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We consider the local time process (Lx
t , x 2 R, t > 0) of a symmetric stable process X with index â

in (1, 2]. We compute the p-variation of L on any rectangle of R 3 [0, 1). Unlike for the p-variation

of L with respect to the spatial parameter (studied by Marcus and Rosen), we show here that the

Brownian case ± when â � 2 ± is atypical.
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1. Introduction and notation

Let (X t, t > 0) be a symmetric stable process with index â in (1, 2]. This means that X is a

real-valued process with stationary independent increments such that

E[eiáXt ] � eÿ tjájâ , á 2 R:

This process admits a continuous local time process (Lx
t , x 2 R, t > 0) (see Boylan 1964;

Barlow 1988).

Marcus and Rosen (1992b) have shown that if (ðn)n2N is any sequence of partitions of

[a, b], a subinterval of R, such that jðnj converges to 0 as n tends to 1, then uniformly in

t on any bounded subinterval of R�, for all r . 0,X
xi2ð n

jLxi�1

t ÿ Lxi

t j2=(âÿ1) ÿ!L
r

n!1 c(â)

�b

a

jLx
t j1=(âÿ1) dx, (1)

where c(â) is a constant that only depends on â. For â � 2, which is the case when X is a

Brownian motion, (1) was already established by Bouleau and Yor (1981).

In this paper, we consider the local times as a doubly indexed process. For [a, b] a

subinterval of R and [s, t] a subinterval of [0, �1), let (Äk)k2N be a sequence of grids of

[a, b] 3 [s, t]. For each k, write Äk � f(xi, tj), 1 < i < n, 1 < j < mg, where, for

notational simplicity, we drop the dependence on k. Suppose that jÄk j converges to 0 as

k tends to 1. We seek the limit in L1 as k tends to 1 of the sumX
(xi , tj)2Ä k

jLxi�1

tj�1
ÿ L

xi�1

tj
ÿ Lxi

tj�1
� Lxi

tj
j2=(âÿ1): (2)

The process L has been studied as a doubly indexed process by Walsh (1983), Rogers and

Bernoulli 6(5), 2000, 871±886
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Walsh (1991) and Eisenbaum (1998). These authors have developed the notion of stochastic

integration with respect to L of doubly indexed processes. We will use some results of

Eisenbaum (1998) in Section 4.

In Section 2, we treat the case â 2 (1, 2). Sections 3 and 4 are devoted to the case â � 2.

This is an atypical case, because it is the only value of â for which the limit in (2), for

s � 0, is equal to the limit in (1): when X is a Brownian motion, we haveX
(xi , tj)2Ä k

jLxi�1
tj�1 ÿ L

xi�1

tj
ÿ Lxi

t j�1
� Lxi

tj
j2 ÿ!L

1

k!1
4

�b

a

(Lx
t ÿ Lx

s) dx:

Actually â � 2 is the only case for which the local time process satis®es Tanaka's formula.

The computations can hence be done by considering the process

M(x, t) �
� t

0

1(X s<x) dX s:

In Section 3, we compute the quadratic variation of L. In Section 4, we exploit the process M

in order to rewrite, from a new point of view, an ItoÃ formula obtained in Eisenbaum (1998).

For ease of notation, we will write, for any doubly indexed process (Y (x, t), x 2 R,

t > 0),

ÄijY � (Y(xi�1, t j�1) ÿ Y(xi�1, t j) ÿ Y(xi , t j�1) � Y(xi, t j)):

Further, we let ( pt(y), t > 0, y 2 R) be the transition densities of X with respect to the

Lebesgue measure and (F t) t>0 be the natural ®ltration of X . Finally, c(â) will denote a

generic constant depending only on â, which may be different from line to line.

2. p-variation of the local times for â in (1, 2)

We have the following theorem.

