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Two new methods are suggested for estimating the dependence function of a bivariate extreme-value

distribution. One is based on a multiplicative modi®cation of an earlier technique proposed by

Pickands, and the other employs spline smoothing under constraints. Both produce estimators that

satisfy all the conditions that de®ne a dependence function, including convexity and the restriction that

its curve lie within a certain triangular region. The ®rst approach does not require selection of

smoothing parameters; the second does, and for that purpose we suggest explicit tuning methods, one

of them based on cross-validation.
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1. Introduction

Bivariate extreme-value distributions may be estimated completely parametrically, or by a

mixture of parametric and nonparametric techniques. The marginal distributions are

necessarily of one of the three classical types, and so are determined by a ®nite number of

parameters, but the link between the marginals, provided by the `dependence function', A, is

determined only up to the condition that it be convex, pass through the points P1 � (0, 1) and

P2 � (1, 1), and lie within the triangle T determined by P1, P2 and P3 � (1
2
, 1

2
). See, for

example, Geffroy (1958), Tiago de Oliveira (1958) and Sibuya (1960). Even smoothness

(beyond that implied by convexity) is not speci®ed. Therefore, one may either model the

dependence function and ®t a completely structural model to the data (see, for example, Tiago

de Oliveira 1984; Tawn 1988; Smith et al. 1990; Hutchinson and Lai 1990, Chapter 9; Coles

and Tawn 1991; Joe et al. 1992), or estimate the dependence function nonparametrically and

the marginal distributions parametrically, and ®t the resulting partly structural model.

In the present paper we propose new, nonparametric estimators of the dependence

function. Existing techniques of this type include that of Pickands (1981; 1989); a

modi®cation proposed by Deheuvels (1991); kernel-type estimators suggested by Smith

(1985), Smith et al. (1990) and Abdous et al. (1998); and a technique based on
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exponentiation, proposed by CapeÂraaÁ et al. (1997). These methods tend to suffer from at

least one of several problems: they look unsmooth, or they do not produce estimators that

satisfy the properties that a dependence function must enjoy, or they do not have good

convergence rates. For example, Pickands' (1981; 1989) convex estimator of the dependence

function, de®ned as it is in terms of the convex hull of a minimum of a maximum, can

look relatively unsmooth. Deheuvels' (1991) modi®cation, designed to overcome drawbacks

of Pickands' approach, is not necessary convex, and both it and its convex hull can protrude

outside T . Kernel and exponentiation estimators are not necessarily convex, and can also

violate the other properties required of A.

One of our estimators is based on a simple, multiplicative modi®cation of Pickands'

(1981; 1989) approach, and produces an estimator that satis®es all the constraints that

de®ne a dependence function. Additionally, not only is it root-n consistent for A, its

derivative is root-n consistent for the derivative of A. Our second method is founded on

smoothing splines, constrained so as to satisfy the essential conditions. We suggest

empirical methods for choosing the smoothing parameter.

Related work includes that of Coles and Tawn (1991; 1994), Joe et al. (1992), de Haan

and Resnick (1993) and Einmahl et al. (1997) on estimating an extreme-value distribution

from data on a distribution in its domain of attraction. Methods for estimating marginals of

extreme-value distributions include those studied by Davis and Resnick (1984) and Dekkers

and de Haan (1989). Techniques for estimating exponents of regular variation, in an

extremal setting, have been studied by many authors (see, for example, Beirlant et al.

1996).

2. Distribution estimation

2.1. De®nition of the dependence function

Let (X (1), X (2)) denote a random vector with bivariate extreme-value distribution function F.

