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Let æ be the Riemann zeta function. Khinchine (1938) proved that the function fó (t) �
æ(ó � it)=æ(ó ), where ó . 1 and t is real, is an in®nitely divisible characteristic function. We

investigate further the fundamental properties of the corresponding distribution of fó , the Riemann

zeta distribution, including its support and unimodality. In particular, the Riemann zeta random

variable is represented as a linear function of in®nitely many independent geometric random variables.

To extend Khinchine's result, we construct the Dirichlet-type characteristic functions of discrete

distributions and provide a suf®cient condition for the in®nite divisibility of these characteristic

functions. By way of applications, we give probabilistic proofs for some identities in number theory,

including a new identity for the reciprocal of the Riemann zeta function.
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1. Introduction

Consider the Riemann zeta function de®ned by æ(z) �P1n�1 nÿz, where z � ó � it, ó . 1

and t is real. Khinchine (1938, p. 35) proved that for every ó . 1, the normalized function

fó (t) � æ(ó � it)

æ(ó )
, t 2 R, (1)

is an in®nitely divisible characteristic function (see also Gnedenko and Kolmogorov 1968, pp.

75±76). Surprisingly, few properties of fó have been developed since 1938, as remarked by

Chung (2001, p. 259): so far as known, this famous relationship between two `big names' has

produced no important issue.

For convenience the corresponding distribution Fó of fó will be called the Riemann zeta

distribution with parameter ó . In the next section we shall investigate the fundamental

properties of Fó , including its support and unimodality. In particular, we show that: (i) Fó

is a discrete distribution with support fÿlog ng1n�1; (ii) the saltus ( jump) of Fó at the point

ÿlog n is nÿó =æ(ó ); and (iii) the Riemann zeta random variable can be represented as a

linear function of in®nitely many independent geometric random variables.

More generally, we shall begin with the Dirichlet series which is an extension of the

Riemann zeta function, and construct the Dirichlet-type characteristic functions of discrete

distributions, comparing them with the PoÂlya-type characteristic functions of absolutely
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continuous distributions. Further, we prove that the Dirichlet-type characteristic function is

in®nitely divisible if the coef®cient (as an arithmetical function) in the Dirichlet series is

completely multiplicative. By way of applications, in Section 3 we shall give the prob-

abilistic proofs for some identities in number theory, including a new identity for the

reciprocal of the Riemann zeta function. A number of remarks are made in Section 4.

2. Dirichlet-type characteristic functions

In this section we begin with the Dirichlet series D(z) �P1n�1c(n)=n z with coef®cients c(n)

non-negative and not all zero. Denote by ó a the abscissa of absolute convergence of D(z).

(This implies that the Dirichlet series D(z) converges uniformly on every compact subset of

the half-plane Ka � fz : Re z � ó . ó ag; see, for example, Apostol 1976, p. 235.) For each

ó . ó a, de®ne the normalized function

D ó (t) � D(ó � it)

D(ó )
�
X1
n�1

c�(n)

nó�i t
, for t 2 R, (2)

where c�(n) � c(n)=D(ó ). It will be seen that D ó reduces to fó if the coef®cient c(n) � 1

for each n 2 N � f1, 2, . . .g. We shall show that the function D ó is a bona ®de

characteristic function (cf) and that it is in®nitely divisible if the coef®cient c(n) is

completely multiplicative. The function D ó will be called a cf of Dirichlet type. For

convenience, let us de®ne the random variable Wó,D corresponding to D(z) by

P(Wó,D � n) � c(n)nÿó

D(ó )
, for n 2 N, (3)

where ó . ó a and c(n), n 2 N, are the coef®cients in the Dirichlet series D(z). Then we

have the following result, in which D(m) denotes the mth derivative of D.

Theorem 1. Let D(z) be a Dirichlet series with coef®cients c(n) non-negative and not all

zero. Let ó a be the abscissa of absolute convergence of D(z) and ó . ó a. Further, let

Xó,D � ÿlog Wó,D, where Wó,D is the random variable de®ned in (3). Then

(a) the cf of Xó,D is D ó given in (2);

(b) the mth moment E(X m
ó ,D) � D(m)(ó )=D(ó ) ,1 for each m 2 N.