Theorem 2.1. For â 2 (1, 2), let (Äk)k2N be a sequence of grids of [a, b] 3 [s, t], where, for

each k, Äk � f(xi, s j), 1 < i < n, 1 < j < mg. We suppose that jÄk j and sup(xi ,s j)2Äk jxi�1ÿ
xij=(t j�1 ÿ tj)

1=â both converge to 0 as k tends to 1. We then have

(i)
X
(i, j)

jÄij Lj2=(âÿ1) ÿ!L
1

k!1
0,

(ii) E
X
(i, j)

jÄij Ljâ=(âÿ1)

 !
ÿ!
k!1
�1:

In view of Theorem 2.1, it is natural to ask whether there exists a critical exponent á
such that we would have convergence of

P
(i, j)jÄij Ljá in L1 to a ®nite, non-zero limit. The

answer is negative and given by the following proposition. We write D for the set of the

grids of [a, b] 3 [s, t] satisfying the hypotheses of Theorem 2.1.
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Proposition 2.2. For any p 2 (â=(âÿ 1), 2=(âÿ 1)), we have

(i) inf E
X

(xi , tj)2Ä
jÄij Lj p

0@ 1A; Ä 2 D

8<:
9=; � 0,

(ii) sup E
X

(xi, tj)2Ä
jÄij Lj p

0@ 1A; Ä 2 D

8<:
9=; � �1:

Proof of Theorem 2.1. De®ne, for a ®xed y 2 R and a ®xed j,

d(i, j, y) � xi ÿ y

(t j�1 ÿ tj)1=â
:

(i) By successively applying the Markov property of X at time tj and its scaling property,

we obtain

E
X
(i, j)

jÄij Lj2=(âÿ1)

" #
� E

X
(i, j)

jLxi�1

t j�1ÿ tj
ÿ Lxi

t j�1ÿ tj
j2=(âÿ1) � èt j

" #

�
X

j

E E
X

i

jLxi�1

t j�1ÿ tj
ÿ Lxi

t j�1ÿ tj
j2=(âÿ1)

 !
� èt j
jF t j

" #" #

�
X

j

�
R

P(X t j
2 dy)E

X
i

jLxi�1ÿ y
t j�1ÿ tj

ÿ L
xiÿ y
t j�1ÿ tj

j2=(âÿ1)

" #

�
X

j

(t j�1 ÿ tj)
2=â
�

R

P(X t j
2 dy)

X
i

E[jLd(i�1, j, y)
1 ÿ L

d(i, j, y)
1 j2=(âÿ1)]:

Consequently, we have

E
X
(i, j)

jÄij Lj2=(âÿ1)

" #

< sup
j

jt j�1 ÿ tjj2=âÿ1
X

j

(t j�1 ÿ tj)

�
R

P(X t j
2 dy)

X
i

E[jLd(i�1, j, y)
1 ÿ L

d(i, j, y)
1 j2=(âÿ1)]:

We note that since 2=â. 1, we have

sup
j

jt j�1 ÿ tjj2=(âÿ1) ÿ!
k!1

0:

Hence, to prove (i) it is suf®cient to show thatX
j

(t j�1 ÿ tj)

�
R

P(X t j
2 dy)

X
i

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

����2=(âÿ1)

�
is uniformly bounded.
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We will use the following inequality, established by Marcus and Rosen (1992b): for any

p > 2,

E[jLx
t ÿ L

y
t j p] < C(â, p)t(âÿ1) p=2âjxÿ yj(âÿ1) p=2,

where C(â, p) is a constant depending only on â and p. Note that a direct use of the above

inequality does not provide the uniform majorization that we want to establish.

Now note that, uniformly in y and j,

sup
i

(d(i� 1, j, y)ÿ d(i, j, y)) ÿ!
k!1

0:

We set

S1 � sup
0< t<1

X t:

Let ( p, q) be a pair of positive real numbers such that 1=p� 1=q � 1 and 1 , q , â. By

successively applying HoÈlder's inequality and the above result of Marcus and Rosen, we

obtain

E
X

d(i, j, y)>0

jLd(i�1, j, y)
1 ÿ L

d(i, j, y)
1 j2=(âÿ1)

" #

� E
X

d(i, j, y)>0

jLd(i�1, j, y)
1 ÿ L

d(i, j, y)
1 j2=(âÿ1); S1 > di

" #

<
X

d(i, j, y)>0

E

��
L

d(i�1, j, y)
1 ÿ L

d(i, j, y)
1

�
2=(âÿ1)

