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Sample splitting techniques play an important role in constructing estimates with prescribed in¯uence

functions in semi-parametric and nonparametric models when the observations are independent and

identically distributed. This paper shows how a contiguity result can be used to modify these

techniques for the case when the observations come from a stationary and ergodic Markov chain. As a

consequence, suf®cient conditions for the construction of ef®cient estimates in semi-parametric

Markov chain models are obtained. The applicability of the resulting theory is demonstrated by

constructing an estimate of the innovation variance in a nonparametric autoregression model, by

constructing a weighted least-squares estimate with estimated weights in an autoregressive model with

martingale innovations, and by constructing an ef®cient and adaptive estimate of the autoregression

parameter in a heteroscedastic autoregressive model with symmetric errors.
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1. Introduction

Let X 0, X1, X 2, . . . be a stationary Markov chain taking values in the state space S with

countably generated ó-®eld G de®ned on a probability space (Ù, U, P). We denote the

stationary distribution by F and the transition probability measure by M. Let h be a

measurable function from S2 into Rm such that

E(kh(X 0, X 1)k2) �
��

F(dx)M(x, dy)kh(x, y)k2 ,1:

Our goal is to construct m-dimensional random vectors Z n � zn(X 0, . . . , Xn) such that

n1=2 Z n ÿ 1

n

Xn

j�1

h(Xjÿ1, Xj)

0@ 1A!P 0: (1:1)

This problem is of particular importance when the pair (F, M) is unknown and h depends on

this parameter. It arises naturally in the construction of ef®cient estimates in semi-parametric

Markov chain models. See Wefelmeyer (1999) for an overview.

One is tempted to use Z n of the form

Z n � 1

n

Xn

j�1

H n(Xjÿ1, Xj; X 0, . . . , X n),
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where H n is a measurable function from S2 3 S n�1 into Rm. However, there are technical

dif®culties with this approach even in the case of independent and identically distributed

observations since the estimator and the arguments used in averaging are not independent. To

overcome this dif®culty sample splitting techniques were introduced. Drawing on earlier work

of HaÂjek (1962) and van Eeden (1970), Bickel (1982) proposed to use a small initial part of

the sample to estimate the unknown in¯uence function and the remaining observations to

evaluate this estimate, and then exploited the independence of the evaluations and the

estimate. As only a small part of the sample is used to construct the in¯uence function, his

construction is more of theoretical interest than of practical value. His construction might

lack the desired accuracy in moderate sample sizes. Schick (1986) improved this construction

by using two estimates of the in¯uence function each based on half of the sample, and

pairing the estimate based on the second half with arguments from the ®rst half and the

estimate based on the ®rst half with arguments from the second half. His proof also exploits

the independence of the two parts of the sample. Klaassen (1987) treated the general case of

asymptotically linear (not necessarily ef®cient) estimation and showed that Schick's (1986)

suf®cient conditions are also necessary. Under additional assumptions, Schick (1987) showed

how sample splitting can be avoided altogether. The constructions in Bickel (1982) and

Schick (1986; 1987) rely heavily on LeCam's (1960) discretization technique, while Klaassen

avoids discretization by further sample splitting.

Using a martingale argument, Bickel's (1982) construction can be generalized to Markov

chains. This was done by Maercker (1997) for a special case. She used this approach to

construct adaptive estimates of the autoregression parameter in a (conditionally)

heteroscedastic autoregressive model of order 1. Unfortunately, Schick's (1986) construction

does not have such an obvious generalization. The martingale approach does not work here

when the estimate of h is based on the second part of the sample. His proof in essence

relies much more on the independence of the two parts of the sample. We should point out

that his construction, however, has been successfully implemented in some nonlinear time

series models by Drost et al. (1997) and Koul and Schick (1997). These authors exploit the

special structure of those models. More precisely, they reconstruct the innovations using

discrete auxiliary estimates. This allows them to treat the estimated innovations as

independent and identically distributed observations in the proofs by utilizing contiguity

arguments and the discrete structure of the auxiliary estimates. Thus their arguments

essentially reduce to the situation considered by Schick (1986). Koul and Schick (1997)

give conditions under which sample splitting can be avoided in these models. But they

demonstrate their usefulness only in the case of ARMA models. It had already been shown

by Kreiss (1987a; 1987b) that for such models sample splitting can be avoided. The sample

splitting ideas used by Drost et al. (1997) and Koul and Schick (1997) work only for the

special class of nonlinear time series models considered by these authors. They do not carry

over to nonlinear autoregression models with semi-parametric components or to

autoregression models with heteroscedasticity of unknown form as considered by Maercker

(1997) and revisited in Section 8 below. It was this lack of a theory for dealing with such

models that prompted the present research.

The main result of this paper is the extension of the sample splitting technique from

independent observations to Markov chain models. We shall not restrict ourselves to the
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case of ef®cient estimation as in Schick (1986) but shall treat more generally the case of

asymptotically linear estimation as in Klaassen (1987).

In the Markov chain setting, the two halves of the sample are no longer independent.

However, under an appropriate ergodicity assumption, we shall show that (X 0, . . . , X m)

and (X nÿm, . . . , Xn) are essentially independent if m=n is close to 1=2 and nÿ 2m is

large. This will allow us to carry out a modi®ed sample splitting technique in the spirit of

Schick (1986) for the present case by ignoring the middle observations Xm�1, . . . , Xnÿmÿ1

and letting X0, . . . , Xm now form the ®rst part of the sample and Xnÿm, . . . , Xn the

second part. The trick of separating blocks of data by a small but increasing number of

observations is well known in the Markov chain literature, or more generally in the context

of mixing sequences.

The asymptotic independence result is established in Section 2. There we show that, for

an appropriately chosen sequence hmni, the sequences of distributions

hL (X 0, . . . , Xm n
, Xnÿmn

, . . . , XnjP)i and hL (X 0, . . . , Xm n
jP) 3 L (Xnÿmn

, . . . , XnjP)i
are mutually contiguous. This result is used in Section 3 to implement sample splitting for

Markov chains. The applicability of the results of Section 3 is then demonstrated by means of

two examples. Estimation of the innovation variance in a nonparametric autoregression model

is discussed in Section 4. Section 5 addresses weighted least-squares estimation with random

weights in an autoregressive model with martingale difference innovations. In Section 6

splitting into more than two parts is discussed. Section 7 provides speci®cs for ef®cient

estimation in semi-parametric models and gives suf®cient conditions for constructing ef®cient

estimates in such models. These conditions are generalizations of those given by Schick

(1986) and, in view of the results of Klaassen (1987), should be necessary. The results of

Section 7 are applied in Section 8 to construct an ef®cient and adaptive estimate of the

parameter of interest in a heteroscedastic autoregressive model of order 1 with symmetric

errors. We shall do so under assumptions weaker than those of Maercker (1997).

Our sample splitting technique has already been successfully implemented in several

papers. Schick and Wefelmeyer (1999) used it to construct improvements over empirical

estimates of linear functionals of the marginal law F under semi-parametric restrictions on

the transition Q. Kessler et al. (1999) applied this technique to construct ef®cient estimates

of the ®nite-dimensional parameter in a Markov chain model with parametrically speci®ed

marginal laws, but an otherwise unspeci®ed transition law. Schick (1999) relied on it to

construct ef®cient estimates in a semi-parametric additive autoregression model. The author

is currently working on applying it to other semi-parametric autoregression models.

2. A contiguity result

In this section the aforementioned contiguity result will be presented. We assume from now

on that the underlying probability space (Ù, U, P) is large enough that it also carries S-

valued random elements ~X 0, ~X1, . . . which form an independent copy of the chain

{Xj : j � 0, 1, 2, . . .}. For a positive integer n, we let M n denote the n-step transition

probability measure. These Markov kernels are de®ned iteratively by
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M n(x, B) �
�

M(x, dy)M nÿ1(y, B), x 2 S, B 2 G ,

starting with M1 � M .

