t 2 [0, T ], (1:6)

where the ®rst and second integrals are de®ned in the sense of ItoÃ and Lebesgue±Stieltjes,

respectively. Equation (1.6) is correctly de®ned in the class of processes Z for which the

integrals exist. So, for example, Z must be adapted to an underlying ®ltration of M. By

Theorem 1 of DoleÂans-Dade (1970), in the class of semimartingales the unique solution of

this equation is given by

Z(t) � eY ( t)ÿY (0)ÿ[Mc]( t)=2
Y

0 , s< t

(1� ÄY (s))eÿÄY (s), t 2 [0, T ], (1:7)

where [M c](t) denotes the quadratic variation of the continuous martingale part of M. If one

assumes that X in (1.5) has sample paths of bounded variation and M � 0 in (1.6), then

Y � V � X and (1.5) coincides with (1.6). Indeed, the integrals appearing in these equations

exist and have the same value; see Proposition 2.7. below. In general, equations (1.5) and

(1.6) are driven by processes from different classes, which have a non-empty intersection

containing a large class of pure jump LeÂvy processes.

As already mentioned, the main condition for solving equation (1.5) path by path, as well

as equations (1.3) and (1.4), is boundedness of p-variation with p , 2. This condition can

be slightly weakened. However, it cannot be replaced by the boundedness of 2-variation.

Recall that sample paths of standard Brownian motion have unbounded 2-variation and

bounded p-variation for every p . 2; see Taylor (1972) for the exact result. Thus, in order

to apply the present approach for solving (1.5), one needs to know whether the stochastic

process X has sample paths with bounded p-variation for some p , 2. This is known for a

variety of stochastic processes. Some of these results are given in Section 2.2.

The main result of this paper concerns the solution of Riemann±Stieltjes type integral

equations driven by processes whose sample paths may have unbounded variation. A ®rst

related result is Theorem 4.1 of Freedman (1983). He solved (1.5) by an application of

Banach's ®xed point theorem. He assumed that (1.5) is driven by a (deterministic)

continuous function of bounded p-variation with 1 < p , 2. Dudley and NorvaisÏa (1999a,

Theorem 5.21), extended this result to discontinuous functions by proving Duhamel's

formula. The latter is used to ®nd the FreÂchet derivative of the inde®nite product integral.
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Lyons (1994) extended Freedman (1983) in a different direction, replacing Z ÿ dX in (1.5)

by j(Z) dX for suitable nonlinear j and X continuous with values in Rd . The approach to

solving linear integral equations which is advocated in the present paper is perhaps the most

simple and natural one. To solve equations (1.3) and (1.4) we adapt an approach common

in stochastic analysis. Namely, we prove a chain rule for the composition of a smooth

function and a function of bounded p-variation with p , 2. Then, by applying this formula,

we verify that a suitably chosen function solves the equation of interest.

The paper is organized as follows. In Section 2.1 we introduce p-variation and related

quantities. In Section 2.2 we recall the de®nition and properties of some classes of

stochastic processes which are relevant for our purposes. In Section 2.3 we de®ne the

extended Riemann±Stieltjes integrals and discuss their existence and relationship with other

types of integrals. We also give some of their basic properties. The chain rule (Theorem

3.1) based on the left and right Young integrals is given in Section 3. This result is applied

in Section 4 to solve both homogeneous and non-homogeneous linear integral equations.

The deterministic theory of the preceding sections is used in Section 5 to solve the

stochastic integral equations (1.3) and (1.4).

2. Preliminaries

2.1. Functions of bounded p-variation

This subsection contains notation and simple properties related to p-variation.

Let a , b be two real numbers. A real-valued function f on [a, b] is called regulated, for

which we write f 2R �R([a, b]), if it has a left limit at each point of (a, b] and a right

limit at each point of [a, b). A regulated function is bounded and has at most countably

many jumps of the ®rst kind. Such a function can be rede®ned on the extended interval

fa, a�g [ fxÿ, x, x� : x 2 (a, b)g [ fbÿ, bg endowed with the natural linear ordering. We

will often make use of this construction.

De®ne the following function on [a, b]:

f �b (x) � f �(x) � f (x�) � lim
y#x

f (y), a < x , b, f �b (b) � f (b),

f ÿa (x) � f ÿ(x) � f (xÿ) � lim
y"x

f (y), a , x < b, f ÿa (a) � f (a),

Let ô � [a, b] be a non-degenerate interval, open or closed at either end. De®ne Äÿô f on ô by

Äÿô f (x) � f (x)ÿ f (xÿ) for each x 2 ô which is not the left end-point of ô and Äÿô f (x) � 0

at the left end-point x whenever ô is left-closed. Similarly, de®ne Ä�ô f on ô by

Ä�ô f (x) � f (x�)ÿ f (x) for each x 2 ô which is not the right end-point of ô and

Ä�ô f (x) � 0 at the right end-point x whenever ô is right-closed. For ô � [a, b] write

Äÿ f � Äÿ[a,b] f and Ä� f � Ä�[a,b] f . For a function F we will occasionally writeX
ô

F(Ä f ) �
X
x2ô

F([Äÿô f ](x))�
X
x2ô

F([Ä�ô f ](x)):
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For example, for F(u) � juj p, u 2 R, 0 , p ,1, let

O p( f ; ô) �
X
ô

jÄ f j p
 !1= p

: (2:1)

If ô � [a, b] then write O p( f ) � O p( f ; [a, b]).

Recall from (1.1) the de®nition of p-variation v p( f ), 0 , p ,1. All functions of

bounded p-variation constitute the set

W p � W p([a, b]) � f f : [a, b]! R with v p( f ) ,1g:
Note that W q � W p for 0 , q , p ,1. Moreover, every function of bounded p-variation is

regulated, i.e. W p �R. De®ning Vp( f ) � Vp( f ; [a, b]) � v1= p
p ( f ), one can show that

O p( f ) < Vp( f ). In general, this inequality cannot be replaced by an equality. However, if f

has bounded p-variation for some p , 1, then f is a pure jump function, and for those f and

p, O p( f ) � Vp( f ).

Given a non-degenerate interval ô � [a, b], open or closed at either end, which also may

be extended by points x�, de®ne the oscillation of f:

Osc( f ; ô) � supfj f (x)ÿ f (y)j : x, y 2 ôg: (2:2)

Below we will need a well-known property of regulated functions in a slightly modi®ed form:

Lemma 2.1. Assume f 2R([a, b]). For every å. 0, there are at most a ®nite number of

points x 2 [a, b] for which jÄÿ f (x)j. å or jÄ� f (x)j. å. Moreover, there exists a

subdivision fa � x0 , . . . , xn � bg such that

Osc( f ; [xiÿ1�, xiÿ]) , å for i � 1, . . . , n:

Proof. An application of the Bolzano±Weierstrass theorem yields the ®rst statement. If

jÄ� f (x)j _ jÄÿ f (x)j,á for all x 2 (c, d) � [a, b], there exists a ä. 0 such that

j f (x)ÿ f (y)j, 2á for x, y 2 (c, d) with jxÿ yj, ä; cf. Lebesgue (1973, p. 21). Thus, for

given å. 0 we can ®nd a subdivision of [a, b] such that maxi Osc( f ; (xiÿ1, xi)) , å. The

second statement now follows from the relation

Osc( f ; [y�, zÿ] � lim
u# y,v"z

Osc( f ; (u, v)), a < y , z < b: h

We refer to Section 2 of Dudley and NorvaisÏa (1999a) for further details on p-variation.

2.2. Stochastic processes and p-variation

In this subsection we collect some useful facts about the p-variation of several important

classes of stochastic processes. These properties will be used in Section 5.

Here and in what follows, all stochastic processes X � (X (t)) t>0 are supposed to be

separable, continuous in probability and de®ned on a complete probability space. In this

subsection, [a, b] � [0, T ] for an arbitrary but ®xed T 2 (0, 1). Then v p(X ), 0 , p ,1,
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is a random variable possibly assuming 1 with positive probability. The zero±one law for

the p-variation v p(X ) and the question of its boundedness were established for major

classes of stochastic processes X.

The results of the present paper are applicable to sample paths of stochastic processes

having bounded p-variation with 0 , p , 2. It is well known that standard Brownian motion

does not satisfy this condition. However, there are several other classes of stochastic

processes that enjoy this desirable p-variation property. Here we focus on two particular

classes of stochastic processes which have attracted the attention of many researchers in

applied mathematics.

A mean-zero Gaussian process BH � (BH (t)) t>0 with BH (0) � 0 is called (standard)

fractional Brownian motion with index H 2 (0, 1) if it has covariance function

cov(BH (t), BH (s)) � 0:5(t2 H � s2 H ÿ jt ÿ sj2 H ) for t, s > 0:

If H � 0:5, the right-hand side is equal to t ^ s, i.e. B0:5 is Brownian motion.

The following claim follows by a combination of the results in Fernique (1964) and

Theorem 3 of Kawada and KoÃno (1973).

Proposition 2.2. Let BH be fractional Brownian motion with index H 2 (0, 1) and

p 2 (Hÿ1, 1). Then almost all sample paths of BH are continuous and v p(BH ) ,1 with

probability 1.

Remarks. (1) Kawada and KonoÃ (1973) give conditions for the boundedness of p-variation

of continuous Gaussian processes X more general than fractional Brownian motion. Their

conditions are in terms of a function b satisfying E(X (s)ÿ X (t))2 < (const:)b(jt ÿ sj) for t,

s > 0. The p-variation of arbitrary Gaussian processes was considered by Jain and Monrad

(1983).