To express the distribution in canonical form, we note that the two marginal distributions are

necessarily of extreme-value type, and so there exist ®nite vectors è1, è2 of parameters, and

monotone increasing transformations Tj � Tj(:jèj) depending only on the indicated

parameters, such that (Y (1), Y (2)) � (T1(X (1)), T2(X (2))) has a bivariate distribution with

standard exponential marginals. Let the corresponding distribution function be G0, and, given

a vector x � (x(1), x(2)), put G1(x) � P(Y (1) . x(1), Y (2) � x(2)). Then ã � ÿlog G1 may be

expressed in the form

ã(x(1), x(2)) � (x(1) � x(2))A
x(2)

x(1) � x(2)

� �
: (2:1)

The function v � A(u), called the dependence function, is necessarily convex, satis®es

A(0) � A(1) � 1, and lies entirely within the triangular region T de®ned in Section 1. We

call these properties (C), and refer the reader to Pickands (1981) and Smith et al. (1990) for

further details.
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2.2. Estimating the dependence function

To estimate A nonparametrically, let Yi � (Y
(1)
i , Y

(2)
i ), 1 < i < n, be independent and

identically distributed random variables with distribution G0, and put �Y (l ) � nÿ1
P

iY
(l )
i and

Ŷ
(l )
i � Y

(l )
i =�Y (l ), l � 1, 2. Then

B̂(u) � nÿ1
Xn

i�1

minfŶ (1)
i =(1ÿ u), Ŷ

(2)
i =ug

is uniformly root-n consistent for B(u) � A(u)ÿ1 (see Section 4).

This estimator may be viewed as a modi®cation of a proposal of Pickands (1981). It

differs from an alternative modi®cation suggested by Deheuvels (1991), in that the

adjustment is multiplicative rather than additive, which has the effect of normalizing the

marginal moments to the required form.

While B̂(u) is not differentiable everywhere, it has in®nitely many derivatives at all

points except at Ŷ
(2)
i =(Ŷ

(1)
i � Ŷ

(2)
i ), 1 < i < n; and if we de®ne B̂9 here by either left or

right continuity, then B̂ equals the integral of B̂9. The normalization used to compute Ŷi

from Yi forces the corresponding estimator of the dependence function to pass through the

points (0, 1) and (1, 1), and to have gradients ÿ1 and 1 at these respective points. It also

implies that B̂(u) < minf1=(1ÿ u), 1=ug, or equivalently, that Â � B̂ÿ1 lies above the

lower boundary of the triangle T introduced in Section 2.1. This fact, and the property

Â(0) � Â(1) � 1, ensure that the greatest convex minorant, ~A, of Â satis®es conditions (C)

and is differentiable at all but at most n points in [0, 1], at each of which ~A is

continuous.

Moreover, since Â is uniformly root-n consistent for A on the full interval [0, 1], then

so too is ~A. If the distribution H of Y (1)=(Y (1) � Y (2)) has a bounded density (which

virtually requires A to be twice differentiable in [0, 1]) then both Â9 and ~A9 are uniformly

root-n consistent for A9 on any interval [å, 1ÿ å], for å. 0. Also, the estimators Â, ~A
have biases of order nÿ1 as estimators of A, and Â9, ~A9 have biases of order nÿ1 as

estimators of A9. Details are given in Section 4, where it is also shown that these results

continue to hold if the monotone transformations taking F to G0 are constructed

empirically.

As an alternative to computing the greatest convex minorant, Â may be approximated by

a spline that is constrained to satisfy (C). For example, we may choose regularly spaced

points 0 � t0 , . . . , tm � 1 in the interval [0, 1], and, given a smoothing parameter s . 0,

take ~As to be a polynomial smoothing spline of degree 3 or more which minimizes

Xm

j�1

fÂ(t j)ÿ ~As(t j)g2 � s

�1

0

~A 0s(t)2 dt, (2:2)

subject to ~A 0s > 0 on [0, 1], ~As(0) � ~As(1) � 1, ~A9s(0) > ÿ1 and ~A9s(1) < 1.

The choice of m is relatively unimportant, since the series in (2.2) is intended merely as

an approximation to the integral of fÂ(t)ÿ ~As(t)g2 over [0, 1], and so m can be taken large

with virtually no penalty. One approach to choosing s, which we have found to work well in
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practice, is to select the value that is as small as possible consistent with no numerical

dif®culties arising. This is motivated by the fact that, in order to preserve root-n

consistency of the basic estimator Â, we wish to smooth as little as possible away from Â,

subject to producing a convex estimate.