We shall establish contiguity under the following condition:

(B0) lim
n!1

�
F(dx) sup

B2G
jM n(x, B)ÿ F(B)j � 0:

This condition is slightly weaker than

lim
n!1 sup

B2G
jM n(x, B)ÿ F(B)j � 0 for all x 2 S:

The latter condition is known to hold for aperiodic positive recurrent Harris chains; see

Theorem 13.0.1 in Meyn and Tweedie (1993). Other suf®cient conditions for (B0) are

discussed in the remark after the following lemma. The measurability of x 7! supB2G jM n(x,

B)ÿ F(B)j was proved in Roberts and Rosenthal (1997).

Lemma 2.1. Suppose (B0) holds. Let pn, qn and rn be positive integers such that pn ,
qn , rn and qn ÿ pn !1. Then the sequences hQni and h ~Qni of distributions de®ned by

Qn � L (X 0, . . . , Xpn
, Xq n

, . . . , Xrn
jP)) and ~Qn � L (X 0, . . . , Xpn

, ~X qn
, . . . , ~X rn

jP))

are mutually contiguous.

Proof. Let f be a measurable function from S2� pn�sn into [ÿ1, 1], where sn � rn ÿ qn. Then

there exists a function f from S2 to [ÿ1, 1] such that f (Xpn
, Xq n

) is a version of the

conditional expectation of f (X 0, . . . , Xpn
, Xq n

, . . . , Xrn
) given (Xpn

, Xq n
) and f (Xpn

, ~X qn
) is

a version of the conditional expectation of f (X 0, . . . , Xpn
, ~X qn

, . . . , ~X rn
) given (Xpn

, ~X q n
).

This shows that �
f d ~Qn � E f (Xpn

, ~X q n
) �

��
F(dx)F(dy) f (x, y)

and �
f dQn � E f (Xpn

, Xq n
) �

��
F(dx)M qnÿ pn (x, dy) f (x, y):

Using this we ®nd that����� f d ~Qn ÿ
�

f dQn

���� <

�
F(dx) sup

j gj<1

�����M qnÿ pn (x, dy)g(y)ÿ
�

F(dy)g(y)

����
� 2

�
F(dx) sup

B2G
jM qnÿ pn (x, B)ÿ F(B)j:

This bound and (B0) show that the variational distance between Qn and ~Qn converges to 0.

This implies the desired contiguity. h
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Remark. Let V be a measurable function from S into [1, 1). Then (B0) is implied by

(B1)

�
F(dx) sup

jhj<V

�����Mn(x, dy)(y)ÿ
�

F(dy)h(y)

����! 0 as n!1:

Of course, (B1) is implied by V-uniform ergodicity:

(B2) sup
x2S

sup
jhj<V

�����Mn(x, dy)h(y)ÿ
�

F(dy)h(y)

����
V (x)

! 0 as n!1:

An even stronger condition is geometric V-uniform ergodicity:

(B3) For some D ,1 and for some á, 1,

sup
x2S

sup
jhj<V

�����Mn(dy)h(y)ÿ
�

F(dy)h(y)

����
V (x)

< Dán for all n:

For irreducible and aperiodic Markov chains, Meyn and Tweedie (1994) have shown that (B2)

and (B3) are equivalent and that either condition is equivalent to the following condition.

(DC) For some small set C there exist a measurable function VC > 1 and positive

constants ëC , 1, bC ,1 such that the drift condition�
M(x, dy)VC(y) < ëC VC(x)� bC1C(x), x 2 S,

holds, and VC is equivalent to V in the sense that V=c < VC < cV for the same

constant C > 1.

An event C in G is called a small set if there exist some probability measure v, some

constant ä. 0 and some positive integer j0 such that

M j0 (x, B) > äv(B), x 2 C, B 2 G : (2:1)

For the de®nitions of the other concepts we refer the reader to Meyn and Tweedie (1993).

Under slightly stronger assumptions than (DC), Meyn and Tweedie (1994) have shown

that the constants D and á appearing in (B3) are computable. More precisely, from their

Theorem 2.3 one obtains the following.

Theorem 2.2. Let Q be a family of transition probabilities each generating an irreducible

and aperiodic Markov chain. Let V be a measurable function from S to [1, 1). Suppose there

are constants ë, 1, b ,1 and ä. 0, an event C in G and a probability measure v on G
with v(C) � 1 such that
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sup
Q2Q

�
Q(x, dy)V (y) < ëV (x)� b1C(x), x 2 S, (2:2)

inf
Q2Q

Q(x, B) > äv(B), x 2 C, B 2 G (2:3)

and

sup
x2C

V (x) ,1 (2:4)

Then there are constants D ,1 and á, 1 and probability measures fðQ : Q 2 Q g such

that

ðQ(B) �
�
ðQ(dx)Q(x, B), B 2 G , (2:5)

for each Q 2 Q , and

sup
Q2Q

sup
x2S

sup
jhj<V

�����Qn(x, dy)h(y)ÿ
�
ðQ(dy)h(y)

����
V (x)

< Dán for all n: (2:6)

Remark. A signed Markov kernel is a map from S 3 G into R such that x 7! K(x, B) is

measurable for each B 2 G and B 7! K(x, B) is a signed measure for each x 2 S. Let v be a

signed measure, K and L be signed Markov kernels and V be a positive measurable function

on S. Then we set

kvkV � sup
jhj<V

�����v(dy)h(y)

���� and kKkV � sup
jhj<V

�����K(:, dy)h(y)

����;
we let vK denote the signed measure de®ned by

vK(B) �
�

v(dx)K(x, B), B 2 G ;

and we let KL denote the signed Markov kernel de®ned by

KL(x, B) �
�

K(x, dy)L(y, B), x 2 S, B 2 G :

Now let Q , V and fðQ : Q 2 Q g be as in Theorem 2.2 and de®ne Markov kernels

fÐQ : Q 2 Q g by

ÐQ(x, B) � ðQ(B), x 2 S, B 2 G :

Then we can write (2.5) as ðQ � ðQQ and (2.6) as

sup
Q2Q
kQn ÿÐQkV < DVán, for all n: (2:7)

Also, by (2.2),
�

V dðQ �
�

QV dðQ < ë
�

V dðQ � b, so that
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sup
Q2Q

�
V dðQ <

b

1ÿ ë
: (2:8)

Now let Q and R be elements in Q. Then we have ðQ ÿ ðR � ðQ(Qÿ R)� (ðQ ÿ ðR)R.

Iterating this, we arrive at

ðQ ÿ ðR � ðQ(Qÿ R)�
Xn

j�1

ðQ(Qÿ R)Rj � (ðQ ÿ ðR)Rn�1, n � 1, 2, . . .

Since (vÿ ì)ÐR � 0 for two probability measures v and ì, this can also be written as

ðQ ÿ ðR � ðQ(Qÿ R)�
Xn

j�1

ðQ(Qÿ R)(Rj ÿÐR)� (ðQ ÿ ðR)(Rn�1 ÿÐR),

n � 1, 2, . . . (2:9)

Thus, in view of (2.7), we have

kðQ ÿ ðRkV <
1� D

1ÿ á
kðQ(Qÿ R)kV <

1� D

1ÿ á

�
kQÿ RkV dðQ: (2:10)

This result can be used to derive continuity properties of the map Q 7! ðQ. It will be

exploited in Section 8 to establish continuity of the second moments of the stationary

distribution for heteroscedastic autoregression models of order 1.

3. The 2-split

In this section we implement the sample splitting technique. Our ®rst result gives the basic

construction. It shows how to get a sequence satisfying (1.1) based on the actual observations

from one that also uses an independent copy thereof. Subsequent results then deal with the

problem of ®nding solutions to (1.1) that are allowed to use an independent copy of the

observations.