(2) Fractional Brownian motion with H 2 (0:5, 1) is a standard process for modelling

long-range dependent phenomena; see, for example, Samorodnitsky and Taqqu (1994,

Section 7.2). Because of that property it has recently attracted some attention in

mathematical ®nance; see, for example, Cutland et al. (1995), Dai and Heyde (1996) or

Lin (1995). However, BH with H 2 (0:5, 1) is not a semimartingale (see Liptser and

Shiryaev 1986, Section 4.9), and therefore standard stochastic calculus does not apply. To

solve this problem, a non-standard analysis, as well as an extension of standard stochastic

integrals, were used by the aforementioned authors. We show in Section 5 that Riemann±

Stieltjes integral equations driven by sample paths of fractional Brownian motion are

appropriate.

Another class of stochastic processes ®ts well into the framework of pathwise integration:

the class of LeÂvy processes. A stochastic process X � (X (t)) t>0 which is continuous in

probability is called a LeÂvy process if it has independent, stationary increments, if almost

all sample paths are right-continuous and have limits to the left and if X (0) � 0. Such a

process has LeÂvy±ItoÃ representation (see ItoÃ 1969, Theorem 1.7.1)
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X (t) � at � bB(t)� lim
ä#0

X
I(ä;[0, t])

ÄÿX ÿ t

�
jxj. ä

x

1� x2
í(dx)

" #
, (2:3)

where the limit exists uniformly on bounded intervals with probability 1. Here B stands for

standard Brownian motion, a, b are constants and í is a Borel measure on Rnf0g satisfying�
Rnf0g

(1 ^ jxj2)í(dx) ,1:

It is called the LeÂvy measure of X. Moreover, I(ä; [0, t]) denotes the set of s 2 [0, t]

satisfying jÄÿX (s)j. ä. If the limit

d � lim
ä#0

�
jxj. ä

x

1� x2
í(dx) (2:4)

exists, is ®nite and a � d then we say that X does not have a drift.

The p-variation of LeÂvy processes was considered in various papers; see Bertoin (1996;

Section I.6) or Dudley et al. (1999) for a list of references. For certain LeÂvy processes,

Bretagnolle (1972) characterises the property v p(X ) ,1 in terms of the ®niteness of the

integral
�

(1 ^ jxj p)í(dx).

A LeÂvy process Xá is called á-stable LeÂvy motion with index á, 0 ,á, 2, if b � 0 in

(2.3) and it has LeÂvy measure

íá(dx) � c1xÿ1ÿá dxI (0,1)(x)� c2(ÿx)ÿ1ÿádxI (ÿ1,0)(x),

where c1, c2 > 0 are constants with c1 � c2 . 0. If á, 1 or the marginal distributions of Xá

are symmetric, the limit (2.4) exists and is ®nite.

The p-variation of á-stable LeÂvy motion was studied by Fristedt and Taylor (1973). From

their Theorem 2 one obtains the following result.

Proposition 2.3. Let Xá be á-stable LeÂvy motion. Assume that Xá does not have a drift for

á, 1 and that the LeÂvy measure is symmetric for á � 1. Then v p(Xá) is ®nite or in®nite

with probability 1 according to whether p .á or p < á.

Remark. Note that á-stable processes with 0 ,á, 2 are in®nite-variance processes. Because

their sample paths exhibit large jumps, they are considered as alternatives to Brownian

motion. For various applications of á-stable processes in ®nance, physics, earth sciences and

other ®elds, see, for example, Janicki and Weron (1993) or Samorodnitsky and Taqqu (1994).

Another well-studied subclass of LeÂvy processes consists of the normal inverse Gaussian

processes and hyperbolic LeÂvy motion. They gained their name from the marginal

distributions which are either normal inverse Gaussian or hyperbolic. Using the above-

mentioned result of Bretagnolle (1972) and utilizing the form of the LeÂvy measure ± see

Eberlein and Keller (1995) in the hyperbolic case and Barndorff-Nielsen (1997) in the

normal inverse Gaussian case ± one can show that these processes have bounded p-

variation for p . 1. Therefore they ®t nicely into the framework of pathwise integration

advocated in this paper. These processes were used to model turbulence in physics, stock

Stochastic integral equations without probability 407



price changes in mathematical ®nance and failure-generating mechanisms in reliability

theory; see Barndorff-Nielsen (1978; 1986) for the de®nition and properties as well as

applications of these processes. Recently, these classes of LeÂvy processes were suggested as

realistic models for stock returns; see Barndorff-Nielsen (1995; 1997), Eberlein and Keller

(1995) and KuÈchler et al (1994).

In addition to the references on p-variation of stochastic processes given earlier, we

should mention that LeÂpingle (1976) showed that every semimartingale X satis®es

v p(X ) ,1 for p . 2. A bibliography on p-variation with annotated references can be

found in Dudley et al. (1999).

2.3. Extended Riemann-Stieltjes integrals

In this subsection we review the classical Riemann±Stieltjes integral and several of its

extensions. A usual, for two real-valued functions f and h on [a, b], a Riemann±Stieltjes sum

is de®ned by

S( f , h, k, ó ) �
Xn

i�1

f (yi)[h(xi)ÿ h(xiÿ1)]:

Here k is a subdivision of [a, b] ± see (1.2) ± and ó � fy1, . . . , yng is an intermediate

subdivision of k, i.e. xiÿ1 < yi < xi for i � 1, . . . , n. The function f is Riemann±Stieltjes

integrable with respect to h on [a, b] if there exists a number I satisfying the following

property: given å. 0, one can ®nd a ä. 0 such that

jS( f , h, k, ó )ÿ I j, å (2:5)

for all subdivisions k with mesh maxi(xi ÿ xiÿ1) , ä and for all intermediate subdivisions ó
of k. The number I, if it exists, is unique and will be denoted by

(RS)

�b

a

f dh: (2:6)

If f is Riemann±Stieltjes integrable with respect to h then f and h cannot have a jump at the

same point. The Moore±Pollard±Stieltjes integral, an extension of the Riemann±Stieltjes

integral, requires less restrictive necessary conditions at jump points. Its de®nition is the same

as above with one exception: the convergence of the Riemann±Stieltjes sums as the mesh

tends to zero is replaced by their convergence under re®nements of subdivisions. More

precisely, we say that k is a re®nement of a subdivision ë if k � ë. Then the function f is

Moore±Pollard±Stieltjes integrable, or MPS integrable, with respect to h on [a, b] if there

exists a number I satisfying the following property: given å. 0 one can ®nd a subdivision ë
of [a, b] such that (2.5) holds for all re®nements k of ë and for all intermediate subdivisions

ó of k. The number I, if it exists, is unique and will be denoted by

(MPS)

�b

a

f dh: (2:7)

If f is MPS integrable with respect to h then f and h cannot have a jump at the same point
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on the same side. In particular, this necessary condition is satis®ed if f is right-continuous

and h is left-continuous or vice versa.

It is well known that (2.6) exists, and so does (2.7), if h is of bounded variation and f is

continuous. However, both integrals may exist when none of the two functions have

bounded variation. This was proved by Young (1936):

Theorem 2.4. Assume h 2 W p and f 2 W q for some p, q . 0 with pÿ1 � qÿ1 . 1. Then

the following statements hold:

(i) (2.6) exists if f and h do not have a common discontinuity at the same point.

(ii) (2.7) exists if f and h do not have a common discontinuity on the same side and at

the same point.

Moreover, there exists a ®nite constant K � K( p, q) such that, for any y 2 [a, b], the

inequality �b

a

f dhÿ f (y)[h(b)ÿ h(a)]

����� ����� < KVp(h)Vq( f ) (2:8)

holds for both kinds of integral, provided it is de®ned.

In (1.5), the integrand in the MPS integral is left-continuous and the driving stochastic

process is right-continuous. Therefore the notion of the MPS integral suf®ces for the

applications presented in Section 5 below. If the sample paths of the driving stochastic

process are only known to be regulated, the same results still hold if the MPS integral is

replaced by another extension of the Riemann±Stieltjes integral. The following variants of

the integral introduced by Young (1936) were proposed by Dudley and NorvaisÏa (1999a,

De®nition 3.11). First recall the notation f ÿa , f �b from Section 2.1.

De®nition 2.5. Assume f, h 2R. De®ne the left Young integral by

(LY)

�b

a

f dh � (MPS)

�b

a

f ÿa dh�b � [ f (Ä�h)](a)�
X
(a,b)

Äÿ f Ä�h (2:9)

whenever the MPS integral exists and the sum converges absolutely. De®ne the right Young

integral by

(RY)

�b

a

f dh � (MPS)

�b

a

f �b dhÿa � [ f (Äÿh)](b)ÿ
X
(a,b)

Ä� f Äÿh (2:10)

whenever the MPS integral exists and the sum converges absolutely. We say that f is LY

integrable (or RY integrable) with respect to h on [a, b] provided (2.9) (or (2.10)) is de®ned.