Proof. By the de®nition of Xó,D, its moment generating function has the explicit form

E(e tXó , D ) � D(ó � t)=D(ó ) ,1 for t . ó a ÿ ó . Since ó a ÿ ó , 0, the required results

follow immediately. h

PoÂlya's condition, which is very easy to apply, permits us to construct cfs of absolutely

continuous distributions (see, for example, Lukacs 1970, p. 83). However, Theorem 1 above,

which is also easy to apply, permits us to construct cfs of discrete distributions. For

example, we now list seven more cfs involving the Riemann zeta function æ. For
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z � ó � it, ó . 1 and t 2 R, let D(z) be one of the following Dirichlet series with non-

negative coef®cients:

æ(z)

æ(2z)
,

æ2(z)

æ(2z)
,

æ3(z)

æ(2z)
,

æ3(z)

æ(3z)
,

æ4(z)

æ(2z)
,

æ(z)æ(2z)æ(3z)

æ(6z)
, (ÿ1)mæ(m)(z)

(see Apostol 1976, pp. 241 and 247). Then, according to Theorem 1, the function

D ó (t) � D(ó � it)=D(ó ), t 2 R, is a cf.

Recall that the cf fó de®ned in (1) is in®nitely divisible. It is natural to ask, if D ó is a

Dirichlet-type cf, under what conditions it is true that D ó is still in®nitely divisible. The

surprisingly neat answer is that D ó is in®nitely divisible if the coef®cient c(n) in the

Dirichlet series D(z) is completely multiplicative, that is, if c(n) satis®es the condition

c(mn) � c(m)c(n) for all positive integers m and n. We ®rst note that for the constant

function D(z) � 1 (with c(1) � 1 and c(n) � 0 for n > 2), the cf D ó � D and is in®nitely

divisible. For other cases, we state the results as follows.

Theorem 2. Let D(z) be a Dirichlet series with completely multiplicative non-negative

coef®cients and c(n) . 0 for some n > 2. Let ó a be the abscissa of absolute convergence of

D(z) and ó . ó a. Then the function D ó in (2) is an in®nitely divisible cf.

Proof. Due to the completely multiplicative coef®cients c(n) > 0, we can write

D(ó � it) � exp
X1
n�2

c(n)Ë(n)

log n
nÿ(ó�i t)

 !
� exp(D�(ó � it)), for t 2 R, (4)

where Ë is the Mangoldt function (see Apostol 1976, p. 239). Therefore the function D ó is

of the form D ó (t) � exp(qfD �ó (t)ÿ 1g) for t 2 R, in which q � log D(ó ) � D�(ó ) . 0 and

D �ó (t) � D�(ó � it)=D�(ó ), t 2 R, is a cf according to Theorem 1. This implies that D ó is

an in®nitely divisible cf (see Lukacs 1970, p. 111). h

To guarantee the in®nite divisibility of the cf D ó , it is possible to assume other

conditions instead of the completely multiplicative condition on c(n). For details, see

Remark 1 in Section 4. On the other hand, the in®nite divisibility of D ó suggests that we

write D ó as the limit of a sequence of ®nite products of Poisson-type cfs. To do this we

need some notation. For each integer n > 2, de®ne Un to be a Poisson random variable

with parameter ën � c(n)Ë(n)=f(log n)nó g, where c(n) and Ë(n) are given in (4). That is,

P(Un � m) � eÿën
ëm

n

m!
, for m 2 N0 � f0, 1, 2, . . .g, (5)

where Un � 0 almost surely if ën � 0. Then we have the following interesting result, in

which �d denotes equality in distribution.