Throughout this section we let

Xn � (X0, . . . , Xn) and ~Xn � ( ~X0, . . . , ~X n),

we let hmni denote a sequence of positive integers such that

nÿ 2mn !1 and
nÿ 2mn���

n
p ! 0, (3:1)

and put

Xn,1 � (X0, . . . , Xm n
) and Xn,2 � (Xnÿm n

, . . . , Xn):

We are now ready to state the basic construction lemma.

Lemma 3.1. Suppose that (B0) holds. Set

Zn � 1
2
zm n

(Xn,1, Xn,2)� 1
2
zm n

(Xn,2, Xn,1), (3:2)
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where zN is a measurable function from S2N�2 to Rm for each positive integer N. Suppose

that

n1=2 zn(Xn, ~Xn)ÿ 1

n

Xn

j�1

h(Xjÿ1, X j)

 !
!P 0: (3:3)

Then hZni satis®es (1.1).

Proof. Let ~Xn,2 � ( ~X nÿm n
, . . . , ~X n). It follows from (3.1) and (3.3) that

n1=2 zmn
(Xn,1, ~Xn,2)ÿ 1

mn

Xmn

j�1

h(Xjÿ1, X j)

 !
!P 0:

In view of the mutual contiguity of hL (Xn,1, ~Xn,2jP)i and hL (Xn,1, Xn,2jP)i this yields

n1=2 zmn
(Xn,1, Xn,2)ÿ 1

mn

Xmn

j�1

h(Xjÿ1, X j)

 !
!P 0:

Similarly, one can verify that

n1=2 zm n
(Xn,2, Xn,1)ÿ 1

mn

Xn

j�nÿmn�1

h(Xjÿ1, X j)

 !
!P 0:

Since n3=2(1=(2mn)ÿ 1=n)! 0 by (3.1), we are left to show that

Rn � 1���
n
p

Xnÿmn

j�mn�1

h(Xjÿ1, X j)!P 0:

But this follows as

E(R2
n) <

(nÿ 2mn)2

n
E(h2(X0, X1)� ! 0

by the properties of hmni: h

Remark. The above construction does not utilize the middle nÿ 2mn observations. Thus we

should let nÿ 2mn tend to in®nity very slowly; we recommend nÿ 2mn � log n for the

geometrically ergodic case. Let us now point out a construction that utilizes all observations.

To describe it, let kn denote the integer part of n=2, hdni be a sequence of positive integers

such that dn !1 and dnnÿ1 ! 0 (we recommend dn � log n), and zk, l be a measurable

function from S k� l�2 to Rm for non-negative integers k and l. The construction we have in

mind is

Zn � 1
2
zk n,nÿk nÿd n

(X0, . . . , Xk n
, Xk n�d n

, . . . , X n)

� 1
2
znÿk n,k nÿd n

(Xk n
, . . . , Xn, X0, . . . , Xk nÿd n

):

This estimator does not waste the middle observations. It satis®es (1.1) if
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n1=2 zn, l n
(X0, . . . , X n, ~X0, . . . , ~X l n

)ÿ 1

n

Xn

j�1

h(Xjÿ1, Xj)

 !
!P 0

whenever ln=n! 1. We have chosen to work with the construction given in the above lemma

as it simpli®es notation. Similar remarks apply to the constructions given in the later parts of

this paper.

Let us now give suf®cient conditions for (3.3). We begin with the case where

zn(Xn, ~Xn) � 1

n

Xn

j�1

hn(Xjÿ1, Xj; ~Xn) (3:4)

for some measurable function hn from S2 3 S n�1 to Rm.

Conditions (3.5) and (3.6) appearing in the next theorem are reminiscent of (2.2) and

(2.3) in Schick (1986). The difference is that we now work with conditional expectations.

Theorem 3.2. Let (B0) hold. Suppose that

1���
n
p

Xn

j�1

�
M(Xjÿ1, dy)(hn(Xjÿ1, y; ~Xn)ÿ h(Xjÿ1, y))!P 0 (3:5)

and

1

n

Xn

j�1

�
M(Xjÿ1, dy)khn(Xjÿ1, y; ~Xn)ÿ h(Xjÿ1, y)k2!P 0: (3:6)

Then (3.3) holds with zn de®ned in (3.4), i.e.

1���
n
p

Xn

j�1

(hn(Xjÿ1, Xj; ~Xn)ÿ h(Xjÿ1, X j))!P 0: (3:7)

Consequently, the estimate hZni de®ned by

Zn � 1

2mn

Xmn

j�1

hm n
(Xjÿ1, X j; Xn,2)� 1

2mn

Xn

j�nÿmn�1

hm n
(Xjÿ1, X j; Xn,1):

satis®es (1.1).

Proof. Let H n, j denote the summand in (3.7) so that

H n, j � hn(X jÿ1, Xj; ~Xn)ÿ h(Xjÿ1, X j)

and H n, j denote the summand in (3.5) so that

H n, j �
�

M(Xjÿ1, dy)(hn(Xjÿ1, y; ~Xn)ÿ h(Xjÿ1, y)):

In view of (3.5), it suf®ces to show that
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1���
n
p

Xn

j�1

(H n, j ÿ H n, j)!P 0: (3:8)

Let An, j denote the ó-®eld generated by X0, . . . , X j, ~X0, . . . , ~X n, for j � 0, 1, . . . , n. Set

Z n, j � nÿ1=2(H n, j ÿ H n, j), j � 1, . . . , n. Note that H n, j � E(H n, jjAn, jÿ1) almost surely.

Thus, for each unit vector a 2 Rm, aT Z n,1, . . . , aT Z n,n is a martingale difference array for

the ®ltration fAn, j : j � 0, . . . , ng withXn

j�1

E((aT Z n, j)
2jAn, jÿ1) <

1

n

Xn

j�1

E((aT H n, j)
2jAn, jÿ1)!P 0

in view of (3.6). This shows that
Pn

j�1aT Z n, j!P 0 for every unit vector a and proves (3.8).

h

Remark. A suf®cient condition for (3.6) is��
F(dx)M(x, dy)khn(x, y; ~Xn)ÿ h(x, y)k2!P 0: (3:9)

A suf®cient condition for (3.5) is�
M(x, dy)(hn(x, y; ~Xn)ÿ h(x, y)) � 0, x 2 S: (3:10)

Another suf®cient condition for (3.5) is given in the next lemma.

Lemma 3.3. Suppose that M is geometrically V-uniformly ergodic for some F-square-

integrable function V from S to [1, 1), that

sup
x2S





�M(x, dy)(hn(x, y; ~Xn)ÿ h(x, y))






V (x)

� Op(1), (3:11)

and that �
F(dx)





�M(x, dy)(hn(x, y; ~Xn)ÿ h(x, y))





2

� op(1): (3:12)

Then (3.5) is equivalent to

n1=2

��
F(dx)M(x, dy)(hn(x, y, ~Xn)ÿ h(x, y)) � op(1): (3:13)

Proof. For simplicity, assume that m � 1. Let

än(x) �
�

M(x, dy)(hn(x, y, ~Xn)ÿ h(x, y)), x 2 S:

Let LV be the set of all measurable functions l from S to R such that
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jljV :� sup
x2S

jl(x)j
V (x)

,1:

It is easy to check that (LV , j:jV ) is a Banach space. Let U denote the bounded linear operator

on LV which assigns to l 2 LV the element Ul in LV de®ned by

Ul(x) �
X1
j�0

�
Mj(x, dy)l(y)ÿ

�
F(dy)l(y)

� �
, x 2 S:

That U is well de®ned and bounded follows from the geometric V-uniform ergodicity of M .