Notice that the left Young integral (2.9) is de®ned by the MPS integral of f ÿa whenever h is

right-continuous. Similarly, the right Young integral (2.10) is de®ned by the MPS integral of

f �b whenever h is left-continuous. The left and right Young integrals have the usual properties

of integrals. For example, they are bilinear and additive on adjacent intervals; see Dudley and
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NorvaisÏa (1999a, Propositions 3.21 and 3.25) or NorvaisÏa (1998, Theorem 4). Moreover, we

have:

Lemma 2.6. For regulated functions f and h on [a, b] the following hold:

(i) If f is LY integrable with respect to h on [a, b] then the inde®nite integral Ø(:) �
(LY)

� :
a

f dh is a regulated function on [a, b] with jumps

(ÄÿØ)(x) � [ f ÿ(Äÿh)](x) and (Ä�Ø)(y) � [ f (Ä�h)](y)

for a < y , x < b.

(ii) If f is RY integrable with respect to h on [a, b] then the inde®nite integral

Ö(:) � (RY)
� b

: f dh is a regulated function on [a, b] with jumps

(ÄÿÖ)(x) � ÿ[ f (Äÿh)](x) and (Ä�Ö)(y) � ÿ[ f �(Ä�h)](y)

for a < y , x < b.

Proof. This is a special case of Lemma 3.26 of Dudley and NorvaisÏa (1999a), where the

corresponding lemma is proved for three function variants of the LY and RY integrals. The

®rst statement follows by taking g � 1 in Lemma 3.26 and using representation (3.42) from

Dudley and NorvaissÏa (1999a). The second follows by taking f � 1 in Lemma 3.26 and

using representation (3.41) from Dudley and NorvaisÏa (1999a). A direct proof of Lemma 2.6

is given in NorvaisÏa (1998, Proposition 7). h

In stochastic analysis, the Lebesgue±Stieltjes integral is used to integrate with respect to

stochastic processes having sample paths of bounded variation. In this case, the values of the

above extensions of the Riemann±Stieltjes integrals agree with the corresponding values of

the Lebesgue±Stieltjes integral (or LS integral) as stated next:

Proposition 2.7. If h is a right-continuous function of bounded variation and f is a regulated

function on [a, b] then the following three integrals exist and are equal:

(LY)

�b

a

f dh � (MPS)

�b

a

f ÿa dh � (LS)

�b

a

f ÿa dh: (2:11)

Proof. We may and do assume that h is a non-decreasing function. The MPS integral in

(2.11) exists by Theorem 5.32 in Hildebrandt (1938). Thus the LY integral in (2.11) exists

and the ®rst equality holds by De®nition 2.5. Since f ÿa is bounded and Borel measureable,

the LS integral also exists. The proof of the second equality is given in the proof of Theorem

4.2 in Dudley and NorvaisÏa (1999b). h

The following statement is a consequence of Theorem 2.4(ii) and HoÈlder's inequality.

Theorem 2.8. Assume h 2 W p and f 2 W q for some p, q . 0 with pÿ1 � qÿ1 . 1. Then

both, the left Young integral (2.9) and the right Young integral (2.10), exist.
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Notice that no restriction on the jumps of the functions h and f is required for the

existence of Young's integrals.

We ®nish with an auxiliary statement used in Section 5 below.

Lemma 2.9. Let f 2 W q, h 2 W p for some q, p . 0 with pÿ1 � qÿ1 . 1 and assume h

continuous. Then the integrals (RS)
� b

a
f ÿa dh and (RS)

� b

a
f dh exist and are equal.

Proof. Given å. 0, choose ä. 0 such that jh(x)ÿ h(y)j, å for jxÿ yj, ä. Let

fxi : i � 0, . . . , ng be a subdivision of [a, b] with mesh less than ä and let fyi : i � 1,

. . . , ng be an intermediate subdivision. Assume ®rst that q . 1. Write q� � q=(qÿ 1). Then,

by HoÈlder's inequality,

Xn

i�1

[ f ÿa (yi)ÿ f (yi)][h(xi)ÿ h(xiÿ1)]

�����
����� < å1ÿ p=q�O q( f )v1=q�

p (h):

If q < 1 then a simpler bound holds because f is of bounded variation. The assertion now

follows from Theorem 2.4.1. h

3. Chain rule

As usual, the composition g � h on [a, b] of two functions g and h is de®ned by

(g � h)(x) � g(h(x)) whenever h lives on [a, b] and g on the range of h. In this section a

chain rule for g � h is given under the assumptions that h is a function of bounded p-

variation for some p 2 (0, 2) and g is a smooth function. Depending on whether the left or

right Young integral is used, two variants of the chain rule are proved. They are analogous to

ItoÃ's formula for the composition of a smooth function and Brownian motion.

The following theorem is basic to this paper.

Theorem 3.1. Let h � (h1, . . . , hd) : [a, b]! Rd , where for every l � 1, . . . , d, hl 2 W p

for some p 2 (0, 2). Let g : Rd ! R be a differentiable function with locally Lipschitz partial

derivatives g9l, l � 1, . . . , d. Then the integrals (LY)
� b

a
(g9l � h) dhl exist and satisfy the

relation

(g � h)(b)ÿ (g � h)(a) �
Xd

l�1

(LY)

�b

a

(g9l � h) dhl �
X
[a,b)

Ä�(g � h)ÿ
Xd

l�1

(g9l � h)Ä�hl

" #

�
X
(a,b]

Äÿ(g � h)ÿ
Xd

l�1

(g9l � h)ÿÄÿhl

" #
, (3:1)

where the two sums in (3.1) converge absolutely. Similarly, the integrals (RY)
� b

a
(g9l � h) dhl

exist and satisfy the relation
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(g � h)(b)ÿ (g � h)(a) �
Xd

l�1

(RY)

�b

a

(g9l � h) dhl �
X
[a,b)

Ä�(g � h)ÿ
Xd

l�1

(g9l � h)�Ä�hl

" #

�
X
(a,b]

Äÿ(g � h)ÿ
Xd

l�1

(g9l � h)Äÿhl

" #
, (3:2)

where the two sums in (3.2) converge absolutely.

Remark. Since the functions g9l � h and hl have bounded p-variation with p , 2, the

existence of the integrals in (3.1) and (3.2) follows from Theorem 2.8. A more general chain

rule can be proved so that the existence of the integrals in (3.1) and (3.2) cannot be derived

from general existence theorems such as Theorem 2.8. The special form of the integrals

involved in the chain rule then plays an important role. In other words, the chain rule

becomes an existence theorem for integrals as in (3.1) and (3.2); see NorvaisÏa (1998) for

details. However, it is also shown there that the assumption p , 2 cannot be replaced by

p � 2.

For sample paths of stochastic processes for which the quadratic variation is de®ned, a

chain rule was proved by FoÈllmer (1981) using a left-Cauchy type integral de®ned for a

®xed sequence of subdivisions.

Proof. First we prove the left Young part, then we indicate the necessary changes needed for

the right Young case. We start by showing that the LY integrals in (3.1) exist. Since a

function of bounded p-variation is bounded there exists a ®nite constant M such that

jhl(x)j < M for all x 2 [a, b] and every l. The partial derivatives g9l of g are locally

Lipschitz, and therefore we can ®nd another ®nite constant K such that, for all u � (ul),

v � (v l) 2 [ÿM , M]d ,

max
1< l<d

jg9l(u)ÿ g9l(v)j < K
Xd

l�1

jul ÿ v lj: (3:3)

It follows that the functions g9l � h, hence (g9l � h)ÿa , as well as (hl)
�
b , are of bounded p-

variation. We conclude from Theorem 2.4 that (g9l � h)ÿa is MPS integrable with respect to

(hl)
�
b for every l. First using the Lipschitz property (3.3) and then applying the Cauchy±

Schwarz inequality, we obtain

X
(a,b)

jÄÿ(g9l � h)Ä�hlj < K max
1< l<d

X
(a,b)

[Ä�hl]
2

 !1=2Xd

k�1

X
(a,b)

[Äÿhk]2

 !1=2

:

Since O 2(hl) ,1 (see (2.1)) the sum on the left-hand side converges absolutely. In view of

De®nition 2.5 we may conclude that the LY integrals in (3.1) exist.

Next we show that the sums in (3.1) converge absolutely. Consider x 2 (a, b] with

Äÿhl(x) 6� 0 for some l. By the mean value theorem, there exist èl 2 [hl(xÿ) ^ hl(x),

hl(xÿ) _ hl(x)], l � 1, . . . , d, such that
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ö(x) � Äÿ(g � h)(x)ÿ
Xd

l�1

(g9l � h)ÿ(x)Äÿhl(x)

�����
�����

�
Xd

l�1

[g9l(hèl (xÿ))ÿ g9l(h(xÿ))][Äÿhl(x)]

�����
����� < K

Xd

l�1

jÄÿhl(x)j2,

where

hèl (xÿ) � (hl(xÿ), . . . , èl, . . . , hd(xÿ))

and K is the Lipschitz constant from (3.3). Therefore we haveX
x2(a,b]

ö(x) < K
Xd

l�1

X
x2(a,b]

[Äÿhl(x)]2:

Since O 2(hl) ,1, the second sum in (3.1) converges absolutely. The ®rst sum can be dealt

with analogously.