Such an approach will not lead to consistent estimation of the second derivative of A. In

some instances the density estimator ~f s associated with the extreme-value distribution

estimator based on ~As will be required as an estimator of the true density, and for that

purpose it is usually necessary for ~A 0s to accurately approximate A 0. In this case we suggest

computing the cross-validation criterion,

CV (s) �
�

~f s(x)2 dxÿ 2nÿ1
Xn

i�1

~f ÿi,s(Xi),

where X1, . . . , Xn denote the original data with distribution F, and ~fÿi,s represents the

version of ~f s computed from the (nÿ 1)-sample obtained by omitting Xi.

Note that CV (s) is an almost unbiased approximation to
�

E( ~f 2
s ÿ 2 ~f s f ), and so the value

of s that results from minimizing CV (s) will asymptotically minimize
�

E( ~f s ÿ f )2. We

have applied this method to real data in the context of estimating bivariate distributions for

purposes of prediction, and found it to give good results. Usually a graph of y � CV (s) has

one or at most two local minima. In the case of two minima we choose the larger of the

two values of s, as suggested by experience in more conventional density estimation

problems; see, for example, Hall and Marron (1991). Occasionally, again as in the classical

setting, CV (s) is monotone decreasing, and there one has little choice but to experiment

with different values of s.

3. Simulation study

We simulated data from a bivariate extreme-value distribution having a symmetric logistic

model for the dependence function, i.e.

A(w) � f(1ÿ w)r � w rg1=r, r > 1: (3:1)

See Tawn (1988) for extensions of this model to asymmetric cases. We took r � 1, 2 or 3,

and compared performances of (a) model (3.1) ®tted by maximum likelihood, (b) the

Pickands (1981; 1989) estimator, (c) the convex hull of Pickands' estimator, (d) the

estimator proposed by CapeÂraaÁ et al. (1997), (e) the convex hull of the latter, (f) our

modi®cation of Pickands' estimator, and (g) the convex hull of the latter. In the case of (d)

and (e) we used the weight function p(t) � 1ÿ t employed by CapeÂraaÁ et al. (1997) in

their simulation study. Additionally, we addressed performance of constrained smoothing

splines ®tted to all these estimators. In this instance the spline smoothing parameter was

chosen as the smallest value that did not result in numerical dif®culties, as suggested in

Section 2.1.

Since the focus of our attention was estimation of the dependence function, A, we took

the marginal distribution to be exponential. That is, we computed n independent values of
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the pair (Y (1), Y (2)) for which G1(x) � P(Y (1) . x(1), Y (2) � x(2)) was given by G1 �
exp (ÿã), with ã de®ned in (2.1). We could equivalently have simulated from a bivariate

extreme-value distribution with the same dependence function and known marginal

distributions.

In work not presented here we investigated the `naive' estimator, de®ned to equal

ÿlog Ĝ1(1ÿ u, u) where Ĝ1 is the conventional empirical estimator of G1, the latter de®ned

in Section 2.1. For the naive estimator, however, mean square error was inferior to that of

the next best approach by a factor of more than 1.7, reducing to at least 1.2 after spline

smoothing, for each r. Other approaches considered in the literature, for example kernel

methods, do not always enjoy root-n consistency, and their performance depends very much

on choice of bandwidth.

Table 1 gives mean integrated square errors (MISE), for example
�

( ~Aÿ A)2, based on

200 independent simulations for methods (a)±(g) in the cases n � 25, 50 and 100.

Interestingly, our results suggest that taking the convex hull of an estimator does not

generally improve performance, apparently since non-convexity results from high-variance

¯uctuations at occasional point estimates that are a substantial distance from the true

dependence function.

Table 1. Mean integrated square errors in simulation study. Monte Carlo approximations to mean

integrated square errors, multiplied by 105, of different estimators of the dependence function when

the true function is bivariate symmetric logistic, de®ned in (3.1). Results are for r � 1, 2, 3 and

n � 25, 50, 100. The different methods are (a) model (3.1), (b) Pickands' estimator, (c) convex hull of

Pickands, (d) estimator in CapeÂraaÁ et al., (e) convex hull of CapeÂraaÁ et al., (f ) modi®cation of

Pickand's estimator, and (g) convex hull of the modi®ed Pickand's estimator.