Indeed, since there are constants D ,1 and á, 1 such that�����Mj(x, dy)l(y)ÿ
�

F(dy)l(y)

���� < jljV V (x)Dá j, x 2 S, j � 0, 1, . . . ,

we have

jUljV <
D

1ÿ á
jljV , l 2 Lv:

Since V is F-square-integrable and�
F(dx)

�����Mj(x, dy)l(y)ÿ
�

F(dy)l(y)

����2 <

�
F(dx)l2(x), j � 0, 1, . . . ,

it is now easy to check that
�

(Uln)2 dF ! 0 whenever jlnjV � O(1) and
�

l2
n dF ! 0. This

shows that �
F(dy)(Uän(y))2 � op(1): (3:14)

For l 2 LV , let Al denote the map on S2 de®ned by

Al(x, y) � Ul(y)ÿ
�

M(x, dz)Ul(z), x, y 2 S:

The martingale representation of Gordin (1969) yields

1

n

Xn

j�1

än(Xjÿ1) �
�

F(dx)än(x)� 1

n

Xn

j�1

Aän(Xjÿ1, Xj)ÿ 1

n
(Uän(Xn)ÿ Uän(X0))

on the event fjänjV ,1g whose probability tends to 1 by (3.11). Since
�

M(x,

dy)Aän(x, y) � 0 and
��

F(dx)M(x, dy)(Aän(x, y))2 <
�

F(dy)(Uän(y))2 � op(1), we obtain

from Theorem 3.2 that

1���
n
p

Xn

j�1

Aän(Xjÿ1, Xj) � op(1):

This and (3.14) yield
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1���
n
p

Xn

j�1

än(Xjÿ1) � ���
n
p �

F(dx)än(x)� op(1),

which is the desired result. h

Remark. Note that (3.9) implies (3.12). Thus if M is geometrically V-uniformly ergodic for

some F-square-integrable V, then (3.9), (3.11) and (3.13) imply (3.6) and (3.5). Note also that

we can replace ~Xn by Xn in (3.9) and (3.11)±(3.13). In the next theorem we replace (3.11) by

a slightly stronger condition. This allows us to weaken (3.9).

Theorem 3.4. Suppose that M is geometrically V-uniformly ergodic for some F-square-

integrable function V from S to [1, 1) and that

sup
x, y2S

khn(x, y; Xn)ÿ h(x, y))kXr

i�1

V ái (x)V 1ÿái (y)

� Op(1) (3:15)

for numbers á1, . . . , ár in [0, 1]. Assume also that��
F(dx)M(x, dy)khn(x, y, Xn)ÿ h(x, y)k � op(1) (3:16)

and

n1=2

��
F(dx)M(x, dy)(hn(x, y, Xn)ÿ h(x, y)) � op(1): (3:17)

Then the estimate hZni de®ned by

Zn � 1

2mn

Xmn

j�1

hm n
(Xjÿ1, X j; Xn,2)� 1

2mn

Xn

j�nÿmn�1

hm n
(Xjÿ1, X j; Xn,1)

satis®es (1.1).

In some applications h will be of the form

h(x, y) � Wö(x, y), x, y 2 S, (3:18)

for some m 3 l matrix W and some measurable function ö from S 3 S into R l such that

E(kö(X0, X1)k2) �
� �

F(dx)M(x, dy)kö(x, y)k2 ,1:

In this case a possible choice of zn is given by

zn(Xn, ~Xn) � Wn(Xn, ~Xn)
1

n

Xn

j�1

ön(Xjÿ1, X j; ~Xn), (3:19)

where Wn is a measurable function from S2n�2 into the set of all m 3 l matrices and ön is a

measurable function from S2 3 S n�1 into R l. We can prove the following result.
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Theorem 3.5. Suppose (B0) holds and h is given by (3.18). Suppose that

1���
n
p

Xn

j�1

�
M(Xjÿ1, dy)(Wn(Xn, ~Xn)ön(Xjÿ1, y; ~Xn)ÿ Wö(Xjÿ1, y))!P 0, (3:20)

Wn(Xn, ~Xn)!P W (3:21)

and

1

n

Xn

j�1

�
M(Xjÿ1, dy)kön(Xjÿ1, y; ~Xn)ÿ ö(Xjÿ1, y)k2!P 0: (3:22)

Then (3.3) holds with zn de®ned in (3.19), i.e.

1���
n
p

Xn

j�1

(Wn(Xn, ~Xn)ön(Xjÿ1, X j; ~Xn)ÿ Wö(Xjÿ1, X j))!P 0: (3:23)

Consequently, the estimate hZni de®ned by

Zn � 1

2mn

Xmn

j�1

Wmn
(Xn,1, Xn,2)ömn

(Xjÿ1, X j; Xn,2)

� 1

2mn

Xn

j�nÿmn�1

Wm n
(Xn,2, Xn,1)ömn

(Xjÿ1, Xj; Xn,1)

satis®es (1.1).

Proof. Set Ŵ n � Wn(Xn, ~Xn),

Ö j � ö(Xjÿ1, Xj)ÿ
�

M(Xjÿ1, dy)ö(Xjÿ1, y)

and

Ön, j � ön(Xjÿ1, Xj; ~Xn)ÿ
�

M(Xjÿ1, dy)ön(Xjÿ1, y; ~Xn):

In view of (3.20), it suf®ces to show that

1���
n
p

Xn

j�1

(ŴnÖn, j ÿ WÖ j) � Ŵn

1���
n
p

Xn

j�1

(Ön, j ÿÖ j)� (Ŵn ÿ W )
1���
n
p

Xn

j�1

Ö j!P 0: (3:24)

It follows from Theorem 3.2 that

1���
n
p

Xn

j�1

(Ön, j ÿÖ j)!P 0:

One can also verify easily that 1=
���
n
p Pn

j�1Ö j is bounded in probability. Combining the above

with (3.21) yields the desired result (3.24). h
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4. Estimating the innovation variance in nonparametric
autoregression

In the following example we take the state space to be the real line and the Markov kernal M

to be de®ned by

M(x, dy) � g(yÿ r(x)) dy,

where r is a Lispchitz continuous function on R and g is a bounded positive Lebesgue

density with zero mean and ®nite fourth moment. We also assume the limits

á � lim
x!ÿ1

r(x)

x
and â � lim

x!1
r(x)

x

exist and satisfy

á, 1, â, 1 and áâ, 1:

Then the chain is Lebesgue-irreducible, aperiodic and satis®es (DC) with a function V of the

form

V (x) � 1� ax, x > 0,

1ÿ bx, x , 0,

�
for properly chosen positive constants a and b; see Bhattacharya and Lee (1995). Thus (B0)

holds. Note also that the stationary density f is bounded.

A consistent and asymptotically normal estimate of the variance of the innovation density

g is given by

1

n

Xn

j�1

(Xj ÿ r(Xjÿ1))2

if the regression function r is known. Let us now show that, if r is unknown, one can still

construct an estimate hZni that is asymptotically equivalent to the above estimate in the sense

that

n1=2 Zn ÿ 1

n

Xn

j�1

(Xj ÿ r(Xjÿ1))2

 !
!P 0:

For this we describe the function zn used in the construction given in Lemma 3.1:

zn(Xn, ~Xn) �

Xn

j�1

I[ ~f n(Xjÿ1) > cn](Xj ÿ ~rn(Xjÿ1))2

Xn

j�1

I[ ~f (Xjÿ1) > cn]

,

where cn is a small positive number, ~rn is the kernel regression estimate
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~rn(x) �

Xn

j�1

~X jw((xÿ ~X jÿ1)=dn)

Xn

j�1

w((xÿ ~X jÿ1)=dn)

, x 2 R,

and ~f n is the kernel estimate of the stationary density f ,

~f n(x) � 1

ndn

Xn

j�1

w
xÿ ~X jÿ1

dn

 !
, x 2 R, (4:1)

both based on the same symmetric kernel w with support [ÿ1, 1] and the same window

length dn.