We showed that the right-hand side in (3.1) is well de®ned. Now we turn to the proof of

(3.1). Consider any subdivision k � fa � x0 , . . . , xn � bg. For each l � 1, . . . , d, de®ne

the quantities

Il(k) �
Xn

i�1

g9l(h(xiÿ))[(hl)
�
b (xi)ÿ (hl)

�
b (xiÿ1)],

Tl(k) � (g9l � h)(a)Ä�hl(a)�
Xnÿ1

i�1

Äÿ(g9l � h)(xi)Ä
�hl(xi),

Sÿ(k) �
Xn

i�1

Äÿ(g � h)(xi)ÿ
Xd

l�1

g9l(h(xiÿ))Äÿhl(xi)

" #
,

S�(k) �
Xn

i�1

Ä�(g � h)(xiÿ1)ÿ
Xd

l�1

g9l(h(xiÿ1))Ä�hl(xiÿ1)

" #
,

R(k) �
Xn

i�1

g(h(xiÿ))ÿ g(h(xiÿ1�))ÿ
Xd

l�1

g9l(h(xiÿ))[hl(xiÿ)ÿ hl(xiÿ1�)]

" #
:

We obtain the telescoping sum representation

(g � h)(b)ÿ (g � h)(a) �
Xd

l�1

Il(k)�
Xd

l�1

Tl(k)� Sÿ(k)� S�(k)� R(k): (3:4)

We intend to show that the right-hand sides of (3.1) and (3.4) can be made arbitrarily close to

each other by choosing appropriate subdivisions k.

Choose an å. 0. Each Il(k) is an RS sum for (g9l � h)ÿa and (hl)
�
b based on k and its
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intermediate subdivision ó � fx1, . . . , xng. Since the corresponding MPS integrals exist one

can ®nd a subdivision ì of [a, b] such that for all re®nements k of ì and each l, we have

Il(k)ÿ (MPS)

�b

a

(g9l � h)ÿa d(hl)
�
b

����� �����, å: (3:5)

Moreover, since the sums corresponding to the LY integrals in (3.1) converge absolutely,

there exists a ®nite subset ë of (a, b) such that for each í � ë and all l,X
(a,b)ní

[Äÿ(g9l � h)Ä�hl]

�����
�����, å: (3:6)

We showed above that the other two sums in (3.1) converge absolutely. Thus we can ®nd

®nite subsets ëÿ of (a, b] and ë� of [a, b) such that, for each í � ëÿ [ ë�,

X
(a,b]ní

Äÿ(g � h)ÿ
Xd

l�1

(g9l � h)ÿÄÿhl

" #������
������, å, (3:7)

X
[a,b)ní

Ä�(g � h)ÿ
Xd

l�1

(g9l � h)Ä�hl

" #������
������, å: (3:8)

Finally, by virtue of Lemma 2.1 one can ®nd a subdivision ÷ � fyj : j � 0, 1, . . . , mg of

[a, b] such that for each j and all l, Osc(hl; [yjÿ1�, yjÿ]) < å, where the oscillation of a

function is de®ned in (2.2). We use this property to estimate R(k) for any k � ÷. Using the

mean value theorem, we can ®nd vectors (è1,i, . . . , èd,i) such that èl,i 2 [hl(xiÿ1�) ^ hl(xiÿ),

hl(xiÿ1�) _ hl(xiÿ)] and

jR(k)j <
Xd

l�1

Xn

i�1

j(g9l(hèl,i (xiÿ))ÿ g9l(h(xiÿ)))(hl(xiÿ)ÿ hl(xiÿ1�))j

< K
Xd

l�1

Xn

i�1

[hl(xiÿ)ÿ hl(xiÿ1�)]2

< K
Xd

l�1

v p(hl) max
1<i<n

jhl(xiÿ)ÿ hl(xiÿ1�)j2ÿ p
� �

< å2ÿ p K
Xd

l�1

vp(hl), (3:9)

where hèl,i (xiÿ) is de®ned analogously to hè(xÿ) above. The last inequality follows from

k � ÷. Now de®ne the subdivision

k(å) � ì [ ë [ ëÿ [ ë� [ ÷:

By virtue of (3.5)±(3.9) we obtain, for every k(å) � k,
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Xd

l�1

Il(k)� Tl(k)ÿ (LY)

�b

a

(g9l � h) dhl

" #������
������� S�(k)ÿ

X
[a,b)

Ä�(g � h)ÿ
Xd

l�1

(g9l � h)Ä�hl

" #������
������

� Sÿ(k)ÿ
X
(a,b]

Äÿ(g � h)ÿ
Xd

l�1

(g9l � h)ÿÄÿhl

" #������
������� jR(k)j

< 2(d � 1)å� å2ÿ p K
Xd

l�1

v p(hl):

By virtue of (3.4) and since å. 0 is arbitrary, this completes the proof of (3.1).

The proof of (3.2) is analogous. Instead of the telescoping sum representation (3.4), we

now have

(g � h)(b)ÿ (g � h)(a)

�
Xd

l�1

Xn

i�1

g9l(h(xiÿ1�))[(hl)
ÿ(xi)ÿ (hl)

ÿ
a (xiÿ1)]

�
Xd

l�1

(g9l � h)(b)Äÿhl(b)ÿ
Xn

i�2

Ä�(g9l � h)(xiÿ1)Äÿhl(xiÿ1)

" #

�
Xn

i�1

Äÿ(g � h)(xi)ÿ
Xd

l�1

g9l(h(xi))Ä
ÿhl(xi)

" #

�
Xn

i�1

Ä�(g � h)(xiÿ1)ÿ
Xd

l�1

g9l(h(xiÿ1�))Ä�hl(xiÿ1)

" #

�
Xn

i�1

g(h(xiÿ))ÿ g(h(xiÿ1�))ÿ
Xd

l�1

g9l(h(xiÿ1�))[hl(xiÿ)ÿ hl(xiÿ1�)]

" #
:

This concludes the proof of Theorem 3.1. h

4. Linear integral equations

In what follows, we solve linear left and right Young integral equations, using the chain rule

from the previous section.

We say that a function F, LY integrable with respect to f on [a, b], satis®es the

homogenous forward linear integral equation with respect to f if, for all y 2 [a, b],

F(y) � 1� (LY)

� y

a

F d f : (4:1)
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Analogously, a function G, RY integrable with respect to f on [a, b], satis®es the

homogeneous backward linear integral equation with respect to f if, for all y 2 [a, b],

G(y) � 1� (RY)

�b

y

G d f : (4:2)

Let f be regulated and ô � [a, b] a non-degenerate interval, open or closed at either end. For

each ä. 0, set I�(ä; ô) � fx 2 ô : j(Ä�ô f )(x)j. äg andY
I(ä;ô)

(1� Ä f )eÿÄ f �
Y

Iÿ(ä;ô)

(1� Äÿô f )eÿÄ
ÿ
ô f

Y
I�(ä;ô)

(1� Ä�ô f )eÿÄ
�
ô f :

De®ne the in®nite productY
ô

(1� Ä f )eÿÄ f � lim
ä#0

Y
I(ä;ô)

(1� Ä f )eÿÄ f ,

whenever it converges absolutely. Finally, consider the real-valued functions

Ea( f )(y) � e f ( y)ÿ f (a)
Q

[a, y](1� Ä f )eÿÄ f for y 2 (a, b],

1 for y � a,

(
and

Eb( f )(y) � e f (b)ÿ f ( y)
Q

[ y,b](1� Ä f )eÿÄ f for y 2 [a, b),

1 for y � b,

(
provided each of the in®nite products involved in these expressions converges absolutely.

Notice that Ea( f ) has the form of the DoleÂans-Dade stochastic exponential when f is a

purely discontinuous semimartingale (cf. (1.7) above).

Now we are well prepared to solve the linear forward and backward equations (4.1) and

(4.2).

Theorem 4.1. Assume f 2 W p for some p 2 (0, 2). Then the functions Ea( f ) and Eb( f )

are well de®ned. Moreover, in W r, for any r > p with pÿ1 � rÿ1 . 1, the equations (4.1)

and (4.2) have unique solutions Ea( f ) and Eb( f ), respectively.

Remarks. (1) A glance at the structure of Ea( f ) and Eb( f ) reveals the special role of a jump

size ÿ1 of f at y0 2 (a, b), say. Then both functions vanish for y . y0 and y , y0,

respectively. Now consider a solution F of (4.1). Suppose ®rst Äÿ f (y0) � ÿ1. By Lemma

2.6,

F(y0) � 1� (LY)

� y0

a

F d f � 1� (LY)

� y0ÿ

a

F d f ÿ F(y0ÿ) � 0:

If y 2 (y0, b], by additivity of the LY integral (Proposition 3.25 of Dudley and NorvaisÏa

1999a),

416 T. Mikosch and R. NorvaisÏa



F(y) � 1� (LY)

� y0

a

F d f � (LY)

� y

y0

F d f � (LY)

� y

y0

F d f :

Thus F(y) � 0 for y 2 [y0, b]. Now suppose Ä� f (y0) � ÿ1. By Proposition 3.25 of Dudley

and NorvaisÏa (1999a) and De®nition 2.5, we have, for all y 2 (y0, b],

F(y) � 1� (LY)

� y0

a

F d f � (MPS)

� y

y0

Fÿy0
d f �y ÿ F(y0)�

X
( y0, y)

ÄÿFÄ� f

� (MPS)

� y

y0

Fÿy0
d f �y �

X
( y0, y)

ÄÿFÄ� f :

Since f �y is right-continuous at y0, F(y) vanishes for each y 2 (y0, b].

(2) Notice that the form of the solution F at jump points of f depends on the de®nition

of the integral involved in (4.1). For example, Hildebrandt (1959) using W.H. Young's

integral and assuming f of bounded variation, obtains for a discontinuous function f a

solution F different from ours. A similar remark applies to (4.2) and the right Young

integral.

For the proof of Theorem 4.1 we need the following auxiliary result.