�
1= p P[S1 > d(i, j, y)]1=q

< c(â)
X

d(i, j, y)>0

(d(i� 1, j, y)ÿ d(i, j, y))P[S1 > d(i, j, y)]1=q

� c(â)
X
n2N

X
n<d(i, j, y) , n�1

(d(i� 1, j, y)ÿ d(i, j, y))P[S1 > d(i, j, y)]1=q

< c(â)
X
n2N

P[S1 > n]1=q:

Next we use the estimate (see, for example, Bertoin 1996, p. 221)

P[S1 > x] � c(â)

xâ
, as x!1:

Since â=q is strictly greater than 1, we obtain by symmetry that

E
X

i

�
L

d(i�1, j, y)
1 ÿ L

d(i, j, y)
1

�2=(âÿ1)
" #

< 2c(â)
X
n2N

P[S1 > n]1=q ,1:
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Consequently,X
j

(t j�1 ÿ tj)

�
R

P(X t j
2 dy)

X
i

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

����2=(âÿ1)

�
< c(â)(t ÿ s) ,1:

(ii) Similarly, we have

E
X
(i, j)

jÄij Ljâ=(âÿ1)

" #
�
X

j

(t j�1 ÿ tj)

�
R

P(X t j
2 dy)E

X
i

����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

����â=(âÿ1)

" #

�
�

R

� t

s

Gk(u, y) du dy,

with

Gk(u, y) �
X

j

1( t j , t j�1](u) pt j
(y)E

X
i

����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

����â=(âÿ1)

" #
:

For a ®xed pair (u, y), there exists a unique sequence ( j(k))k (actually ( j(k, u))k) such

that t j(k) , u < t j(k)�1 for every k. Now if y 2 [a, b], then (d(i, j(k), y))1<i<n is a partition

such that supi(d(i� 1, j(k), y)ÿ d(i, j(k), y)) tends to 0, d(1, j(k), y)! ÿ1, and

d(n, j(k), y)! �1, as k tends to 1. Thanks to (1), we immediately have, for any r . 0,

lim
k!1

E
X

jd(i, j(k), y)j<r

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

����â=(âÿ1)

24 35 � �1:
Hence Gk(u, y) converges to 1 on [s, t] 3 [a, b] almost everywhere with respect to

Lebesgue measure. By the Lebesgue dominated convergence theorem, this implies that, for

any M . 0, �b

a

� t

s

1(Gk . M) dy du ÿ!
k!1

(bÿ a)(t ÿ s):

Since �
R

� t

s

Gk(u, y) du dy > M

�b

a

� t

s

1(Gk . M) dy du,

we obtain that, for any M . 0,

lim inf
k!1

�
R

� t

s

Gk(u, y) du dy > M(bÿ a)(t ÿ s):

Consequently,

lim
k!1

�
R

� t

s

Gk(u, y) du dy � �1:

h
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Proof of Proposition 2.2. (i) Let (Ek)k2N be a sequence of real numbers strictly decreasing to

0. For each k, we set n � [(bÿ a=Ek)] and we de®ne the grid Äk by

x1 � a, xi�1 ÿ xi � Ek , 1 < i < nÿ 2, xn � b:

Now let q be such that 0 , q , â. We set m � [(bÿ a)=Eq
k]. Similarly, we de®ne

t1 � s, t j�1 ÿ tj � Eq
k , 1 < j < mÿ 2, tm � t:

With this de®nition of Äk , the assumptions of Theorem 2.1 are readily veri®ed and,

moreover, we have

sup
j

(t j�1 ÿ tj) < 3Eq
k and sup

i, j

xi�1 ÿ xi

(t j�1 ÿ tj)1=â
< 3E1ÿq=â

k :

Following the same steps as in the proof of Theorem 2.1(i), we obtain

E
X
(i, j)

jÄij Lj p �
X

j

(t j�1 ÿ tj)
p(âÿ1)=â

�
R

P(X t j
, dy)

X
i

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� p

�

< sup
j

(t j�1 ÿ tj)
p(âÿ1)=âÿ1

X
j

(t j�1 ÿ tj)

�
R

P(X t j
2 dy)

X
i

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� p

�
:

We retain the notation S1 � sup0<s<1 X s. For ì and í positive real numbers such that