We shall conclude the desired (3.3) from an application of Theorem 3.5 with W � 1,

ö(x, y) � (yÿ r(x))2, Wn(Xn, ~Xn) � n=
Pn

j�1 I[ ~f n(Xjÿ1) > cn] and ön(x, y; ~Xn) � (y ÿ
~rn(x))2 I[ ~f n(x) > cn]. It is easy to check that the assumptions of this theorem are implied

by the following three conditions:

1���
n
p

Xn

j�1

(~rn(Xjÿ1)ÿ r(Xjÿ1))2 I[ ~f n(Xjÿ1) > cn]!P 0, (4:2)

1

n

Xn

j�1

I[ ~f n(Xjÿ1) > cn]!P 1, (4:3)

1

n

Xn

j�1

(~rn Xjÿ1)ÿ r(Xjÿ1))4 I[ ~f n(Xjÿ1) > cn]!P 0: (4:4)

To verify these conditions we assume that

cn ! 0, nd4
n ! 0 and nd2

nc4
n !1:

Using this, the Lipschitz continuity of r, the boundedness of the stationary density f and the

®niteness of the fourth moment of the innovation density g, we ®nd by standard arguments

that

E((~rn(X0)ÿ r(X0))2 I[ ~f n(X0) > cn]) � O(d2
n)� O(nÿ1dÿ1

n cÿ2
n ) � o(nÿ1=2)

and

E((~rn(X0)ÿ r(X0))4 I[ ~f n(X0) > cn]) � O(d4
n)� O(nÿ2dÿ4

n cÿ4
n ) � o(1):

From these we can immediately conclude (4.2) and (4.4). Finally, we can verify that

E(j ~f n(X0)ÿ f (X0)j) < sup
t2R

f (t)

�
E(j ~f n(x)ÿ f (x)j) dx! 0:

This yields (4.3).
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5. Weighted least-squares estimation

In this example we treat an autoregressive model with martingale difference innovations. The

state space is the real line R endowed with its Borel ó-®eld B . We assume that the Markov

kernel M satis®es the following conditions. Of course, (M2) below means that

E(XjjXjÿ1) � rXjÿ1.

(M1) There exists a positive, bounded, continuous function q such that

M(x, B) �
�

B

q(x, y) dy, x 2 R, B 2 B :

(M2) For some r in (ÿ1, 1),�
M(x, dy)y � rx, x 2 R:

(M3) The conditional central fourth moment ÷ satis®es the growth conditions

sup
x2R

÷(x)

1� x4
,1 and lim

jxj!1
÷(x)

1� x4
� 0:

(M4) The conditional variance v is bounded away from zero and satis®es

jv(y)ÿ v(x)j < L(1� jxj)jyÿ xjã, x, y 2 R, jxÿ yj, 1,

for constants L ,1 and ã. 0.

Of course, the conditional variance v and the conditional fourth central moment ÷ are de®ned

by

v(x) �
�

M(x, dy)(yÿ rx)2 and ÷(x) �
�

M(x, dy)(yÿ rx)4, x 2 R:

It follows from (M1) that Mn(x, A) . 0 for every event A with positive Lebesgue

measure and every n. Thus the Markov chain generated by M will be Lebesgue-irreducible

and aperiodic; see Theorem A1.2 in Tong (1990) for the latter. Moreover, (M1)±(M3) imply

conditions (2.2)±(2.4) in Theorem 2.2 with Q the singleton {M}, V (x) � 1� x4, ë �
(jrj � 1)=2, C � [ÿK, K] for some suf®ciently large K, b � supx2C

�
q(x, y)(1� y4) dy, v

the uniform distribution on C and ä � inf jxj<K,j yj<K q(x, y). Thus, in view of this theorem,

the Markov chain can be chosen to be stationary. By the properties of q, the stationary

distribution F � ðM has a positive and bounded Lebesgue density f . Moreover,

E(X 4
0) �

�
x4 f (x) dx ,1:

An estimate of r is given by the least-squares estimate
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r̂n �

Xn

j�1

Xjÿ1 X j

Xn

j�1

X 2
jÿ1

� r�

Xn

j�1

Xjÿ1(Xj ÿ rXjÿ1)

Xn

j�1

X 2
jÿ1

:

This estimate satis®es

n1=2 r̂n ÿ rÿ 1

n

Xn

j�1

Xjÿ1(Xj ÿ rXjÿ1)

�
E(X 2

0)

 !
!P 0,

so that L (n1=2(r̂n ÿ r)jP)) N (0, E(X 2
0v(X0))=(E(X 2

0))2). If v were known, one could use

instead the weighted least-squares estimate

r̂�n �

Xn

j�1

u(Xjÿ1)X j

Xn

j�1

u(Xjÿ1)Xjÿ1

� r�

Xn

j�1

u(Xjÿ1)(Xj ÿ rXjÿ1)

Xn

j�1

u(Xjÿ1)Xjÿ1

,

where

u(x) � x

v(x)
, x 2 R:

This estimate satis®es

n1=2 r̂�n ÿ rÿ 1

nô

Xn

j�1

u(Xjÿ1)(Xj ÿ rXjÿ1)

 !
!P 0,

so that L (n1=2(r̂�n ÿ r)jP)) N (0, 1=ô), where ô � E(u(X0)X0) � E(X 2
0=v(X0)). It follows

from the Cauchy±Schwarz inequality that

(E(X 2
0))2 < E(X 2

0v(X0))E(X 2
0=v(X 0))

with equality if and only if v is constant. This shows that the asymptotic variance of the

least-squares estimate is larger than that of the weighted least-squares estimate unless v is

constant. Wefelmeyer (1997) has shown that an estimate ~rn, that is asymptotically equivalent

to the weighted least-squares estimate in the sense that

n1=2(~rn ÿ r̂�n )!P 0,

is a least dispersed regular estimate of r. He also sketched a possible construction of such an

estimate that does not require knowledge of v. His construction, however, relies on a

uniformly consistent estimate of v which is unavailable in the present setting as the support

of f is R.

Let us now construct an estimate that is asymptotically equivalent to the weighted least-

squares estimate but does not require knowledge of v. We use the method of Lemma 3.1

with
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zn(Xn, ~Xn) �

Xn

j�1

~un(Xjÿ1)Xj

Xn

j�1

~un(Xjÿ1)Xjÿ1

� r�

Xn

j�1

~un(Xjÿ1)(Xj ÿ rXjÿ1)

Xn

j�1

~un(Xjÿ1)Xjÿ1

,

where ~un(x) � un(x; ~Xn) is an estimate of u(x) to be determined later. To verify the desired

(3.3) we apply Theorem 3.5 with W � [1, 1=E(X 0u(X 0))], Wn(Xn, ~Xn) � [1, n=Pn
j�1 ~un(Xjÿ1)Xjÿ1],

ö(x, y) � r
u(x)(yÿ rx)

� �
and ön(x, y; ~Xn) � r

~un(x)(yÿ rx)

� �
:

It is now easy to see that the assumptions of this theorem are implied by

1

n

Xn

j�1

(~un(Xjÿ1)ÿ u(Xjÿ1))2v(Xjÿ1)!P 0:

A suf®cient condition for this is�
(~un(x)ÿ u(x))2v(x) f (x) dx!P 0: (5:1)

Let us now construct ~un with this property. For this we rely on an estimate ~vn of v.

Let ~rn be the least-squares estimate based on the data ~Xn. Let w be a twice continuously

differentiable symmetric density with support [ÿ1, 1] and dn be a small positive number.

We use the kernel estimate

~vn(x) �

Xn

j�1

( ~X j ÿ ~rn
~X jÿ1)2w((xÿ ~X jÿ1)=dn)

Xn

j�1

w((xÿ ~X jÿ1)=dn)

, x 2 R:

The estimate ~vn(x) may not be very accurate if jxj is large or when ~f n(x) is small, where ~f n

is the kernel estimate of stationary density f de®ned in (4.1). For this reason we take

~un(x) � x

~vn(x)
~I n(x), x 2 R,

where

~I n(x) � I[ ~f n(x) > cn, jxj < An]: x 2 R,

cn is a small positive number and An is a large positive number. More precisedly, we assume

that

dn ! 0, cn ! 0, An !1, Andã
n ! 0 and

A5
n

c3
n nd5=2

n

! 0:

Since
�

u2(x)v(x) f (x) dx ,1 and P( ~f n(X0) > cn, jX0j < An)! 1, we ®nd that
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�
u2(x)v(x)(1ÿ ~I n(x)) f (x) dx!P 0: (5:2)

We shall show that

sup
x2R

~I n(x)j~vn(x)ÿ v(x)j!P 0: (5:3)

Since
�

u2(x)v(x) f (x) dx ,1 and v is bounded away from zero, this will imply�
~I n(x)(~un(x)ÿ u(x))2v(x) f (x) dx!P 0: (5:4)

The desired (5.1) follows from (5.2) and (5.4).