Lemma 4.2. Let f 2 W p for some p 2 (0, 2). Then the function

ö(y) � ö( f )(y) �
Q

[a, y](1� Ä f )eÿÄ f for y 2 (a, b],

1 for y � a,

(
(4:3)

is well de®ned, ö 2 W p=2 and satis®es the relations

ö(y) � ö(yÿ)[1� Äÿ f (y)]eÿÄ
ÿ f ( y) for y 2 (a, b], (4:4)

ö(y�) � ö(y)[1� Ä� f (y)]eÿÄ
� f ( y) for y 2 [a, b): (4:5)

Proof. First we show that (4.3) is well de®ned. A Taylor series expansion with remainder

yields

î(u) :� (1� u)eÿu � 1ÿ è(u)u2,

where 1=(4
���
e
p

) < è(u) < 3
���
e
p
=4 for juj < 1

2
. It follows thatX

[a,b]n I

j1ÿ î(Ä f )j < 3
���
e
p
4

O 2
2( f ) ,1,

where I � Iÿ(0:5; [a, b]) [ I�(0:5; [a, b]). Therefore the products in (4.3) converge

absolutely for every y 2 (a, b]. Hence the function ö is well de®ned.

Next we show that
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ö(xÿ) �
Y
[a,x)

(1� Ä f )eÿÄ f for x 2 (a, b]: (4:6)

De®ne, for a < z , y < b,

U (z, y) � sup
ä. 0

���� Y
I(ä;[z, y])

(1� Ä f )eÿÄ f

����:
and

kUk1 � supfU (z, y) : a < z , y < bg:
A Taylor series expansion with remainder gives

log(1� u) � uÿ è(u)u2, (4:7)

where 2=9 < è(u) < 2 for juj < 1
2
. Write

I�(ä; [z, y]) � [I�(ä; [z, y])nI�(0:5; [z, y])] [ [Iÿ(ä; [z, y])nIÿ(0:5; [z, y])]:

For a < z , y < b and ä 2 (0, 0:5),Y
I(ä;[z, y])

(1� Ä f )eÿÄ f

�����
����� � Y

I(0:5;[z, y])

(1� Ä f )eÿÄ f

�����
����� exp

X
I�(ä;[z, y])

[log(1� Ä f )ÿ Ä f ]

( )

< sup
a<z , y<b

Y
I(0:5;[z, y])

(1� Ä f )eÿÄ f

�����
�����

( )
expfÿ2

9
O 2

2( f )g,1:

Here we used the fact that O 2( f ) ,1. We conclude that kUk1,1.

Now we turn to the proof of (4.6). Assume x 2 (a, b]. An application of the inequality

jeu ÿ 1j < jujejuj for u 2 R and (4.7) implies thatY
I(ä;[a,x))

(1� Ä f )eÿÄ f ÿ
Y

I(ä;[a, y])

(1� Ä f )eÿÄ f

�����
�����

�
Y

I(ä;[a, y])

(1� Ä f )eÿÄ f exp
X

I(ä;[ y,x))

[log(1� Ä f )ÿ Ä f ]

( )
ÿ 1

�����
�����

< 2e2O 2
2( f )kUk1

X
[ y,x)

(Ä f )2 (4:8)

for every ä 2 (0, 0:5) and y 2 (a, x) such that absolute values of all jumps on [y, x) do not

exceed 0.5. Letting ä#0, we obtainY
[a,x)

(1� Ä f )eÿÄ f ÿ ö(y)

�����
����� < 2e2O 2

2( f )kUk1
X
[ y,x)

(Ä f )2:

Since O 2( f ) ,1, choosing y close enough to x, we obtain that ö(xÿ) exists and (4.6) holds.

Notice that, for every ä. 0,
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Y
I(ä;[a,x])

(1� Ä f )eÿÄ f � (1� Äÿ f (x))eÿÄ
ÿ f (x)

Y
I(ä;[a,x))

(1� Ä f )eÿÄ f :

Letting ä#0 and using (4.6), we obtain (4.4). Similarly, we can show that ö(x�) exists for

x 2 [a, b) and (4.5) holds.

Next we show ö 2 W p=2. Since ö is regulated we may assume without loss of generality

that jumps of size greater than 0.5 only appear at the end-points a and b. For any

subdivision k � fa � x0 , x1 , . . . , xn � bg, we have

Xn

i�1

jö(xi)ÿ ö(xiÿ1)j p=2 � A� B�
Xnÿ1

i�2

jö(xi)ÿ ö(xiÿ1)j p=2, (4:9)

where

A � jö(x1)ÿ ö(a)j p=2 < jö(x1)ÿ ö(a�)j p=2 � jÄ�ö(a)j p=2,

B � jö(b)ÿ ö(xnÿ1)j p=2 < jÄÿö(b)j p=2 � jö(bÿ)ÿ ö(xnÿ1)j p=2:

Since I(0:5; (a, b)) � Æ, for each i � 2, . . . , nÿ 1 it follows as in (4.8) that

jö(xi)ÿ ö(xiÿ1)j � ö(xiÿ1)
Y

[xiÿ1,xi]

(1� Ä f )eÿÄ f ÿ 1

�����
�����

< 2e2O 2
2( f )kUk1O 2

2( f ; [xiÿ1, xi]):

We also have the bounds

jö(x1)ÿ ö(a�)j � (1� Ä� f (a))eÿÄ
� f (a)

Y
(a,x1]

(1� Ä f )eÿÄ f ÿ 1

�����
�����

< 2e2O 2
2( f )kUk1O 2

2( f ; (a, x1]),

jö(bÿ)ÿ ö(xnÿ1)j � ö(xnÿ1)
Y

[xnÿ1,b)

(1� Ä f )eÿÄ f ÿ 1

�����
�����

< 2e2O 2
2( f )kUk1O 2

2( f ; [xnÿ1, b)):

By virtue of (4.9), it follows that

Xn

i�1

jö(xi)ÿ ö(xiÿ1)j p=2 < jÄ�ö(a)j p=2 � (2kUk1) p=2e pO 2
2( f )

X
(a,b)

jÄ f j p � jÄÿö(b)j p=2:

Since k is arbitrary and f 2 W p, the bound implies that vp=2(ö) ,1. The proof of Lemma

4.2 is now complete. h
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Proof of Theorem 4.1. We only prove that part of the theorem which concerns (4.1). The

other part is analogous. Bearing in mind what was said above about jumps of size ÿ1 of f

(Remark 1 following Theorem 4.1) and rede®ning the function f at the point b if necessary,

we may and do assume that f has no jumps of size ÿ1 on [a, b].

The existence of Ea( f ) follows from Lemma 4.2. We only prove that Ea( f ) satis®es (4.1)

by an application of the chain rule (3.1). The uniqueness of this solution follows from

Theorem 5.21 in Dudley and NorvaisÏa (1999a).

De®ne the functions g(u, v) � veu for u, v 2 R and h � (ø, ö), where ø(y) �
f (y)ÿ f (a), y 2 [a, b], and ö is de®ned by (4.3). By assumption on f , ø 2 W p. By

Lemma 4.2, ö 2 W p=2. Thus Ea( f ) 2 W p, as a product of two functions from W p, and

the conditions of Theorem 3.1 are satis®ed for g � f with d � 2. Notice that

g � h � g91 � h � Ea( f ) and g92 � h � e fÿ f (a) � eø:

An application of the chain rule (3.1) yields

(g � h)(y)ÿ (g � h)(a) � Ea( f )(y)ÿ 1

� (LY)

� y

a

Ea( f ) d f � (LY)

� y

a

eø dö

�
X
(a, y]

[ÄÿEa( f )ÿ (Ea( f ))ÿÄÿ f ÿ eøÿÄÿö]

�
X
[a, y)

[Ä�Ea( f )ÿ Ea( f )Ä� f ÿ eøÄ�ö],

where the LY integrals are well de®ned and the two sums converge absolutely. By (4.4) and

(4.5), it follows that

ÄÿEa( f )(x) � (Ea( f ))ÿ(x)Äÿ f (x), x 2 (a, b], (4:10)

Ä�Ea( f )(x) � Ea( f )(x)Ä� f (x), x 2 [a, b): (4:11)

Thus we have to show that

(LY)

� y

a

eø dö �
X
(a, y]

eøÿÄÿö�
X
[a, y)

eøÄ�ö (4:12)

for each y 2 (a, b]. For notational convenience, we proceed only for y � b. By the de®nition

of the LY integral, (4.12) with y � b is equivalent to

(MPS)

�b

a

eø
ÿ
a dö�b �

X
(a,b]

eøÿÄÿö�b , (4:13)

where

(Äÿö�b )(x) � ö(x�)ÿ ö(xÿ) if x 2 (a, b),

(Äÿö)(b) if x � b:

�
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Choose an å. 0. Since ö is regulated, by Lemma 2.1, one can ®nd a subdivision

÷ � fyj : j � 0, 1, . . . , mg of [a, b] such that Osc(ö; [yjÿ1�, yjÿÿ]) , å for all j. Since the

MPS integral in (4.13) exists and the sum on the right-hand side converges absolutely, one

can assume ÷ so re®ned thatXn

i�1

eø
ÿ(xi)[ö�b (xi)ÿ ö�(xiÿ1)]ÿ (MPS)