Theorem 3. In addition to the conditions of Theorem 2, let fUng1n�2 be a sequence of

independent Poisson random variables de®ned in (5). Assume, further, that Xó,D is a random
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variable with cf D ó . Then Xó,D�d
P1

n�2(ÿlog n)Un (that is, Xó,D can be represented as a

linear function of in®nitely many independent Poisson random variables).

Proof. Write Xn � ÿ(log n)Un for all n > 2. Then the cf of X n is f X n
(t) �

Efexp(it(ÿlog n)Un)g � exp(ën(nÿi t ÿ 1)) for t 2 R. In the notation of the proof of

Theorem 2, we haveY1
n�2

f X n
(t) � exp

X1
n�2

ën(nÿi t ÿ 1)

 !
� exp(qfD �ó (t)ÿ 1g) � D ó (t), for t 2 R:

This implies that the series
P1

n�2 X n of independent random variables converges almost

surely (see, for example, LoeÁve 1977, p. 263) and that Xó,D�d
P1

n�2 Xn. h

Given a Dirichlet series D(z) with completely multiplicative non-negative coef®cients and

c(n) . 0 for some n > 2, Theorems 1±3 together assert that Wó,D�d
Q1

n�2 nUn for each

ó . ó a. In the next theorem we shall further prove that if c( p) , pó for each prime p,

Wó,D has a factorization into prime factors with random exponents (a somewhat surprising

property). To state the result we need some more notation. Given ó . ó a, prime p and

up � c( p) pÿó 2 [0, 1), de®ne the geometric random variable Nup
with parameter up by

P(Nup
� n) � un

p(1ÿ up), for n 2 N0, (6)

where Nup
� 0 almost surely if up � 0. Then we have the following striking result.

Theorem 4. Let D(z) be a Dirichlet series with completely multiplicative non-negative

coef®cients and c(n) . 0 for some n > 2. Let ó a be the abscissa of absolute convergence of

D(z) and let ó . ó a such that up � c( p) pÿó , 1 for each prime p. Assume, further, that

Xó,D � ÿlog Wó,D, where Wó,D is de®ned in (3), and that fNup
g is a sequence of

independent geometric random variables de®ned in (6). Then

(a) Xó,D�d
P

p(ÿlog p)Nup
, where p runs over all primes;

(b) Wó,D�d
Q

p pNu p (a factorization of Wó,D into prime factors with random exponents).

Proof. Since the coef®cient c(n) is completely multiplicative, we have the identity

D(z) �
X1
n�1

c(n)

n z
�
Y

p

1

1ÿ c( p) pÿz
, for z � ó � it, ó . ó a, t 2 R

(Euler product formula: see Apostol 1976, p. 231). This, together with Theorem 1, implies

that for each ó . ó a, the cf of Xó,D can be written as

D ó (t) � D(ó � it)

D(ó )
�
Y

p

1ÿ c( p) pÿó

1ÿ c( p) pÿ(ó�i t)
�
Y

p

1ÿ up

1ÿ up pÿi t
�
Y

p

hp(t), for t 2 R, (7)

where p runs over all primes. Note that the factor hp in (7) is the in®nitely divisible cf of

(ÿlog p)Nup
(see Lukacs 1970, pp. 113 and 320). Equality (7) then implies that the series
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P
p(ÿlog p)Nup

converges almost surely and hence part (a) holds. Part (b) follows im-

mediately from part (a). h

A non-trivial arithmetical function c(n) satisfying the conditions of Theorem 4 is given in

Remark 2 below. Finally, we return to the case of Riemann zeta distribution. For Riemann

zeta function æ, the random variables Wó,D and Nup
reduce respectively to Wó and N pÿó

with probabilities

P(Wó � n) � nÿó

æ(ó )
, for n 2 N, (8)

P(N pÿó � n) � pÿnó (1ÿ pÿó ), for n 2 N0: (9)

Combining the above results, we describe the Riemann zeta distribution Fó as follows.

Corollary 1. Let ó . 1 and let Xó be a random variable obeying the Riemann zeta

distribution Fó . Assume, further, that Wó is a random variable de®ned in (8) and that

fN pÿó g is a sequence of independent geometric random variables de®ned in (9). Then:

(a) Xó �d ÿlog Wó �d
P

p(ÿlog p)N pÿó , where p runs over all primes.