To verify (5.3), let

vn(x) �

Xn

j�1

( ~X j ÿ r ~X jÿ1)2w((xÿ ~X jÿ1)=dn)

Xn

j�1

w((xÿ ~X jÿ1)=dn)

, x 2 R:

and

vn(x) �

Xn

j�1

v( ~X jÿ1)w((xÿ ~X jÿ1)=dn)

Xn

j�1

w((xÿ ~X jÿ1)=dn)

, x 2 R:

It follows from (M4) that

sup
x2R

~I n(x)jvn(x)ÿ v(x)j � O(Andã
n): (5:5)

Since the fourth moment of f is ®nite, E(X 2
0(X1 ÿ rX0)2) � � x2v(x) f (x) dx is ®nite in view of

(M3). Using the inequaltity a2 P(jY j. a) < E(Y 2 I[jY j. a]), we obtain

max
1< j<n

nÿ1=2j ~X jÿ1( ~X j ÿ r ~X jÿ1)j!P 0 and max
1< j<n

n1=2j ~X jÿ1j!P 0:

This and the
���
n
p

-consistency of the least-squares estimate show that

sup
x2R

~I n(x)j~vn(x)ÿ vn(x)j!P 0: (5:6)

Next, verify that

sup
x2R

~I n(x)jvn(x)ÿ vn(x)j < 1

cn

sup
jxj<An

jBn(x)j, (5:7)

where
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Bn(x) � 1

ndn

Xn

j�1

(( ~X j ÿ r ~X jÿ1)2 ÿ v( ~X jÿ1))w
xÿ ~X jÿ1

dn

 !
, x 2 R:

Note that Bn is twice continuously differentiable and that jB 0n(x)j < kw 0k1Sn=d3
n for all

x 2 R, where

Sn � 1

n

Xn

j�1

j( ~X j ÿ r ~X jÿ1)2 ÿ v( ~X jÿ1)j:

Since n E(B2
n(x)) < dÿ2

n E(÷(X0)w2((xÿ X 0)=dn)) and the maps f and w are bounded, we

obtain, in view of (M3), that

v0 � sup
jxj<An

E(B2
n(x)) � O

A4
n

ndn

 !
:

Similarly, we derive

v1 � sup
jxj<An

E((B9n(x))2) � O
A4

n

nd3
n

 !
:

Let R be a positive integer and xi � ÿAn � (2iÿ 1)An=R, i � 1, . . . , R. If jxÿ xij < An=R,

then we ®nd by a Taylor expansion that jBn(x)j < jBn(xi)j � AnjB9n(xi)j=R �
A2

nkw 0k1Sn=(R2d3
n). Thus it follows from a standard argument that

P sup
jxj<An

jBn(x)j > 3çcn

� �
<

Rv0

c2
nç

2
� A2

nv1

Rc2
nç

2
� A2

nkw 0k1E(Sn)

R2d3
ncnç

for ç. 0. Taking R � Rn � dÿ3=2
n cÿ1

n An shows that

sup
jxj<An

jBn(x)j=cn!P 0: (5:8)

The desired result (5.3) now follows from (5.5)±(5.8).

6. The q-split

Up to now we have only considered splitting into two parts. But the above ideas can be easily

generalized to splitting into more than two parts. Let q be a integer, q > 2, denoting the

number of splits. Write n � qmn � (qÿ 1)tn � rn, where mn, tn and rn are non-negative

integers such that

tn !1 and
nÿ qmn���

n
p ! 0: (6:1)

De®ne the q parts by

Xn,i � (X(iÿ1)(m n� t n), . . . , Ximn�(iÿ1) t n
), i � 1, . . . , q:
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To describe our results we assume from now on that the underlying space is large enough

for there to be qÿ 1 chains f ~X 2, j : j � 0, 1, 2, . . . , g, . . . , f ~X q, j : j � 0, 1, 2, . . .g which

are independent copies of the original chain fXj : j � 0, 1, 2, . . .g and are independent of

it. Set

~Xi,N � ( ~X i,0, . . . , ~X i,N ), i � 2, . . . , q, N � 1, 2, . . . :

The next lemma is an immediate consequence of Lemma 2.1.

Lemma 6.1. If (B0) and (6.1) hold, then the sequences of distributions

hL (Xn,1, . . . , Xn,qjP)i and hL (Xn,1, ~X2,mn
, . . . , ~Xq,mn

jP)i
are mutually contiguous.

By analogy with (3.2), we now consider the estimate

Zn � 1

q!

X
i1,... , iq

zm n
(Xn,i1 , . . . , Xn,iq

), (6:2)

where the summation is over all permutations (i1, . . . , iq) of (1, . . . , q) and zN is a

measurable function from Sq(N�1) to Rm for each positive integer N. We now obtain the

following analogue to Lemma 3.1.

Lemma 6.2. Suppose (B0) and (6.1) hold and

n1=2 zn(Xn, ~X2,n, . . . , ~Xq,n)ÿ 1

n

Xn

j�1

h(Xjÿ1, X j)

 !
!P 0: (6:3)

Then hZni de®ned by (6.2) satis®es (1.1).

Remark. Of course, suf®cient conditions for (6.3) can be obtained from those given in

Theorems 3.2 and 3.5 by simply replacing ~Xn by ~X2,n, . . . , ~Xq,n.

7. Speci®cs for semi-parametric models

In this section we shall formulate a result more suitable for semi-parametric models. A

standard approach to these models is the use of discretized
���
n
p

-consistent estimates. Such

estimates can be treated as non-stochastic sequences in the proofs. When combined with

contiguity arguments, this often leads to much simpler proofs. See Bickel (1982) or Schick

(1986) for this approach. For the ensuing development it is imperative that we stress the

dependence on the ®nite-dimensional parameter of interest, but we suppress the dependence

on the in®nite-dimensional nuisance parameter. The formulation will be for the more general

q-split procedure discussed in the previous section.

Let È be an open subset of Rm. For each W 2 È, let PW be a probability measure for

which the chains X0, X1, . . . , ~X 2,0, ~X 2,1, . . . , ~X q,0, ~X s,1, . . . are independent stationary
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Markov chains with the same transition probability MW and the same stationary distribution

FW. Assume now that P � Pè for some ®xed point è in È. We want to construct an

estimate hZni such that

n1=2 Zn ÿ èÿ 1

n

Xn

j�1

W (è)ö(Xjÿ1, Xj; è)

 !
!Pè

0, (7:1)

where, for each W 2 È, W (W) is an m 3 l matrix and ö is a map from S2 3 È into R l such

that �
MW(x, dy)ö(x, y; W) � 0 and

� �
FW(dx)MW(x, dy)kö(x, y; W)k2 ,1:

Let Xn,1, . . . , Xn,q and ~X2,N , . . . , ~Xq,N be as de®ned in the previous section. One is tempted

to take

Zn � Un �Øm n
(Un), (7:2)

where Un is an estimate of è and

Ømn
(W) � 1

q!

X
i1,:::,iq

Wmn
(W; Xn,i1 , . . . , Xn,iq

)Ömn
(W; Xn,i1 , . . . , Xn,iq

), W 2 È, (7:3)

with Wm n
a measurable function from È 3 Sqmn�q into the set of m 3 l matrices and

Ömn
(W; Xn,1, . . . , Xn,q) � 1

mn

Xmn

j�1

öm n
(Xjÿ1, X j; W; Xn,2, . . . , Xn,q)

for some measurable function ömn
from S2 3 È 3 S(qÿ1)(mn�1) into R l.