�b

a

eø
ÿ
a dö�b

�����
�����, å

and Xn

i�1

eø
ÿ(xi)[ö�b (xi)ÿ ö(xiÿ)]ÿ

X
(a,b]

eø
ÿ
Äÿö�b

�����
�����, å

for all k � fxi : i � 1, . . . , ng � ÷. ThereforeXn

i�1

eø
ÿ(xi)[ö�b (xi)ÿ ö�(xiÿ1)]ÿ

Xn

i�1

eø
ÿ(xi)[ö�b (xi)ÿ öÿ(xi)]

�����
�����

�
Xn

i�1

eø
ÿ(xi)[ö(xiÿ)ÿ ö(xiÿ1�)]j

�����
< ekøk1 max

1<i<n
(Osc(ö; [xiÿ1�, xiÿ]))1ÿ p=2

Xn

i�1

jö(xiÿ)ÿ ö(xiÿ1�)j p=2

< å1ÿ p=2ekøk1vp=2(ö):

Since p , 2, vp=2(ö) ,1 and å is arbitrary we conclude that (4.13) holds. This completes

the proof of Theorem 4.1. h

Remarks. (1) For a real-valued function f on [a, b] the product integral with respect to f on

[a, b] is de®ned as the limit

lim
(k)

Yn

i�1

[1� f (xi)ÿ f (xiÿ1)], (4:14)

if it exists under re®nements of subdivisions k � fa � x0 , � � � , xn � bg. By Theorem 4.4

and Lemma 2.14 of Dudley and NorvaisÏa (1999a), if f 2 W p for some p 2 (0, 2), then the

product integral (4.14) exists and is equal to Ea( f )(b). Moreover, by Theorem 4.26 of Dudley

and NorvaisÏa (1999a), if f is in addition either right- or left-continuous, then the limit (4.14)

exists if and only if there exists the limit

lim
jkj#0

Yn

i�1

[1� f (xi)ÿ f (xiÿ1)],

where the mesh jkj � maxi(xi ÿ xiÿ1), and both are equal. The latter relation allows one to

calculate numerically the solutions of homogeneous linear integral equations in an intuitively

appealing way.

(2) Dudley and NorvaisÏa solve (4.1) when f and F take values in a (possibly non-
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commutative) Banach algebra. Their method of proof is based on establishing a Duhamel

identity from which the solution of a linear integral equation is derived as a special case.

Next we consider non-homogeneous linear integral equations. As before, assume that the

functions F, G, f and g are regulated on [a, b]. We say that the function F, LY integrable

with respect to f on [a, b], satis®es the non-homogeneous forward linear integral equation

if, for all y 2 [a, b],

F(y) � F(a)� (LY)

� y

a

F d f � g(y)ÿ g(a): (4:15)

Similarly, we say that the function G, RY integrable with respect to f on [a, b] satis®es the

non-homogeneous backward linear integral equation if, for all y 2 [a, b],

G(y) � G(b)� (RY)

�b

y

G d f � g(b)ÿ g(y): (4:16)

We will solve these non-homogeneous linear integral equations assuming f , g 2 W p for

some p 2 (0, 2) and that the solutions of the corresponding homogeneous linear integral

equations do not vanish.

Theorem 4.3. Assume f , g 2 W p for some 0 , p , 2 and Ä� f (x) 6� ÿ1 6� Äÿ f (y) for

a < x , b and a , y < b. Then the following hold:

(i) The function Ea( f ) exists and does not vanish at any point of [a, b], the integral

(LY)
� b

a
(Ea( f ))ÿ1 dg exists, the sumsX

(a,b]

Äÿ f Äÿ g

Ea( f )
,

X
[a,b)

Ä� f Ä� g

Ea( f ))�
(4:17)

converge absolutely and the function F given on [a, b] by

F(y) � Ea( f )(y) F(a)� (LY)

� y

a

dg

Ea( f )
ÿ
X
(a, y]

Äÿ f Äÿ g

Ea( f )
ÿ
X
[a, y)

Ä� f Ä� g

(Ea( f ))�

" #
is the unique solution of (4.15) in W r for any r > p with pÿ1 � rÿ1 . 1.

(ii) The function Eb( f ) exists and does not vanish at any point of [a, b], the integral

(RY)
� b

a
(Eb( f ))ÿ1 dg exists, the sumsX

(a,b]

Äÿ f Äÿ g

(Eb( f ))ÿ
,

X
[a,b)

Ä� f Ä� g

Eb( f )

converge absolutely and the function G given on [a, b] by

G(y) � Eb( f )(y) G(b)� (RY)

�b

y

dg

Eb( f )
�
X
( y,b]

Äÿ f Äÿ g

(Eb( f ))ÿ
�
X
[ y,b)

Ä� f Ä� g

Eb( f )

" #
is the unique solution of (4.16) in W r for any r > p with pÿ1 � rÿ1 . 1.
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Remark. The solution of a non-homogeneous linear stochastic differential equation analogous

to (4.15) is given in Jacod (1979, p. 194).

Proof. We only prove part (i) of the theorem because the proof of part (ii) is similar. The

existence of Ea( f ) in W p follows from Theorem 4.1. The function Ea( f ))ÿ1 is bounded

since, for each y 2 [a, b],

jEa( f )(y)j > expf f (y)ÿ f (a)ÿ 2O 2
2( f )g

Y
I(0:5;[a, y])

(1� Ä f )eÿÄ f

�����
����� > C,

for some C . 0, where we have made use of (4.7) and the fact that f has no jumps of size

ÿ1. Then (Ea( f ))ÿ1 2 W p and (Ea( f ))ÿ1 is LY integrable with respect to g by Theorem

2.8. The absolute convergence of the sums (4.17) follows from HoÈlders inequality in the form

of Young (1936, p. 252).

The proof of the uniqueness of the solution (4.15) follows as in the proof of Theorem

5.21 in Dudley and NorvaisÏa (1999a). Thus it remains to show that F is indeed a solution.

We again apply the chain rule. Consider the composition g � h of the functions

g(u, v) � uv for u, v 2 R and h(y) � (h1(y), h2(y)) for y 2 [a, b], where h1(y) �
Ea( f )(y) and

h2(y) � F(a)� (LY)

� y

a

dg

Ea( f )
ÿ
X
(a, y]

Äÿ f Äÿ g

Ea( f )
ÿ
X
[a, y)

Ä� f Ä� g

(Ea( f ))�
:

For each y 2 [a, b], let

U1(y) �
X
(a,b]

Äÿ f Äÿ g

Ea( f )
and U2(y) �

X
[a, y)

Ä� f Ä� g

(Ea( f ))�
:

Note that U1(a) � U2(a) � 0. Using HoÈlder's inequality as above, we can show that U1,

U2 2 W p. Thus h2 2 W p because the inde®nite left Young integral has bounded p-variation

by Proposition 3.32 of Dudley and NorvaisÏa (1999a). Note that F � g � h � h1 h2. Since

Ea( f ) is the solution of the homogeneous equation (4.1), the substitution rule for the left

Young integrals (see Theorem 9 in NorvaisÏa 1998) yields

(LY)

� y

a

(g91 � h) dh1 � (LY)

� y

a

h2 dEa( f ) � (LY)

� y

a

F d f :

Another application of the substitution rule implies that

(LY)

� y

a

(g92 � h) dh2 � (LY)

� y

a

Ea( f ) dh2

� g(y)ÿ g(a)ÿ (LY)

� y

a

Ea( f ) dU1 ÿ (LY)

� y

a

Ea( f ) dU2:

We show next that, for each y 2 [a, b],
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(LY)

� y

a

Ea( f ) dU1 � (MPS)

� y

a

(Ea( f ))ÿa dU1 �
X
(a, y]

(Ea( f ))ÿ

Ea( f )
Äÿ f Äÿ g: (4:18)

The ®rst equality holds because U1 is right-continuous. To show the second one, ®x

y 2 (a, b]. Given a ®nite set ì � fzj : j � 1, . . . , mg � (a, y] and a subdivision k �
fxi : i � 0, . . . , ng of [a, b] such that ì � k, for each j � 1, . . . , m, let i( j) 2 f1, . . . , ng be

an integer such that xi( j) � zj. Then, for a Riemann±Stieltjes sum based on k and on an

intermediate subdivision ó � fyi : i � 1, . . . , ng of k, we have����S((Ea( f ))ÿa , U1, k, ó )ÿ
X
(a, y]

(Ea( f ))ÿ

Ea( f )
Äÿ f Äÿ g

����
< R(ì)�

Xn

i�1

(Ea( f ))ÿa (yi)
X

(xiÿ1,xi]

Äÿ f Äÿ g

Ea( f )
ÿ
X
ì

(Ea( f ))ÿ

Ea( f )
Äÿ f Äÿ g

�����
�����

< 2R(ì)�
Xm

j�1

j(Ea( f ))ÿa (yi( j))ÿ (Ea( f ))ÿa (xi( j))j jÄ
ÿ f (zj)Äÿ g(zj)j
jEa( f )(zj)j ,

where

R(ì) � Cÿ1kEa( f )k1
X

(a, y]nì
jÄÿ f Äÿ gj:

We can make the right-hand side of the last bound arbitrarily small by taking ®rst ì so that R(ì)

is small and then taking k � ì so that xi( j) ÿ xi( j)ÿ1 is small. This will also make the sum on the

right-hand side small because (Ea( f ))ÿa is left-continuous. Therefore (4.18) holds for each

y 2 [a, b]. Since Ä�U2 � (Ä� f Ä� g)=(Ea( f ))�, by De®nition 2.5, for each y 2 [a, b], we have