(b) Fó is in®nitely divisible.

(c) Fó is a discrete distribution with support fÿlog ng1n�1, and is unimodal with vertex

at zero. Speci®cally, P(Xó � ÿlog n) � nÿó =æ(ó ) for each positive integer n.

(d) E(exp(ÿtXó )) � E(W t
ó ) � æ(ó ÿ t)=æ(ó ) ,1 for t , ó ÿ 1.

(e) E(X m
ó ) � ((ÿ1)m=æ(ó ))

P1
n�1(log n)m=nó � æ (m)(ó )=æ(ó ) for each positive integer m.

3. Applications to analytic number theory

As pointed out in the Preface to Patterson (1995), the Riemann zeta function æ is a

meromorphic function whose properties can on the one hand be investigated by the tech-

niques of complex analysis, and on the other yield different theorems concerning the integers;

it is this connection between the continuous and the discrete that is so wonderful. For

example, by Fourier theory, we have æ(2) � ð2=6, a remarkable formula due to Leonard

Euler. Actually, Euler proved much more, namely that for each integer n . 0, æ(2n)=ð2n is

rational and related to the Bernoulli numbers. The evaluation of æ(2n) later came to play a

fundamental role in the theory of p-adic zeta functions and Iwasawa theory (Patterson 1995,

pp. 2±4). In this section, using the probabilistic approach, we shall derive some identities in

order better to understand the Riemann zeta function. Two inequalities for æ are given in the

Remark 6 below.

The discrete random variable Wó,D de®ned in (3) plays an important role in the previous

section. Its special case Wó , de®ned in (8), will be used in the following to obtain our

results in analytic number theory. For convenience, some required notions and results from

number theory are given in the Appendix. We ®rst propose an arithmetical function of Wó

to link Wó and the Dirichlet series. More results through other arithmetical functions will

be given later.
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Theorem 5. Let D(z) be a Dirichlet series with coef®cients c(n) non-negative and not all

zero, and converging absolutely for Re z � ó . ó a. If A(n) �Pdjnc(d) for n 2 N, then

E(A(Wó )) � D(ó ) for ó . maxf1, ó ag.

Proof. First, for ó . maxf1, ó ag, write

E(A(Wó )) �
X1
n�1

P(Wó � n)A(n) �
X1
n�1

nÿó

æ(ó )
A(n)

� 1

æ(ó )

X1
n�1

A(n)

nó
�
X1
n�1

ì(n)

nó

X1
n�1

A(n)

nó
�
X1
n�1

(ì � A)(n)

nó
,

in which ì denotes the MoÈbius function and the symbol � denotes the Dirichlet convolution.

Then applying the MoÈbius inverse formula, we obtain that E(A(Wó )) �P1n�1c(n)=nó

� D(ó ), as desired. h

Corollary 2. Assume ó . 1 and integers m > 1. Then

(a) E(ô(Wó )) � æ(ó ), where ô(n) is the number of divisors of n;

(b) E(
P

djWó
(log d)m) �P1n�1(log n)m=nó � (ÿ1)mæ(m)(ó ).

Proof. Take the Dirichlet series D(z) � æ(z) �P1n�11=n z for part (a), and D(z) �P1
n�1(log n)m=n z for part (b). Then Theorem 5 applies. h

In the next theorem we shall give probabilistic proofs for some identities connecting the

Riemann zeta function æ and the Mangoldt function Ë as well as the Jordan totient function

Jz. The latter is a generalization of the Euler totient function j. Recall that J1(n) � j(n) is

de®ned to be the number of positive integers not exceeding n which are relatively prime to

n. In general, we have, for complex numbers z 6� 0,

Jz(n) �
1 for n � 1,

n z
Y
pjn

(1ÿ pÿz) �
X
djn

ì(d)
n

d

� �z

for n > 2,

8<: (10)

in which ì denotes the MoÈbius function and the last equality is due to the lemma below. (See

Apostol 1976, p. 48, for the special case z � k 2 N:) From now on, let n � Qk
j�1 p

á j

j denote

the unique factorization of n (> 2) into prime factors (with exponents á j > 1).