By a `local sequence' we mean a sequence hèni in È such that hn1=2(èn ÿ è)i is

bounded. To take full advantage of the technical simpli®cation associated with the use of

discretized estimates we shall impose the following conditions.

(A0) Condition (B0) holds for the pair (M, F) � (Mè, Fè).

(A1) The estimate hUni is
���
n
p

-consistent (hL (n1=2(Un ÿ è)jPè)i is tight) and discretized

(for every å. 0, there are an integer N and events hAni such that, for each

n � 1, 2, . . . , Pè(An) > 1ÿ å and the image of An under Un has at most N

elements).

(A2) For every local sequence hèni,

n1=2 èn � 1

n

Xn

j�1

W (èn)ö(Xjÿ1, X j; èn)ÿ èÿ 1

n

Xn

j�1

W (è)ö(Xjÿ1, X j; è)

 !
!Pè 0:

(A3) For every local sequence hèni, the sequences hL (X0, . . . , XnjPèn
)i and hL (X0,

. . . , X njPè)i are mutually contiguous.

Remark. A discretized version hè̂�n i of a
���
n
p

-consistent estimate hè̂ni can be obtained by

assigning è̂�n the value on the grid fn1=2 j : j 2 Zmg closest to è̂n, where Z denotes the set of
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all integers. More sophisticated discretization procedures are discussed in Fabian and Hannan

(1982).

Remark. In the construction of ef®cient estimates for semi-parametric models, the local

asymptotic normality condition in the parameter of interest for ®xed nuisance parameter

automatically implies (A3), while (A2) follows under mild assumptions on the least

favourable submodel; see Koul and Schick (1997) for the general case and Drost et al. (1997)

and Jeganathan (1995) for the case of adaptive estimation.

Under (A1)±(A3), (7.1) follows if

n1=2 Øm n
(èn)ÿ 1

n

Xn

j�1

W (èn)ö(Xjÿ1, X j; èn)

 !
!Pèn

0 (7:4)

for every local sequence hèni. Indeed, it follows from (A3) that Pèn
can be replaced by Pè

and then from (A2) that

n1=2 èn �Øm n
(èn)ÿ èÿ 1

n

Xn

j�1

W (è)ö(Xjÿ1, Xj; è)

 !
!Pè

0

for all local sequences hèni. In view of (A1), we can then replace hèni by any discretized���
n
p

-consistent estimate, and this is the desired result (7.1).

It follows from (A0) and Lemma 6.1 that hQn,èi and h ~Qn,èi are mutually contiguous,

where

Qn,W � L (Xn,1, . . . , Xn,qjPW) and ~Qn,W � L (Xn,1, ~X2,m n
. . . , ~Xq,m n

jPW), W 2 È:

Combined with (A3), this gives that hQn,èn
i and h ~Qn,èn

i are mutually contiguous for every

local sequence hèni. Thus (7.4) is implied by

1���
n
p

Xn

j�1

( ~Wn(èn) ~ön(Xjÿ1, X j; èn)ÿ W (èn)ö(Xjÿ1, X j; èn))!Pèn
0, (7:5)

where

~Wn(W) � Wn(èn; Xn, ~X2,n, . . . , ~Xq,n), W 2 È,

and

~ön(x, y; W) � ön(x, y; W; ~X2,n, . . . , ~Xq,n), x, y 2 S, W 2 È:

Suf®cient conditions for (7.5) can be obtained by slightly modifying the assumptions of

Theorem 3.5. This is done in the next theorem.

Theorem 7.1. Let (A0)±(A3) and (6.1) hold and suppose that, for every local sequence hèni,

lim sup
n

kW (èn)k �
�

Fèn
(dx)Mèn

(x, dy)kö(x, y; èn)k2 ,1, (7:6)

Sample splitting with Markov chains 55



1���
n
p

Xn

j�1

�
Mèn

(Xjÿ1, dy) ~Wn(èn) ~ön(Xjÿ1, y; èn)!Pèn
0, (7:7)

~Wn(èn)ÿ W (èn)!Pèn
0 (7:8)

and

1

n

Xn

j�1

�
Mèn

(Xjÿ1, dy)k ~ön(Xjÿ1, y; èn)ÿ ö(Xjÿ1, y; èn)k2!Pèn
0: (7:9)

Then (7.1) holds with hZni de®ned in (7.2) and (7.3).

8. Ef®cient estimation in a heteroscedastic autoregressive
model of order 1 with symmetric errors

In this section we consider a heteroscedastic autoregression model of order 1 with a smooth

scale function and symmetric innovations. More precisely, we assume that the transition

kernel M � Mr is de®ned by

Mr(x, dy) � 1

ó (x)
g

yÿ rx

ó (x)

� �
dy,

where g is a positive symmetric Lebesgue density with variance 1, ó is a Lipschitz

continuous function from R into (0, 1) which is bounded away from 0 and r is a real

number. To guarantee stationarity and ergodicity we impose the condition

r2 � lim sup
jxj!1

ó 2(x)

x2
, 1: (8:1)

Since the density g is positive, the corresponding chain is Lebesgue-irreducible and

aperiodic. It follows from (8.1) that, for a small enough interval R containing r, the class

Q � fMr : r 2 Rg satis®es (2.2)±(2.4) of Theorem 2.2 with V (x) � 1� x2 and C �
[ÿK, K] for some suf®ciently large K. The corresponding invariant measures

fFr � ðM r
: r 2 Rg have positive bounded Lebesque densities f f r: r 2 Rg and uniformly

bounded second moments (see (2.8)). One can even show that

lim
r!r
kFr ÿ FrkV � lim

r!r

�
(1� x2)j f r(x)ÿ fr(x)jdx! 0: (8:2)

Indeed, in view of the remark after Theorem 2.2, this follows from

lim
r!r

�
kMr ÿ MrkV dFr ! 0: (8:3)

Since
�

V (x) fr(x) dx ,1 and supr2RkMr ÿ MrkV < LV for some ®nite constant L by

Theorem 2.2, the Lebesgue dominated convergence theorem shows that (8.3) is implied by

56 A. Schick



lim
r!r
kMr ÿ MrkV (x) � 0, x 2 R: (8:4)

The substitution u � (yÿ rx)=ó (x) yields kMr ÿ MrkV (x) � � (1� (rx� ó (x)u)2)jg(u ÿ
(r ÿ r)x=ó (x))ÿ g(u)j du. Thus (8.4) follows if we show that

Ä(t) �
�

(1� y2)jg(yÿ t)ÿ g(y)j dy! 0 as t! 0: (8:5)

Since y2 ÿ (yÿ t)2 � 2t(yÿ t)� t2, we ®nd that

Ä(t) <

�
j(1� (yÿ t)2)g(yÿ t)ÿ (1� y2)g(y)j dy�

�
(t2 � 2jtj jyÿ tj)g(yÿ t) dy:

Therefore (8.5) follows by the L1-continuity for translations (cf. Theorem 9.5 in Rudin 1974)

and the fact that
�

(1� y2)g(y) dy ,1.

Assume from now on also that the innovation density g has ®nite Fisher information for

location, i.e. g is absolutely continuous and

J (g) �
�

l2(x)g(x) dx ,1, where l(x) � ÿ g9(x)

g(x)
, x 2 R:

We do not assume that g and ó are known. We want to construct an estimate hZni which

satis®es

n1=2 Zn ÿ rÿ 1

n

Xn

j�1

1

ã(r)

Xjÿ1

ó (Xjÿ1)
l

Xj ÿ rXjÿ1

ó (Xjÿ1)

� � !
!Pr 0 (8:6)

with

ã( r) � J (g) Er
X 2

0

ó 2(X0)

 !
:

It follows from the results in Maercker (1997) that such an estimate is an ef®cient and

adaptive estimate of r in the presence of the nuisance parameters ó and g. She also

constructs such an estimate by extending the approach of Bickel (1982). This approach uses

only a small part of the sample to construct the score function. We shall use essentially all

the data by relying on our sample splitting technique. Moreover, we shall relax some of her

assumptions such as (iii) of her Assumption 2.1 and (ii), (iii) and (v) of her Assumption 2.2.