(LY)

� y

a

Ea( f ) dU2 � (MPS)

� y

a

(Ea( f ))ÿa d(U2)�y �
Ea( f )

(Ea( f ))�
Ä� f Ä� g

� �
(a)

�
X
(a, y)

ÄÿEa( f )

(Ea( f ))�
Ä� f Ä� g:

Using the left-continuity of (Ea( f ))ÿa , we can show in the same way as for the second

equality in (4.18) that

(MPS)

� y

a

(Ea( f ))ÿa d(U2)�y �
X
(a, y)

(Ea( f ))ÿ

(Ea( f ))�
Ä� f Ä� g:

Therefore, for each y 2 [a, b], we have

(LY)

� y

a

Ea( f ) dU2 �
X
[a, y)

Ea( f )

(Ea( f ))�
Ä� f Ä� g: (4:19)

By (4.10), (4.11) and Lemma 2.6, because U1 is right-continuous and U2 is left-continuous, it

follows that
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Äÿ(g � h)ÿ (g91 � h)ÿÄÿh1 ÿ (g92 � h)ÿÄÿh2 � Äÿh1Ä
ÿh2

� Äÿ f Äÿ g ÿ ÄÿEa( f )ÄÿU1

� Ea( f )ÿ

Ea( f )
Äÿ f Äÿ g

and

Ä�(g � h)ÿ (g91 � h)Ä�h1 ÿ (g92 � h)Ä�h2 � Ä�h1Ä
�h2

� Ä� f Ä� g ÿ Ä�Ea( f )Ä�U2

� Ea( f )

Ea( f )�
Ä� f Ä� g,

on (a, b] and [a, b), respectively. It ®nally follows from the chain rule for g � f that, for each

y 2 [a, b],

F(y)ÿ F(a) � (g � h)(y)ÿ (g � h)(a)

� (LY)

� y

a

(g91 � h) dh1 � (LY)

� y

a

(g92 � h) dh2

�
X
(a,y]

[Äÿ(g � h)ÿ (g91 � h)ÿÄÿh1 ÿ (g92 � h)ÿÄÿh2]

�
X
[a, y)

[Ä�(g � h)ÿ (g91 � h)Ä�h1 ÿ (g92 � h)Ä�h2]

� (LY)

� y

a

F d f � g(y)ÿ g(a)ÿ (LY)

� y

a

Ea( f ) dU1 ÿ (LY)

� y

a

Ea( f ) dU2

�
X
(a, y]

(Ea( f ))ÿ

Ea( f )
Äÿ f Äÿ g �

X
[a, y)

Ea( f )

(Ea( f ))�
Ä� f Ä� g

� (LY)

� y

a

F d f � g(y)ÿ g(a):

The last equality holds by (4.18) and (4.19). This concludes the proof of Theorem 4.3. h

We next show that a solution of the non-homogeneous linear equation (4.15) need not

vanish at points following jumps of f of size ÿ1 as in the case of homogeneous linear

equations (see Remark 1 following Theorem 4.1). Due to the regularity of f there are at

most ®nitely many jumps of size ÿ1. Suppose ®rst that Äÿ f (x) � ÿ1 for some x 2 (a, b).

Consider any y 2 [x, b] such that Äÿ[x, y] f and Ä�[x, y] f do not assume the value ÿ1 on [x, y],

so that f , g 2 W p satisfy the conditions of Theorem 4.3 on the interval [x, y]. If F is a

solution of (4.15) then by adding and subtracting F(x) and F(xÿ) we obtain
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F(y) � F(y)ÿ F(x)ÿ ÄÿF(x)� F(xÿ) � F(y)ÿ F(x)� Äÿ g(x)

� Äÿ g(x)� (LY)

� y

x

F d f � g(y)ÿ g(x)

� Ex( f )(y) Äÿ g(x)� (LY)

� y

x

dg

Ex( f )
ÿ
X
(x, y]

Äÿ f Äÿ g

Ex( f )
ÿ
X
[x, y)

Ä� f Ä� g

(Ex( f ))�

" #
:

The second equality follows from Lemma 2.6. The third follows by additivity of the left

Young integral (cf. Proposition 3.25 of Dudley and NorvaisÏa 1999a), while the last equality is

a consequence of Theorem 4.3 with a � x and F(a) � Äÿ g(x).

Suppose now that Ä� f (x) � ÿ1 for some x 2 [a, b). Consider any y 2 (x, b] such that

Äÿ(x, y] f and Ä�(x, y] f do not assume the value ÿ1 on (x, y]. To provide the solution of (4.15)

in this case we need auxiliary functions ~f , ~g on [x, y] de®ned by ~f � f , ~g � g on (x, y]

and ~f (x) � f (x�), ~g(x) � g(x�). Notice that ~f �y � f �y on [x, y] and ~f , ~g satisfy the

conditions of Theorem 4.3 on the interval [x, y]. If F is the solution of (4.15) then, as in

the previous case, it follows that

F(y) � F(y)ÿ F(x�)ÿ Ä�F(x)� F(x) � F(y)ÿ F(x�)� Ä� g(x)

� Ä� g(x)� (LY)

� y

x

F d ~f � ~g(y)ÿ ~g(x)

� Ex( ~f )(y) Ä� g(x)� (LY)

� y

x

d~g

Ex(~f )
ÿ
X
(x, y]

Äÿ~f Äÿ~g

(Ex(~f )
ÿ
X
[x, y)

�~f Ä�~g

(Ex(~f ))�

" #
:

We can give another form to the solution F by letting

Ex�( f ) :� Ex( ~f ) and (LY)

� y

x�
h d f :� (LY)

� y

a

h d ~f :

The ®rst de®nition is a natural one for the product over the interval [x�, y], while the second

de®nition can be justi®ed as an analogue to the central Young integral given by Lemma 3.24

in Dudley and NorvaisÏa (1999a). Then the above expression for the solution F(y) is equal to

Ex�( f )(y) Ä� g(x)� (LY)

� y

x�

dg

Ex�( f )
ÿ
X
(x, y]

Äÿ f Äÿ g

Ex�( f )
ÿ
X
(x, y)

Ä� f Ä� g

(Ex�( f ))�

" #
:

We ®nish this section by illustrating Theorem 4.3 in a simple situation.

Example. Assume A, C Riemann integrable and D, h 2 W p for some 0 , p , 2. To solve

the equation

F(y) � F(a)�
� y

a

[A(x)F(x)� C(x)] dx� (LY)

� y

a

D dh, y 2 [a, b],

we apply Theorem 4.3 with

426 T. Mikosch and R. NorvaisÏa



g(y) �
� y

a

C(x) dx� (LY)

� y

a

D dh and f (y) �
� y

a

A(x) dx:

Notice that f is continuous and has bounded variation. By Proposition 3.32 of Dudley and

NorvaisÏa (1999a), g has bounded (1 _ p)-variation. Theorem 4.3 then yields the solution

F(y) � e

� y

a
A(z)dz

F(a)�
� y

a

C(x)e
ÿ
� x

a
A(z)dz

dx� (LY)

� y

a

D(x)e
ÿ
� x

a
A(z)dz

dh(x)

� �
which is unique in W r for any r 2 [1 _ p, p�), where

p� � p=( pÿ 1) if 1 , p ,1,

1 if 0 , p < 1:

�
(4:20)

5. Applications to stochastic integral equations

5.1. The Langevin equation

Consider the Langevin equation

_u(t) � ÿâu(t)� L(t) (5:1)

describing the velocity u(t) � _x(t) of a particle with x-coordinate x(t) at time t, while L

represents the random force acting on the particle. This equation is symbolic in so far as u

has no time derivative if one assumes that L exhibits highly erratic behaviour. For a LeÂvy

process X , Doob (1942) wrote the Langevin equation in the form

du(t) � ÿâu(t) dt � dX (t) (5:2)

meaning that, for continuous f and a , b,�b

a

f (t) du(t) � ÿâ
�b

a

f (t)u(t) dt �
�b

a

f (t) dX (t)

with probability 1. The ®rst two integrals are de®ned as limits in probability of the

corresponding RS sums, and the third (stochastic) integral is de®ned as proposed by Wiener

and Paley (1934, pp. 151±157), and Doob (1937, pp. 131±134). Then (5.2) has solution (cf.

Doob 1942, p. 360)

u(t) � eÿâ t u(0)�
� t

0

eâs dX (s)

� �
, t > 0,

with probability 1. Doob (1942) gave a detailed description of the properties of u when X is

symmetric á-stable LeÂvy motion with 0 ,á < 2. He called u an OU(á) process if 0 ,á < 2

or simply an OU process if á � 2. According to Doob, the description of the OU process

goes back at least to Smoluchowski, although it was ®rst derived by Ornstein and Uhlenbeck

as the process describing the velocity of a particle in Brownian motion.
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In stochastic analysis ItoÃ's integral is used to model the random force L in (5.1). The

Langevin equation then takes on the form

u(t) � u(0)ÿ â

� t

0

u(s) ds� (I)

� t

0

ó (s) dB(s), (5:3)

where B is standard Brownian motion and ó is a deterministic measurable, locally bounded

function; cf. Section 5.6 of Karatzas and Shreve (1991). The unique solution of (5.3) is given

by

u(t) � eÿâ t u(0)� (I)

� t

0

eâsó (s) dB(s)

� �
, t > 0: (5:4)

The process

g(t) � (I)

� t

0

ó (s) dB(s), 0 < t < T ,

is a semimartingale and, by Theorem 1 in LeÂpingle (1976), g 2 W p � W p([0, T ]) for

2 , p ,1 with probability 1. Thus, by Theorem 2.4(i), the integral (RS)
� t

0
expfâsg dg(s)

exists on [0, T ] path by path. By associativity of the ItoÃ integral, and since the ItoÃ integral is

the limit in probability of certain RS sums, we also have on [0, T ],

(I)

� t

0

eâsó (s) dB(s) � (I)

� t

0

eâs dg(s) � (RS)

� t

0

eâs dg(s):

So the function (5.4) has RS integral representation

u(t) � eÿâ t u(0)� (RS)

� t

0

eâs dg(s)

� �
, 0 < t < T : (5:5)

In an insurance context and using different arguments, this was observed by Harrison (1977,

Proposition 2.1).