Lemma. (a) Assume that A : N! C is a multiplicative function with complex values (that

is, A(mn) � A(m)A(n) if (m, n) � 1). Then the Dirichlet convolution

(ì � A)(n) �
Yk

j�1

fA( pá j

j
)ÿ A( p

á jÿ1
j )g, for n �

Yk

j�1

p
á j

j > 2: (11)

(b) If, in addition, A is completely multiplicative and never vanishes, then
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(ì � A)(n) � A(n)
Y
pjn
f1ÿ 1=A( p)g, for n > 2: (12)

Proof. (a) Since A is multiplicative, so is ì � A (see Apostol 1976, p. 35). Further, for prime

p and for integer á > 1, we have (ì � A)( pá) � ì(1)A( pá)� ì( p)A( páÿ1) � A( pá) ÿ
A( páÿ1). This implies result (11).

(b) Suppose that A is completely multiplicative and never vanishes. Then we have

A( pá)ÿ A( páÿ1) � (A( p))á ÿ (A( p))áÿ1 � (A( p))á(1ÿ 1=A( p)). This, together with part

(a), implies (12). h

Theorem 6. (a)
P1

n�1Ë(n)=nó � ÿæ9(ó )=æ(ó ) � E(log Wó ), for ó . 1.

(b)
P1

n�1(Ë(n)log n)=nó � var(log Wó ) � var(Xó ), for ó . 1.

(c)
P1

n�1 Jt(n)=nó � æ(ó ÿ t)=æ(ó ) � E(W t
ó ), for t 2 R and ó . maxf1, t � 1g.

Proof. (a) Set the function

A(n) �
X
djn

Ë(d) � log n, for n 2 N (13)

(see Apostol 1976, p. 32, for the second equality). Then, for ó . 1, applying Theorem 5 to

the Dirichlet series D(z) �P1n�1Ë(n)=n z yields

E(A(Wó )) � E
X
djWó

Ë(d)

 !
�
X1
n�1

Ë(n)

nó
: (14)

On the other hand, we have E(log Wó ) � ÿæ9(ó )=æ(ó ) according to Corollary 1(e). This,

together with (13) and (14), implies the required result.

(b) Set the function A(n) � (log n)2 � log2 n for n 2 N. Then proceeding as in the proof

of Theorem 5 yields

E(log2 Wó ) �
X1
n�1

(ì � log2)(n)

nó
�
X1
n�1

Ë(n)log n

nó
�
X1
n�1

(Ë �Ë)(n)

nó
, for ó . 1,

the second equality following from the Selberg identity. This, together with part (a), implies

the required result:

var(log Wó ) � E(log2 Wó )ÿ (E(log Wó ))2 �
X1
n�1

Ë(n)log n

nó
:

(c) For each ®xed t 2 R, set the function A(n) � nt, n 2 N. Then we have

E(W t
ó ) � E(A(Wó )) �

X1
n�1

(ì � A)(n)

nó
�
X1
n�1

Jt(n)

nó
, for ó . maxf1, t � 1g, (15)

the last equality following from (10). Combining (15) with Corollary 1(d), we obtain the

required result. h
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In Theorem 5 we propose an arithmetical function of Wó , denoted by A(Wó ), to link Wó

and the Dirichlet series. To obtain more applications of Wó , we shall ®rst consider the general

arithmetical function A : N! R, and then prove that the cf of log A(Wó ) is in®nitely divisible

if A is positive and completely multiplicative. In order to represent the mean and variance of

log A(Wó ), we need a generalization of the Mangoldt function: for positive A, de®ne

MA(n) � log A( p) if n � pm for some prime p and some integer m > 1, and MA(n) � 0

otherwise. For the special case A(n) � n, MA reduces to the Mangoldt function Ë.