n � 25 n � 50 n � 100

r � 1 r � 2 r � 3 r � 1 r � 2 r � 3 r � 1 r � 2 r � 3

Method

(a) 197 64 14 110 34 8 42 14 4

(b) 5614 2829 3331 2034 1547 1261 1172 712 567

(c) 7229 2611 2775 2588 1388 1049 1430 671 477

(d) 889 102 35 568 49 20 307 29 10

(e) 1188 95 41 666 57 25 373 32 12

(f) 1351 138 33 614 77 18 366 37 11

(g) 1861 139 46 815 70 24 453 38 15

Smoothed spline of

(b) 784 919 1020 396 728 487 215 334 220

(c) 525 769 1055 282 637 490 135 327 230

(d) 303 82 21 177 37 12 97 24 8

(e) 286 66 22 167 39 14 97 26 11

(f ) 447 104 21 240 62 12 130 31 9

(g) 401 73 24 232 49 16 107 30 15
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Of the nonparametric estimators listed in the top panel of the table, not involving spline

smoothing, only the convex hulls of the Pickands and the modi®ed Pickands estimators

are guaranteed to satisfy the essential properties (C) of a dependence function, and of

these approaches the latter has greatest accuracy in terms of MISE. Importantly, if a

dependence function estimate does not satisfy (C) then, if one wishes to estimate upper

quantiles of the bivariate distribution function, which is arguably the application of

greatest interest, it is not possible to use the dependence function estimate without

modi®cation.

The results in the bottom panel of Table 1 show that constrained spline smoothing

consistently improves performance at the same time as guaranteeing conditions (C). The

overall winner is constrained spline smoothing of the convex hull of the CapeÂraaÁ et al.

(1997) estimate, although usually only by a small margin over constrained spline smoothing

of the convex hull of the simpler, modi®ed Pickands approach.

An advantage of parametric methods is that they permit modelling of covariates and

other structural features, thereby giving increased information, as well as increased

accuracy, when the model is correct. Moreover, in the context of function estimation

they usually admit relatively simple estimates of variability. By way of contrast,

nonparametric methods often do not. Using the methods and results discussed in

Section 4, one can develop asymptotic approximations to variability, but they are very

complex, particularly when (as is almost always the case in practice) parameters of the

marginal distributions are estimated from the same data. Nonparametric bootstrap

methods offer a potential way out of this dif®culty, but, for example in the case where
~As is constructed so as to provide a good estimator of ~f s, they do not capture bias

well. From a statistical viewpoint the most attractive approach is arguably to use the

nonparametric estimator to suggest an approximate parametric model, to ®t that to data,

and to assess variability of the nonparametric estimator by simulating from the ®tted

model.

4. Theoretical properties

4.1. Root-n consistent estimation of dependence function

We adopt notation from Section 2. In the present section we prove that Â and its greatest

convex minorant, ~A, are uniformly root-n consistent for A:

sup
0<u<1

jÂ(u)ÿ A(u)j � sup
0<u<1

j ~A(u)ÿ A(u)j � Op(nÿ1=2): (4:1)

Furthermore, we show that if the distribution H of Y (1)=(Y (1) � Y (2)) has a bounded density

then, for each å 2 (0, 1
2
],

sup
å<u<1ÿå

jÂ9(u)ÿ A9(u)j � sup
å<u<1ÿå

j ~A9(u)ÿ A9(u)j � Op(nÿ1=2): (4:2)
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(Both Â and ~A are differentiable except at the points Ŵi � Ŷ
(2)
i =(Ŷ

(1)
i � Ŷ

(2)
i ), or at a subset of

these points in the case of ~A. At Ŵi we choose to de®ne Â9 and ~A9 by left continuity.)