Given a (deterministic) function g 2 W p, we say that u satis®es the Langevin equation

if

u(t) � u(0)ÿ â

� t

0

u(s) ds� g(t)ÿ g(0), 0 < t < T : (5:6)

If g is a stochastic process, we apply (5.6) path by path. De®ne p� by (4.20).

Theorem 5.1. Let g 2 W p for some 0 , p , 2. Then (5.5) is the unique solution in W r of

(5.6) for any r 2 [1 _ p, p�).

Proof. We apply Theorem 4.3 with f (t) � ÿât, so that f , g 2 W 1_ p. The value of a

Riemann integral is the limit of Riemann sums when the mesh of the subdivisions converges

to zero. Alternatively, this value is the limit of the Riemann sums under re®nements of the

subdivisions. Bearing this fact in mind and utilizing the fact that Riemann integrable

functions are bounded and continuous almost everywhere, we obtain
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(LY)

� t

0

u(s) d(ÿâs) � ÿâ
� t

0

uÿ0 (s) ds � ÿâ
� t

0

u(s) ds:

Thus (5.6) is a particular case of (4.15). By Theorem 4.3, expfâtg is LY integrable with

respect to g, and

u(t) � eÿâ t u(0)� (LY)

� t

0

eâs dg(s)

� �
(5:7)

is the solution in W r, r 2 [1 _ p, p�), of (5.6). By De®nition 2.5 above and Lemma 3.2 of

Dudley and NorvaisÏa (1999a), we have

(LY)

� t

0

eâs dg(s) � (MPS)

� t

0

eâs dg�t (s)� (Ä� g)(0) � (MPS)

� t

0

eâs dg�0, t(s),

where

g�0, t(s) � g(s�) for s 2 (0, t), gt�0, g(0) � g(0), g�0, t(t) � g(t):

By Theorem 3.9 and Corollary 3.18 of Dudley and NorvaisÏa (1999a) and by Theorem II.10.9

in Hildebrandt (1963), for every t 2 [0, T ],

(MPS)

� t

0

eâs dg�0, t(s) � (MPS)

� t

0

eâs dg(s) � (RS)

� t

0

eâs dg(s):

By virtue of (5.7), (5.5) is the solution of (5.6) as stated. h

Next we give a solution to the Langevin equation when the random force L is modelled

by a particular non-semimartingale. The following equation and its solution should be

compared with the corresponding expression from ItoÃ calculus; cf. (5.3) and (5.4).

Proposition 5.2. Let BH be fractional Brownian motion on [0, T ] with index H 2 (0:5, 1)

and ó 2 W p� for some p 2 (Hÿ1, 1). Then ó is RS integrable with respect to almost all

sample paths of BH , and the equation

u(t) � u(0)ÿ â

� t

0

u(s) ds� (RS)

� t

0

ó (s) dBH (s), 0 < t < T , (5:8)

has the unique solution

u(t) � eÿâ t u(0)� (RS)

� t

0

eâsó (s) dBH (s)

� �
, 0 < t < T , (5:9)

in W r for any r 2 (Hÿ1, (1ÿ H)ÿ1).

Proof. Let p9 2 (Hÿ1, p). Then ( p�)ÿ1 � ( p9)ÿ1 . ( p�)ÿ1 � pÿ1 � 1. Since almost all

sample paths of BH are continuous and have bounded p9-variation (cf. Proposition 2.2), the

RS integral in (5.8) exists by Theorem 2.4(i) path by path. By Proposition 3.32 of Dudley and

NorvaisÏa (1999a), the inde®nite integral g(t) � (RS)
� t

0
ó dBH is in W q with probability 1 for

any q 2 (Hÿ1, 2). Thus, by Theorem 5.1 and the substitution rule for RS integrals, (5.9) is
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the unique solution of (5.8) in W r for any r 2 [q, q�) � (Hÿ1, (1ÿ H)ÿ1). This implies

Proposition 5.2. h

Fractional Brownian motion BH in (5.8) may be considered as the driving process in the

Langevin equation. If the sample paths of the driving process are discontinuous, then

extended RS integrals can replace the ordinary RS integral. We illustrate this approach for

symmetric á-stable LeÂvy motion as the driving process. It can be extended to larger classes

of LeÂvy processes; see Section 2.2.

Proposition 5.3. Let Xá be symmetric á-stable LeÂvy motion with á 2 (0, 2) and ó 2 W p�
for some p 2 (á, 1). Then the integral (MPS)

� T

0
ó (sÿ) dXá(s) with ó (0ÿ) � ó (0) exists for

almost all sample paths of Xá and the equation

u(t) � u(0)ÿ â

� t

0

u(s) ds� (MPS)

� t

0

ó (sÿ) dXá(s), 0 < t < T , (5:10)

has the unique solution

u(t) � eÿâ t u(0)� (MPS)

� t

0

eâsó (sÿ) dXá(s)

� �
, 0 < t < T ,

in W r for any r 2 (1 _ á, á�).

Proof. One can follow the lines of the proof of Proposition 5.2; instead of part (i) use part (ii)

of Theorem 2.4 and instead of Proposition 2.2 use Proposition 2.3. h

Figure 1. Solution to (5.10) (top) and (5.8) (bottom) with â � ÿ0:01 and ó � 0:01.
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5.2. Equations with multiplicative noise

The random force L in the Langevin equation is called additive because its contribution to

the solution is additive. Next we consider integral equations with multiplicative noise.

Proposition 5.4. Let BH be fractional Brownian motion, H 2 (0:5, 1). For almost all sample

paths of BH , the equation

F(t) � 1� c

� t

0

F(s) ds� (RS)

� t

0

ãF(s) dBH (s), 0 < t < T , (5:11)

has the unique solution Fc,ã(t) � ect�ãBH ( t) in W r for any r 2 (Hÿ1, (1ÿ H)ÿ1).

Proof. Let f (t) � ct � ãBH (t) and p 2 (Hÿ1, 2). By Proposition 2.2, f is continuous with

probability 1 and in W p. By De®nition 2.5, Lemma 2.9 above and Theorem II.10.9 in

Hildebrandt (1963), the following integrals exist and satisfy the relation

Figure 2. Solution to (5.12) (top and middle) and (5.11) (bottom) with ã � 0:01 and c � 0:01.
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(LY)

� t

0

F d f � (MPS)

� t

0

Fÿ0 d f � c

� t

0

F(s) ds� (RS)

� t

0

ãF dBH

with probability 1 for F 2 W p. Thus the statement follows from Theorem 4.1. h

Proposition 5.5. Let Xá be á-stable LeÂvy motion with á 2 (0, 2). For almost all sample paths

of Xá the equation

F(t) � 1� c

� t

0

F(s) ds� (MPS)

� t

0

ãF(sÿ) dXá(s), 0 < t < T , (5:12)

with F(0ÿ) � F(0), has the unique solution

Fc,ã(t) � ect�ãXá( t)
Y
[0, t]

(1� ãÄÿXá)eÿãÄ
ÿXá , 0 < t < T , (5:13)

in W r for any r 2 (1 _ á, á�). If Xá is symmetric, F0,1 has representation

F0,1(t) � lim
ä#0

Y
I(ä,[0, t])

(1� ÄÿXá), 0 < t < T :

Proof. Let f (t) � ct � ãXá(t) and p 2 (1 _ á, 2). By Proposition 2.3 and the discussion

preceding it, f is right-continuous with probability 1 and in W p. By De®nition 2.5, Lemma

2.9 above and Theorem II.10.9 in Hildebrandt (1963), the following integrals exist and satisfy

the relation

(LY)

� t

0

F d f � (MPS)

� t

0

Fÿ0 d f � c

� t

0

F(s) ds� (MPS)

� t

0

ãF(sÿ) dXá(s)

with probability 1 for F 2 W p. By Theorem 4.1, Fc,ã in (5.13) is a solution to (5.12) as

stated.

If Xá is symmetric, we have, for every ä. 0 and 0 < t < T,Y
I(ä,[0, t])

(1� ÄÿXá) � eXá( t)
Y

I(ä,[0, t])

(1� ÄÿXá)eÿÄ
ÿXá exp

X
I(ä,[0, t])

ÄÿXá ÿ Xá(t)

( )
:

Letting ä#0 and using the LeÂvy±ItoÃ representation (2.3), we arrive at the desired relation for

F0,1.

6. Concluding remarks

The referees of this paper were so kind as to point out some related literature which we

included above. According to one of the referees, KlingenhoÈfer and ZaÈhle (1999) deal with

nonlinear equations where the driving process is HoÈlder continuous of order greater than 0.5.
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