1=ì� 1=í � 1 and 1 , í, â, we haveX
d(i, j, y)>0

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� p

�

<
X

d(i, j, y)>0

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� pì

�
1=ìP[S1 > d(i, j, y)]1=í

< c(â)
X

d(i, j, y)>0

(d(i� 1, j, y)ÿ d(i, j, y))(âÿ1) p=2 P[S1 > d(i, j, y)]1=í

< c(â) sup
d(i, j, y)>0

(d(i� 1, j, y)ÿ d(i, j, y))(âÿ1) p=2ÿ1
X

d(i, j, y)>0

(d(i� 1, j, y)ÿ d(i, j, y))

3 P[S1 > d(i, j, y)]1=í:

As we have already seen in the proof of Theorem 2.1(i), we haveX
d(i, j, y)>0

(d(i� 1, j, y)ÿ d(i, j, y))P[S1 > d(i, j, y)]1=í <
X
n2N

P[S1 > n]1=í ,1:

Therefore,
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X
d(i, j, y)>0

E[jLd(i�1, j, y)
1 ÿ L

d(i, j, y)
1 j p] < c(â) sup

d(i, j, y)>0

(d(i� 1, j, y)ÿ d(i, j, y))(âÿ1) p=2ÿ1

< c(â)E(1ÿq=â)((âÿ1) p=2ÿ1)
k :

This implies that

E
X
(i, j)

jÄij Lj p < c(â)Ef(âÿ1)=2gfq( pÿ2)=â)� pÿ2=(âÿ1g
k :

The exponent of Ek is positive as soon as we choose q strictly greater than

âf2=(âÿ 1)ÿ pg=( pÿ 2) and this is always possible since this last quantity is strictly

smaller than â.

(ii) We consider a sequence of grids (Äk)k2N de®ned as above, except that we will

choose another value for q.

E
X
(i, j)

jÄij Lj p �
X

j

(t j�1 ÿ tj)
p(âÿ1)=â

�
R

P(X t j
2 dy)

X
i

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� p

�

> Eq( p(âÿ1)=âÿ1)
k

X
j

(t j�1 ÿ tj)

�b

a

P(X t j
2 dy)

X
i

E

�����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� p

�
:

Now motivated by the proof of Theorem 2.1(ii), we write�b

a

� t

s

Gk(u, y) du dy � Eq( p(âÿ1)=âÿ1)
k

X
j

(t j�1 ÿ tj)

�b

a

P(X t j
2 dy)E

X
i

����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� p

" #
,

where

Gk(u, y) � Eq( p(âÿ1)=âÿ1)
k

X
j

1( t j , t j�1](u) pt j
(y)E

X
i

����Ld(i�1, j, y)
1 ÿ L

d(i, j, y)
1

���� p

" #
:

Similarly, for a ®xed pair (u, y), there exists a unique sequence ( j(k))k (actually

( j(k, u))k) such that t j(k) , u < t j(k)�1 for every k. Now if y 2 [a, b], then

(d(i, j(k), y))1<i<n is an ordered sequence such that supi(d(i� 1, j(k), y)ÿ d(i, j(k), y))

tends to 0, d(1, j(k), y)! ÿ1, and d(n, j(k), y)! �1, as k tends to 1. Moreover, for

any i, u and y,

3ÿâE1ÿq=â
k < d(i� 1, j(k), y)ÿ d(i, j(k), y) < 3E1ÿq=â

k :

We want to ®nd a lower bound for

Eq( p(âÿ1)=âÿ1)
k

X
jd(i, j(k), y)j<M

jLd(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1 j p:

In order to do so, we will use the following two results. The ®rst was established by Barlow

(1988) and Marcus and Rosen (1992a), this is the exact modulus of continuity of L1, namely,
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lim
ä!0

sup
jxÿ yj, ä
jxj,j yj<M

jLx
1 ÿ L

y
1 j

jxÿ yj(âÿ1)=2 log
1

jxÿ yj
� �� �1=2

� c(â) sup
jzj<M

Lz
1

 !1=2

a:s:

The second result is a re®nement of (1) and was proved by Marcus and Rosen (1992b).

Retaining the notation of the Introduction, and moreover assuming that the sequence of

partitions (ðn)n2N is such that jðnj � o(1=log n)1=(âÿ1), then the convergence in (1) is almost

sure.