To derive (4.1) and (4.2), put Vi(u) � minfY (1)
i =(1ÿ u), Y

(2)
i =ug and observe that Vi is

differentiable everywhere except at u � Wi � Y
(2)
i =(Y

(1)
i � Y

(2)
i ), where we suggest de®ning

V 9i by left continuity:

V 9i(u) � Y
(1)
i =(1ÿ u)2 if u < Wi,

ÿY
(2)
i =u2 if u . Wi:

�
Let �B � nÿ1

P
iVi and �B9 � nÿ1

P
iV 9i. Then, �B, �B9 are unbiased for B, B9 respectively,

sup
0<u<1

j�B(u)ÿ B(u)j � sup
0<u<1

j�B9(u)ÿ B9(u)j � Op(nÿ1=2), (4:3)

and both n1=2(�B9ÿ B9) and n1=2(�Bÿ B) converge weakly, in the space D[0, 1] of left-

continuous functions on [0, 1] with right-hand limits, to Gaussian processes. Compare

Pickands (1989) and Deheuvels (1991).

Put M1 � fmax( �Y (1), �Y (2))gÿ1 and M2 � fmin( �Y (1), �Y (2))gÿ1, and note that, since the

variables Y
( j)
i (1 < i < n) are independent and exponentially distributed with unit mean,

Mj � 1� Op(nÿ1=2). Also, M1
�B < B̂ < M2

�B. Hence, (4.3) implies that supjB̂ÿ Bj �
Op(nÿ1=2). This gives the ®rst part of (4.1), and the second part then follows since A is

itself convex.

It is not true, however, that Â9 and ~A9 are necessarily root-n consistent for A9. Indeed,

Â9(1) � ÿÂ9(0) � 1, regardless of whether A9 satis®es these constraints. Nevertheless, (4.2)

holds if A is twice differentiable, which may be proved as follows. De®ne ä �
max jj( �Y ( j))ÿ1 ÿ 1j � Op(nÿ1=2), Ŵi � Ŷ

(2)
i =(Ŷ

(1)
i � Ŷ

(2)
i ),

V̂ 9i(u) �
Ŷ

(1)
i =(1ÿ u)2 if u < Ŵi

ÿŶ
(2)
i =u2 if u . Ŵi,

8<:
vi(u) �

Y
(1)
i =(1ÿ u)2 if u < Ŵi,

ÿY
(2)
i =u2 if u . Ŵi

8<:
and b(u) � nÿ1

P
ivi(u). Since jV̂ 9i(u)ÿ vi(u)j < ä(Y

(1)
i � Y

(2)
i )=å2, uniformly in u 2 I å �

[å, 1ÿ å], and also B̂9 � nÿ1
P

iV̂ 9i, then

sup
u2I å

jB̂9(u)ÿ b(u)j � Op(nÿ1=2) (4:4)

uniformly in u 2 I å.

Put Ä � ( �Y (2) ÿ �Y (1))=�Y (1) � Op(nÿ1=2), in which notation

Wi ÿ Ŵi � Wi(1ÿ Wi)Ä

1� (1ÿ Wi)Ä
:

It follows that if n > 4C2 and ä < Cnÿ1=2 then jŴi ÿ Wij < Cnÿ1=2, whence, for

ä < Cnÿ1=2,
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nå2j�B9(u)ÿ b(u)j <
Xn

i�1

(Y
(1)
i � Y

(2)
i )If(Wi ÿ u)(Ŵi ÿ u) < 0g

<
Xn

i�1

(Y
(1)
i � Y

(2)
i )I(jWi ÿ uj < Cnÿ1=2) � S(u),

say. Since H has a bounded density then S(u) � Op(n1=2) uniformly in u 2 I å. Hence, by

(4.4), supu2I å jB̂9ÿ �B9j � Op(nÿ1=2). From this result and the second part of (4.3) we deduce

that supu2I å jB̂9ÿ B9j � Op(nÿ1=2). And from this fact and the ®rst part of (4.1) we see that

supu2I å jB̂9B̂ÿ2 ÿ B9Bÿ2j � Op(nÿ1=2), which is equivalent to the ®rst part of (4.2).