Theorem 7. Let ó . 1 and let A : N! R be an arithmetical function. Then we have the

following:

(a) The cf of A(Wó ) is of the form fó,A(t) � E(ei tA(Wó )) �P1n�1(ì � ei tA)(n)=nó for

t 2 R, where (ì � ei tA)(n) �Pdjnì(d)ei tA(n=d). Moreover, the mth moment

E(Am(Wó )) � P1n�1(ì � Am)(n)=nó if it exists and is ®nite.

(b) The random variable log A(Wó ) has an in®nitely divisible cf if A is positive

and completely multiplicative. Moreover, E(log A(Wó )) �P1n�1 MA(n)=nó and

var(log A(Wó )) �P1n�1fMA(n)log A(n)g=nó if they exist and are ®nite.

Proof. (a) The proof of the ®rst identity for the cf fó,A is similar to that of Theorem 5 and is

omitted. As for the moment identity, suppose that the mth moment of A(Wó ) exists and is

®nite. Then we have f
(m)
ó ,A(0) � im

P1
n�1(ì � Am)(n)=nó and hence E(Am(Wó )) �

iÿm f
(m)
ó ,A(0) �P1n�1(ì � Am)(n)=nó , as desired.

(b) Suppose that A is positive and completely multiplicative. Then by Corollary 1(a), we

have A(Wó )�d A(
Q

p pN pÿó ) �Q p(A( p))N pÿó , where p runs over all primes and fN pÿó g is

a sequence of independent geometric random variables de®ned in (9). This implies that

log A(Wó )�d P p(log A( p))N pÿó . Therefore the cf of log A(Wó ) is the limit of a sequence

of in®nitely divisible cfs, and hence also in®nitely divisible. On the other hand, if the mean

of log A(Wó ) exists and is ®nite, we have

E(log A(Wó )) �
X

p

(log A( p))E(N pÿó ) �
X

p

(log A( p))
pÿó

1ÿ pÿó

�
X

p

X1
m�1

log A( p)

( pm)ó
�
X1
n�1

MA(n)

nó
:

Further, if the second moment of log A(Wó ) is ®nite, we have

var(log A(Wó )) �
X

p

(log A( p))2 var(N pÿó ) �
X

p

(log A( p))2 pÿó

(1ÿ pÿó )2

�
X

p

X1
m�1

(log A( p))2 m( pÿó )m �
X

p

X1
m�1

log A( p)log A( pm)

( pm)ó

�
X1
n�1

MA(n)log A(n)

nó
:

824 G.D. Lin and C.-Y. Hu



The penultimate equality is due to the completely multiplicative property of A. h

Finally, we apply Theorem 7 to derive two identities for the reciprocal of the Riemann

zeta function. To do this we need the arithmetical functions â and ã de®ned below. For

n > 1, (i) â(n) � m if n � p1 . . . pm( pm�1 . . . pk)2, and â(n) � 0 otherwise; (ii) ã(n) � k

if n � ( p1 . . . pk)2, and ã(n) � 0 otherwise. Further, de®ne the sign function sgn x � 0 or

x=jxj according to whether x � 0 or x 6� 0. To the best of the authors' knowledge, the

interesting identity in part (b) below appears for the ®rst time. (Recall the classical result

that (æ(ó ))ÿ1 �P1n�1ì(n)=nó , ó . 1:)

Theorem 8. Assume ó . 1. Then

(a) (æ(ó ))ÿ2 � 1�P1n�2f(ÿ2)â(n) sgn â(n)g=nó � E(ì(Wó ));

(b) (æ(2ó ))ÿ1 � 1�P1n�2f(ÿ1)ã(n) sgn ã(n)g=nó � E( ì2(Wó )).

Proof. It will be seen that the mth moment E(ìm(Wó )) equals E( ì(Wó )) or E(ì2(Wó ))

according to whether m is odd or even.