To apply this result to the partitions (d(i, j(k), y)i indexed by k, we take from now on

Ek � 1

k

1

log k

� �1=(âÿ1)(1ÿq=â)

We set

Y (ä) � sup
jxÿ yj,ä
jxj,j yj<M

jLx
1 ÿ L

y
1 j

jxÿ yj(âÿ1)=2 log
1

jxÿ yj
� �� �1=2

:

We now we remark that, for any M . 0, we haveX
i

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

���� p >
X

jd(i, j(k), y), M

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

���� p

>

P
jd(i, j(k), y)j, M

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

����2=(âÿ1)

supjd(i, j(k), y)j, M

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

����2=(âÿ1)ÿ p

,

which leads to

Eq( p(âÿ1)=âÿ1)
k

X
i

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

���� p > c(â)
X

jd(i, j(k), y)j,M

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

����2=(âÿ1)

24 35
3 [Y (3E1ÿq=â

k )] pÿ2=(âÿ1)Ef(âÿ1)=2gfq( pÿ2)=â� pÿ2=âÿ1g
k

���� log(Ek)

����( pÿ2=(âÿ1))=2:

By the two results just recalled, we know that, for any pair (u, y),

lim
k!1

X
jd(i, j(k), y)j, M

����Ld(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1

����2=(âÿ1)

24 35[Y (3E1ÿq=â
k )] pÿ2=(âÿ1)

� c(â)

�M

ÿM

jLx
t j1=(âÿ1) dx sup

jzj<M

Lz
1

 ! pÿ2=(âÿ1)

a:s:

Since this last limit is almost surely strictly positive, the previous inequality shows us that

878 N. Eisenbaum



lim
k!1

Eq( p(âÿ1)=âÿ1)
k

X
i

jLd(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1 j p � �1 a:s:

for any q such that 0 , q , âf2=(âÿ 1)ÿ pg=( pÿ 2).

Making use of the last argument in the proof of Theorem 2.1(ii), we obtain that, for

almost every pair (u, y) of [s, t] 3 [a, b], Gk(u, y) converges to �1 as k tends to 1. The

same argument ®nally gives �b

a

� t

s

Gk(u, y) du dy ÿ!
k!1
�1

h

3. Quadratic variation of the local times for â = 2

Here X is a Brownian motion. Our main tool is Tanaka's formula, which we formulate as

1
2
Lx

t � M(x, t)ÿ V (x, t),

where

M(x, t) �
� t

0

1(X s<x) dX s

and

V (x, t) � (X 0 ÿ x)ÿ ÿ (X t ÿ x)ÿ:

We start by computing the quadratic variation of M .

Theorem 3.1. Let (Äk)k2N be a sequence of grids of [a, b] 3 [s, t] such that jÄk j converges

to 0 as k tends to 1. Then we haveX
(i, j)

(Äij M)2 ÿ!L
2

k!1

� t

s

1(a,b](X u) du:

Proof. We have to compute the limit as k tends to 1 ofX
(i, j)

� t j�1

tj

1(xi ,xi�1](X u) dX u

 !2

:

Instead of computing this limit directly (which is easy by ItoÃ's calculus), it is more interesting

to use a result of Bouleau (1982) which ensures, in particular, that for every continuous

martingale Z and every sequence of predictable partitions (Hi,k , i 2 N)k2N such that for

d[Z]u 3 dP)-almost every (ù0, t0),

lim sup
k!1

(ù0, t0)2Hi, k

Hi,k(ù0, :) � 0 d[Z]u-a:s:
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we then have X
i

�1
0

Hi,k(s) dZs

� �2

ÿ!L
2

k!1
[Z]1:

Choosing

Zu �
�u

0

1[s, t](v)1[a,b](Xv) dXv

and

Hij,k(ù, v) � 1( tj, t j�1](v)1(xi,xi�1](Bv(ù)),

we obtain Theorem 3.1.