In particular, we are happy to get rid of her Assumption 2.2(v) as it is not clear how to

choose ãm if the error density g is unknown. We achieve this mainly by using a different

approach to estimating the volatility function. Rather than estimating ó directly, we estimate a

multiple of it. This is made precise below. But let us ®rst observe that assumptions (A0)±

(A3) from Section 7 hold.

Here, (A0) is met as shown above, and (A1) holds with Un a discretized version of the

least-squares estimate. It follows from results in Maercker (1997) that (A3) holds if we

verify her Assumption B. But this is a consequence of (8.2), and so is the continuity of

r 7! ã(r) at r. The latter and the results of Maercker (1997) show that (A2) holds. Thus we
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can use the construction given in the previous section if we produce estimates that satisfy

(7.6)±(7.9).

Before we do so, let us ®rst rewrite (8.6) as

n1=2 Zn ÿ rÿ 1

n

Xn

j�1

1

ã(r)

Xjÿ1

s(Xjÿ1)
l0

Xj ÿ rXjÿ1

s(Xjÿ1)

� � !
!Pr 0, (8:7)

where, with ì � � jyjg(y) dy,

s(x) � ìó (x), g0(x) � ìg( ìx) and l0(x) � ÿ g90(x)

g0(x)
� ìl(ìx):

Note also that

ã(r) � J (g0) Er
X 2

0

s2(X0)

 !
:

In view of this, we shall construct estimates of s and g0 rather than of ó and g. Note that

s(X0) � Er(jX1 ÿ rX0kX0) (8:8)

and that g0 is a density of (X1 ÿ rX0)=s(X0) and, by symmetry of g, also a density of

ÿ(X1 ÿ rX0)=s(X0).

For the remainder of this section, we let hrni be a local sequence for r. We take

W (rn) � 1

ã(rn)
,

ö(x, y; rn) � x

s(x)
l0

yÿ rnx

s(x)

� �
, x, y 2 R:

We shall apply the construction with q > 3 and rely on different estimates of s. We shall

mimic (Xj ÿ rn Xjÿ1)=s(Xjÿ1) by using an estimate ~sn,1 of s based on all the auxiliary

samples ~X2,n, . . . , ~Xq,n and mimic ( ~X i, j ÿ rn
~X i, jÿ1)=s( ~X 2, jÿ1) by using an estimate ~sn,i of s

based on all the auxiliary samples except ~Xi,n. Let B1 � f2, . . . , qg and Bi � B1 ÿ fig for

i � 2, . . . , q.

The identity (8.8) suggests the kernel estimates

~sn,i(x) �

X
v2Bi

Xn

j�1

j ~Xv, j ÿ rn
~Xv, jÿ1jw((xÿ ~Xv, jÿ1)=dn)

X
v2Bi

Xn

j�1

w((xÿ ~Xv, jÿ1)=dn)

, x 2 R, i � 1, . . . , q,

utilizing a twice continuously differentiable symmetric density w with support [ÿ1, 1] and

window length dn. These estimates can be poor if jxj is large or if their denominators are too

small. To eliminate this problem we shall use the random weights

~I n,i(x) � I[ ~f n,i(x) > cn, jxj < An], x 2 R, i � 1, . . . , q,
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where ~f n,i is the kernel density estimate

~f n,i(x) � 1

card(Bi)ndn

X
v2Bi

Xn

j�1

w
xÿ ~Xv, jÿ1

dn

 !
, x 2 R, i � 2, . . . , q:

Now set

en, j � X j ÿ rn Xjÿ1

~sn,1(Xjÿ1)
and ~ei,n, j �

~X i, j ÿ rn
~X i, jÿ1

~sn,i( ~X i, jÿ1)
, j � 1, . . . , n, i � 2, . . . , q:

We shall use the variables ~e2,n,1, . . . , ~e2,n,n, . . . , ~eq,n1 . . . , ~eq,n,n to estimate g0 via a weighted

kernel method based on the logistic density k and window length an as follows:

~gn(x) � 1

2(qÿ 1)nan

Xq

i�2

Xn

j�1

~I n,i( ~X i, jÿ1) k
xÿ ~ei,n, j

an

� �
� k

x� ~ei,n, j

an

� �� �
, x 2 R:

Instead of the logistic density one can take any other density k that is symmetric, bounded,

three times differentiable and positive, has ®nite variance and satis®es jk(i)(x)j < Ck(x) for

x 2 R, i � 1, 2, 3 and some C ,1. We estimate l0 by

~l n(x) � ÿ ~g9n(x)

bn � ~g n(x)
, x 2 R:

Finally, set

~ön(x, y; rn) � ön(x, y; rn; ~X2,n, . . . , ~Xq,n) � x~I n,1(x)

~sn,1(x)
~ln

yÿ rnx

~sn,1(x)

 !
, x, y 2 R,

and

~Wn(rn) � Wn(rn, Xn, ~X2,n, . . . , ~Xq,n) � 1

~ôn
~J n

,

where

~ôn � 1

n

Xn

j�1

X 2
jÿ1

~I n,1(Xjÿ1)

~s2
n,1(Xjÿ1)

and ~J n �

Xn

j�1

~I n,1(Xjÿ1)~l 2
n(en, j)

Xn

j�1

~I n,1(Xjÿ1)

:

We shall now verify conditions (7.6)±(7.9) under the following rate requirements on the

sequences dn, cn, An, an and bn:

dn � n1=3, An � log n, cÿ1
n � log n, na4

nb2
n !1 and n2=3a5

nbnc2
n !1:

The ®rst condition follows from the continuity of r 7! ã(r) at r proved earlier. As in Section

5, we can verify that

Sample splitting with Markov chains 59



sup
x2R

~I n,i(x)j~sn,i(x)ÿ s(x)j !Pr n
0, i � 1, . . . , q:

Thus it suf®ces to prove the remaining three conditions with ~sn,i � c _ ~sn,i, where

c � 1
2

inf t2Rs(t). Then we verify that�
Ern

~I n,i(x)
1

~sn,i(x)
ÿ 1

s(x)

� �2

(1� x2) frn
(x) dx � O(nÿ1dÿ1

n cÿ2
n � d2

n) � O(nÿ2=3cÿ2
n ), (8:9)

for i � 1, . . . , q. This and Lemmas 10.1 and 10.2 in Schick (1993) give��
Frn

(dx)Mrn
(x, dy)~I n,1(x) ~ln

yÿ rnx

~sn,1(x)

 !
ÿ l0

yÿ rnx

s(x)

� � !2

!Prn
0 (8:10)

and ��
Frn

(dx)Mrn
(x, dy)~I n,1(x)

x

~sn,1(x)
~ln

yÿ rnx

~sn,1(x)

 !
ÿ x

s(x)
l0

yÿ rnx

s(x)

� � !2

!Prn
0: (8:11)

Here we have used the fact that aÿ5
n bÿ1

n nÿ2=3cÿ2
n ! 0. In view of Er(1ÿ ~I n,1(X0))! 0, (8.9)

and (8.10) yield

~ôn!
Pr n

ô and ~J n!
Prn

J (g0)

and hence (7.8), while (8.11) implies (7.9). Finally, since l0(y) � l0(ÿy), ~l n(y) � ~ln(ÿy) and

g0(y) � g0(ÿy), we have�
l0

yÿ rnx

s(x)

� �
g0

yÿ rnx

s(x)

� �
dy � 0 and

�
~ln

yÿ rnx

~sn,1(x)

 !
g0

yÿ rnx

s(x)

� �
dy � 0:

This implies (7.7).
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