Next we derive the second part of (4.2). Let u0 2 I å. From the de®nitions of ~A and Â we

see that either (a) ~A � Â in an interval [u0 ÿ å0, u0 � å0] for some (stochastic) å0 . 0; or

(b) there exists a largest interval Î � Î (u0) � [u1, u2] (again, stochastic) such that ~A < Â

on Î , ~A � Â at the ends of Î , and ~A is linear on Î . In case (a) we have ~A9(u0) � Â9(u0),

and so

j ~A9(u0)ÿ A9(u0)j < sup
u2I å

jÂ9(u)ÿ A9(u)j: (4:5)

Now assume we are in case (b). Suppose ®rst that either A9(u0) < 0 and A9(0) 6� ÿ1, or

A9(u0) . 0 and A9(1) 6� 1; together, we call this subcase (i). Then it may be proved that, for

some 0 , å1 , å, the event E that u1, u2 2 I å1
� [å1, 1ÿ å1], for all u0 2 I å, holds with

probability tending to 1 as n!1. We shall assume below that E holds. The fact that ~A is

the largest convex minorant of Â implies that Â9(u1�) > ~A9(u0) > Â9(u2ÿ). (To appreciate

why, note that if either of these inequalities fails then Â will protrude below ~A at the

corresponding end of the line segment that comprises ~A over [u1, u2].) Also, by convexity

of A, A9(u1) < A9(u0) < A9(u2). Hence,

~A9(u0)ÿ A9(u0)
< Â9(u1�)ÿ A9(u1)

> Â9(u2ÿ)ÿ A9(u2),

(

which, since A9 is continuous, implies (4.5) with I å there replaced by I å1
.

Finally, consider the previously omitted subcases of case (b), where either (ii) A9(u0) < 0

and A9(0) � ÿ1 or (iii) A9(u0) . 0 and A9(1) � 1. In subcase (ii), minor modi®cations of

the argument leading to the ®rst part of (4.2) show that, for all å1 . 0,

sup
0<u<1ÿå1

jÂ9(u)ÿ A9(u)j � Op(nÿ1=2):

The argument leading to subcase (i), but this time allowing u1 to vary anywhere in [0, 1ÿ å1]

for some å1 . 0, may be employed to prove that

j ~A9(u0)ÿ A9(u0)j < sup
0<u<1ÿå1

jÂ9(u)ÿ A9(u)j � O(nÿ1=2): (4:6)

The second part of (4.2) follows from (4.5), its counterpart with I å replaced by I å1
, (4.6),

and the analogue of (4.6) in subcase (iii).
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4.2. Biases of Â, Â9, ~A, ~A9

We claim that if A has three bounded derivatives then the biases are O(nÿ1). (In the cases of

Â9 and ~A9 these bounds to bias apply only interior to [0, 1].) To derive the bounds in the

cases of Â and Â9, note that by Taylor expansion, E(Âÿ A) � O(nÿ1) and

E(Â9ÿ A9) � O(nÿ1) if the same bounds apply to E(B̂ÿ B) and E(B̂9ÿ B9). (A subsidiary

argument, taking the Taylor expansion to higher-order terms and using relatively crude

bounds there, may be employed to justify this step.) The O(nÿ1) bounds for the biases of B̂

and B̂9 follow on noting that, after direct calculation,

EfV̂1(u)ÿ V1(u)g � O(nÿ1), EfV̂ 91(u)ÿ V 91(u)g � O(nÿ1):

To obtain the latter results, ®rst take expectations conditional on Y2, . . . , Yn, and use

Taylor expansion to express the left-hand sides as smooth functions of Ä( j) � nÿ1

(Y
( j)
2 � . . . � Y ( j)

n )ÿ 1, j � 1, 2; and then take expectations in the distributions of Ä( j).

Arguments in the cases of ~A and ~A9 are more complex, although note that we may write

E( ~A) � E(Âconv)� O(nÿ1) and E( ~A9) � E(Â9conv)� O(nÿ1), where Âconv equals the greatest

convex minorant of Bÿ1f1ÿ Bÿ1(B̂ÿ B)g.

4.3. Case where marginal distributions are estimated

In practice, the transformation Tj � Tj(:jèj), used to compute Y
( j)
i � Tj(X

( j)
i ) from the data, is

computed empirically by substituting a root-n consistent estimator è̂ j for èj. After this

substitution the random variables Yi are not, strictly speaking, exactly independent, although

their correlation is O(nÿ1). However, this does not affect convergence rates, as may be seen

by a longer argument where Tj(:jè̂ j) is Taylor-expanded in è̂ j, around èj. It does in¯uence the

asymptotic distribution, however, although we do not address that aspect here.
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