Remark 3.1. For a ®xed b 2 R, we know that (M(b, t), t > 0) is a continuous local

martingale with quadratic variation on any interval [s, t] equal to

[M(b, :)] t ÿ [M(b, :)]s �
� t

s

1(X u<b) du:

For a ®xed t 2 R�, Perkins (1982) has shown that (Lx
t , x 2 R) is a continuous semi-

martingale with respect to the excursion ®eld. Since the process (V (x, t), x 2 R) is a process

of bounded variation, adapted to the excursion ®eld, (M(x, t), x 2 R) is also a continuous

semimartingale with the same quadratic variation as L:t on any interval [a, b] (computed also

by Bouleau and Yor 1981). We obtain

[M(:, t)]b ÿ [M(:, t)]a �
� t

0

1(a, X u<b) du:

The motivation of Bouleau (1982) was actually to give an explanation to the following

remarkable equality:

[M(b, :)] t ÿ [M(b, :)]s ÿ [M(a, :)] t � [M(a, :)]s

� [M(:, t)]b ÿ [M(:, t)]a ÿ [M(:, s)]b � [M(:, s)]a:

We have used his explanation to prove that each member of this equality is also equal to the

quadratic variation of M on [a, b] 3 [s, t].

Moreover, one can easily prove that M and M2 are also doubly indexed semimartingales,

and that M and (M2(x, t)ÿ � t

0
1(X u<x) du; x 2 R, t > 0) are weak martingales ± see Meyer

(1981) for the precise de®nitions. All these properties make of M a very nice example of a

doubly indexed semimartingale. However, in Eisenbaum (1998) it is shown that as a doubly

indexed process L does not share the semimartingale properties of M.

Remark 3.2. If V were a doubly indexed process of bounded variation, then we would obtain

immediately that the quadratic variation of L is four times the quadratic variation of M. But

V is not of bounded variation. Indeed, thanks to Tanaka's formula, we know that
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((X t ÿ b)ÿ ÿ (X t ÿ a)ÿ), t > 0) is a continuous semimartingale, hence it has ®nite quadratic

variation on [0, 1] and thus in®nite variation on [0, 1]. We then note thatX
(i, j)

jÄijV j >
X

j

j(X t j�1
ÿ b)ÿ ÿ (X t j

ÿ b)ÿ ÿ (X t j�1
ÿ a)ÿ � (X t j

ÿ a)ÿj:

Nevertheless, the next theorem will show that, in a way, V has a quadratic variation equal to

0 on any rectangle, and this will be suf®cient to establish that the quadratic variation of L is

four times the quadratic variation of M.

Theorem 3.2. Let (Äk)k2N be a sequence of grids of [a, b] 3 [s, t], where, for each k,

Äk � f(xi, s j), 1 < i < n, 1 < j < mg. We suppose that jÄk j and

sup
(xi ,s j)2Ä k

jxi�1 ÿ xij=
������������������
t j�1 ÿ t j

p
both converge to 0 as k tends to 1. We then have

(i)
X
(i, j)

(ÄijV )2 ÿ!L
1

k!1
0

(ii)
X
(i, j)

(Äij L)2 ÿ!L
1

k!1
4

� t

s

1(a,b](Xu) du:

In order to prove Theorem 3.2, we establish the following lemma:

Lemma 3.3. Under the hypotheses of Theorem 3.1,

E
X
(i, j)

(Äij L)2

" #
ÿ!
k!1

4E

� t

s

1(a,b](Xv) dv

� �
:

Proof of Lemma 3.3. By successively applying the Markov property of X at time tj and its

scaling property, we obtain

E
X
(i, j)

(Äij L)2

" #
� E

X
(i, j)

(L
xi�1

t j�1ÿ t j
ÿ Lxi

t j�1ÿ t j
)2 � èt j

" #

�
X

j

E E
X

i

(L
xi�1

t j�1ÿ t j
ÿ Lxi

t j�1ÿ t j
)2

 !
� èt j
jF t j

" #" #

�
X

j

�
R

P(X t j
2 dy)E

X
i

(L
xi�1ÿ y
t j�1ÿ t j

ÿ L
xiÿ y
t j�1ÿ t j

)2

" #

�
X

j

(t j�1 ÿ tj)

�
R

P(X t j
2 dy)

X
i

E[(L
d(i�1, j, y)
1 ÿ L

d(i, j, y)
1 )2]:
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We thus obtain

E
X
(i, j)