(a) For each prime p, set cp(á) � ì( pá)ÿ ì( páÿ1), á 2 N. Then cp(1) � ÿ2, cp(2) � 1,

and cp(á) � 0 for á > 3. Since ì is multiplicative, we have, by the lemma above,

(ì � ì)(n) �
Yk

j�1

c p j
(á j) � (ÿ2)â(n) sgn â(n), for n �

Yk

j�1

p
á j

j > 2:

It then follows from Theorem 7(a) that

E(ì(Wó )) �
X1
n�1

(ì � ì)(n)

nó
� 1�

X1
n�2

(ÿ2)â(n) sgn â(n)

nó
: (16)

On the other hand, we have, by the de®nition of Wó ,

E(ì(Wó )) � 1

æ(ó )

X1
n�1

ì(n)

nó
� 1

æ2(ó )
:

Combining this with (16) yields the required result.

(b) For each prime p, set c�p(á) � ì2( pá)ÿ ì2( páÿ1), á 2 N. Then c�p(á) � ÿ1 or

c�p(á) � 0 according to whether á � 2 or á 6� 2. Since ì2 is multiplicative, we have

(ì � ì2)(n) �
Yk

j�1

c�pj
(á j) � (ÿ1)ã(n) sgn ã(n), for n �

Yk

j�1

p
á j

j > 2:

Again from Theorem 7(a), it follows that

E(ì2(Wó )) �
X1
n�1

(ì � ì2)(n)

nó
� 1�

X1
n�2

(ÿ1)ã(n) sgn ã(n)

nó
: (17)

On the other hand, we have
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E(ì2(Wó )) � 1

æ(ó )

X1
n�1

ì2(n)

nó
� 1

æ(ó )

æ(ó )

æ(2ó )
� 1

æ(2ó )

(see Apostol 1976, p. 241, for the second equality). Combining this with (17) yields the

required result. h

4. Remarks

Remark 1. In Theorem 2, the completely multiplicative condition on c(n) is not a necessary

condition for the in®nite divisibility of the cf D ó . To see this, note ®rst that multiplying the

function c(n) in D(z) by a positive constant keeps D ó unchanged, but the resulting function,

say d � c(n), is not always completely multiplicative. Further, to guarantee the in®nite

divisibility of D ó , we may assume other conditions on c(n). For example, in addition to the

conditions of Theorem 1, assume that (i) c(1) . 0; (ii) D(z) 6� 0 for Re z � ó . ó0 (ó0

being a ®xed number > ó a); and (iii) (c9 � cÿ1)(n) > 0 for n > 2, where c9(n) � (log n)c(n)

and cÿ1 is the Dirichlet inverse of c. Then applying Theorem 11.14 of Apostol (1976) and

proceeding as in Theorem 3 (but instead taking the parameter ën � (c9 � cÿ1)(n)=f(log n)nó g
in (5)), we conclude that, for ó . ó0, the cf D ó is in®nitely divisible.

Remark 2. We shall now introduce a non-trivial function c(n) which satis®es the conditions

of Theorem 4. For complex numbers z, de®ne the generalized Liouville function ëz by

ëz(n) �
1 for n � 1,

zá1 �...� á k for n �
Yk

j�1

p
á j

j > 2:

8><>:
Then it will be seen that ëz is completely multiplicative. Moreover, for ®xed ó0 . 1 and

a 2 (0, 2ó 0ÿ1), set the function c(n) � ëa(n) . 0, n 2 N. Then D(z) �P1n�1c(n)=n z

converges absolutely for Re z � ó . ó0, and c( p) � a , pó for each prime p. Therefore

c(n) satis®es the conditions of Theorem 4.

Remark 3. Note that Theorem 7 also generalizes Khinchine's (1938) result in a sense, but the

approach is different from Theorem 2. To see this, let A(n) � n for n 2 N; then Theorem

7(b) asserts that the random variable log Wó has an in®nitely divisible cf. On the other hand,

letting A(Wó ) � log Wó � Yó in Theorem 7(a) yields E(ei tYó ) �P1n�1 J i t(n)=nó �
æ(ó ÿ it)=æ(ó ) for t 2 R and ó . 1, where J i t is the Jordan totient function de®ned in (10).