(Äij L)2

" #
�
�

R

dy

� t

s

duFk(u, y),

with

Fk(u, y) �
X

j

1( tj , t j�1](u)
1���������
2ðtj

p eÿ y2=2 tj E
X

i

�
L

d(i�1, j, y)
1 ÿ L

d(i, j, y)
1

�
2

" #
:

For a ®xed pair (u, y), there exists a unique sequence ( j(k))k (actually ( j(k, u))k) such

that t j(k) , u < t j(k)�1 for every k. Either y 2 [a, b], in which case (d(i, j(k), y))1<i<n is a

partition such that supi(d(i� 1, j(k), y)ÿ d(i, j(k), y)) tends to 0, d(1, j(k), n)! ÿ1,

and d(n, j(k), y)! �1, as k tends to 1, and consequentlyX
i

(L
d(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1 )2ÿ!L

2

4

�1

0

1(ÿ1,�1)(Xv) dv,

which implies that

E
X

i

(L
d(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1 )2

" #
ÿ!
k!1

4;

or y , a (y . b), in which case the partition (d(i, j(k), y))1<i<n converges to ÿ1 (�1) and

thus

E
X

i

(L
d(i�1, j(k), y)
1 ÿ L

d(i, j(k), y)
1 )2

" #
ÿ!
k!1

0:

In summary, we obtain

Fk(u, y) ÿ!
k!1

1[a,b](y)
4��������
2ðu
p eÿ y2=2u:

To apply the Lebesgue dominated convergence theorem, we remark that the setX
i

(L
yi�1

1 ÿ L
yi

1 )2, (yi)i a partition of (ÿ1, �1)

( )
is bounded in L1 (see, for example, Proposition 3 of Bouleau 1982). Consequently, we obtain�

R

dy

� t

s

duFk(u, y) ÿ!
k!1

�
R

dy

� t

s

du1[a,b](y)
4��������
2ðu
p eÿ y2=2u

and this last limit is equal to 4
� t

s
duP(a < Xu < b). h

We now use the following result, established in Eisenbaum (1998), which is a simple

consequence of Tanaka's formula, namely,
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Lx
t � M(x, t)� N (x, t), x 2 R, 0 < t < 1,

where N (x, t) � � 1

1ÿ t
1(X1ÿs<x) dX 1ÿs. Hence, we haveX

i, j

(Äij L)2 �
X

i, j

(Äij M)2 �
X

i, j

(Äij N )2 � 2
X

i, j

(Äij N )(Äij M): (3)

Using the same argument as in Eisenbaum (1998), we see that we also have

2V (x, t) � M(x, t)ÿ N (x, t),

and similarly

4
X

i, j

(ÄijV )2 �
X

i, j

(Äij M)2 �
X

i, j

(Äij N )2 ÿ 2
X

i, j

(Äij N )(Äij M): (4)

We recall that the one-dimensional semimartingale (X 1ÿs, 0 < s < 1) admits the

decomposition

X 1ÿs � X1 � Wt ÿ
� t

0

X1ÿs

1ÿ s
ds,

where W is a Brownian motion starting from 0. To compute the quadratic variation of N , we

®rst note that the process � t

0

1(X1ÿs<x)

X 1ÿs

1ÿ s
ds, x 2 R, 0 < t < 1

� �
has bounded variation on any ®nite rectangle. Consequently, using the same argument as for

M , we know that X
i, j

(Äij N )2 ÿ!L
1

k!1

� t

s

1[a,b](X u) du:

Therefore, Lemma 3.3 and (3) together give

E
X

i, j

(Äij N )(Äij M)

" #
ÿ!
k!1

� t

s

1[a,b](X u) du:

Thanks to (4), we obtain

E
X

i, j

(ÄijV )2

" #
ÿ!
k!1

0

which is equivalent to X
i, j

(ÄijV )2 ÿ!L
1

k!1
0:

Thus (i) is proved.

Going back to (4), we hence know that
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X
i, j

(Äij N )(Äij M) ÿ!L
1

k!1

� t

s

1[a,b](X u) du:

Assertion (ii) is then proved thanks to (3). h

4. Rewriting of an ItoÃ formula

Let F be an absolutely continuous function on R with a locally bounded measurable

derivative F9. For any pair of reals (a, b), we have

F(b) � F(a)�
�

R

F9(x) dx((aÿ x)ÿ ÿ (bÿ x)ÿ):

In particular, for the Brownian motion X , we have

F(X t) � F(X 0)�
�

R

F9(x) dxV (x, t):

We now consider a function F de®ned on R 3 R� and seek an analogous representation for

F(Xt, t)ÿ F(X 0, 0). To this end, we need the following results established in Eisenbaum

(1998).

For f a measurable function from R 3 [0, 1] into R, we de®ne the norm k:k by

k f k � 2

�1

0

�
R

f 2(x, s)eÿx2=2s dxds��������
2ðs
p

 !1=2

�
�1

0

�
R

jxf (x, s)jeÿx2=2s dx ds

s
��������
2ðs
p :

Let H be the set of functions f such that k f k,1.

In Eisenbaum (1998), it is shown that integration with respect to L is possible in the

following sense: let fÄ be an elementary function on R 3 R�, meaning that

fÄ(x, t) �
X

(xi,s j)2Ä
f i, j1(xi ,xi�1](x)1(s j,s j�1](t),

where Ä � f(xi, s j), 1 < i < n, 1 < j < mg is an R 3 [0, 1] grid, and, for every (i, j), f ij is

in R. For such a function, integration with respect to L is de®ned by��1
0

�
R

fÄ(x, s) dLx
s �

X
(xi,s j)2Ä

f i, j(Äij L):

Let f be an element of H . For any sequence of elementary functions ( fÄ k
)k2N converging to

f in H , the sequence (
� 1

0

�
R

fÄ k
(x, s) dLx

s)k2N converges in L1. The limit obtained does not

depend of the choice of the sequence ( fÄ k
) and represents the integral

� 1

0

�
R

f (x, s) dLx
s .

We can also de®ne
� 1

0

�
R

f (x, s) dM(x, s) for a deterministic function f in a similar sense

to that above. More precisely, we have
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�1

0

�
R

fÄ(x, s) dM(x, s) �
X

(xi,s j)2Ä
f i, j(Äij M) �

�1

0

fÄ(X s, s) dXs:

Let f be a function such that �1

0

�
R

f 2(x, s)eÿx2=2s dx ds��������
2ðs
p ,1:

Then, for every sequence of elementary deterministic functions ( fÄ k
)k2N converging simply

to f , we know that �1

0

fÄ k
(X s, s) dX s ÿ!L

2

k!1

�1

0

f (X s, s) dX s:

Consequently, we obtain �1

0

�
R

f (x, s) dM(x, s) �
�1

0

f (Xs, s) dX s: (5)

We now introduce the process (A(x, t); x 2 R, t > 0) de®ned by A(x, t) � � t

0
1(X s<x) ds. We

note that A has bounded variation on any bounded rectangle and similarly satis®es� t

0

�
R

f (x, s) dA(x, s) �
� t

0

f (Xs, s) ds (6)

for any function f such that �1

0

�
R

j f (x, s)jeÿx2=2s dx ds��������
2ðs
p ,1:

We can then obtain the following representation for F(X t, t)ÿ F(X 0, 0):

Theorem 4.1. For F de®ned on R 3 [0, 1] such that @F=@x and @F=@ t exist as Radon±

Nikodym derivatives, @F=@x is in H and�1

0

�
R

���� @F

@ t
(x, s)

���� dx ds

s
��������
2ðs
p ,1,

we have

F(X t, t) � F(X 0, 0)�
� t

0

�
R

@F

@s
(x, s) dA(x, s)�

� t

0

�
R

@F

@x
(x, s) dV (x, s):

Proof. Since we have V � M ÿ 1
2
L, integration with respect to V is also possible for f in H

and satis®es � t

0

�
R

f (x, s) dV (x, s) �
� t

0

f (Xs, s) dXs ÿ 1

2

� t

0

�
R

f (x, s) dLx
s :

We recall now an ItoÃ formula established in Eisenbaum (1998). Under the hypotheses of

Theorem 4.1, we have
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F(X t, t) � F(X 0, 0)�
� t

0

@F

@s
(Xs, s) ds�

� t

0

@F

@x
(Xs, s) dX s ÿ 1

2

� t

0

�
R

@F

@x
(x, s) dLx

s :

Now using (6) and (7), Theorem 4.1 is proved. h
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