Remark 4. Consider the Liouville function ë � ëÿ1 de®ned in Remark 2. We now calculate

all moments of ë(Wó ). Note ®rst that ë is completely multiplicative and never vanishes.

Using the lemma above, we have

(ì � ë)(n) � ë(n)
Y
pjn

1ÿ 1

ë( p)

� �
� ë(n)

Y
pjn

2 � ë(n)2í(n),
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where í(n) denotes the number of distinct prime factors of n. Theorem 7(a) then implies that

E(ë(Wó )) �
X1
n�1

(ì � ë)(n)

nó
�
X1
n�1

ë(n)2í(n)

nó
� æ(2ó )

æ2(ó )
, for ó . 1 (18)

(see Apostol 1976, p. 247, for the last equality). Next, for n 2 N, we have ëm(n) equal to 1 or

ë(n) according to whether m is even or odd. Therefore the mth moment E(ëm(Wó )) is 1 or

æ(2ó )=æ2(ó ) according to whether m is even or odd. Moreover, var(ë(Wó )) �
1ÿ æ2(2ó )=æ4(ó ) for ó . 1.

Remark 5. For a . 0, the generalized Liouville function ëa is positive and completely

multiplicative. By Theorem 7(b), the random variable log ëa(Wó ) has an in®nitely divisible

cf, which, however, is not of Dirichlet type. On the other hand, for real a 6� 0, 1, proceeding

as in Remark 4, we extend identity (18) to the following:

E(ëa(Wó )) �
X1
n�1

ëa(n)(1ÿ aÿ1)í(n)

nó
� 1

æ(ó )

X1
n�1

ëa(n)

nó
, for ó . max 1, 1� log jaj

log 2

� �
:

The crucial point of the proof is that jëa(n)j < n(log jaj)=log 2 for n > 1.

Remark 6. Finally, we give two inequalities for the Riemann zeta function. From Corollary

1(e) it follows that for ó . 1, æ 0(ó )æ(ó ) . (æ9(ó ))2 because var(Xó ) . 0. Similarly, by

Corollary 1(d), æ(ó ÿ 2)æ(ó ) . æ2(ó ÿ 1) for ó . 3. More generally, using Lyapunov's

inequality, we conclude that the function h(t) � (æ(ó ÿ t)=æ(ó ))1= t is strictly increasing in

t 2 (0, ó ÿ 1).

Appendix

The following notions and results from number theory (see Apostol 1976) are needed in

Sections 3 and 4.

· MoÈbius function ì. The MoÈbius function ì is de®ned as follows: ì(1) � 1; for

n � Qk
j�1 p

á j

j > 2 (the unique factorization of n into prime factors), ì(n) � (ÿ1)k if

á1 � á2 � . . . � ák � 1, and ì(n) � 0 otherwise.

· MoÈbius inverse formula. The equation f (n) � P
djn g(d) implies g(n) �P

djn f (d)ì(n=d), and vice versa.

· Dirichlet convolution. If f and g are two arithmetical functions, their Dirichlet con-

volution is de®ned to be the function ( f � g)(n) � Pdjn f (d)g(n=d), n � 1, 2, . . . .

· Dirichlet inverse function. If f is an arithmetical function with f (1) 6� 0, then there is

a unique function f ÿ1, called the Dirichlet inverse of f , such that f � f ÿ1 �
f ÿ1 � f � I , where I is the identity function de®ned by I(n) � 1 if n � 1, and

I(n) � 0 otherwise.

· Mangoldt function Ë. For every positive integer n, de®ne Ë(n) � log p if n � pm for

some prime p and some m > 1, and Ë(n) � 0 otherwise.
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· Selberg identity. For n > 1 we have

Ë(n)log n�
X
djn

Ë(d)Ë
n

d

� �
�
X
djn

ì(d)log2 n

d
:
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