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operations on the graph at hand. The results are based on a simplification of J. Pearl’s notion of
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1. Introduction

The idea that ‘conditional independence’ is a central and unifying notion for many concepts

and techniques in applied multivariate statistics was expressed explicitly in Dawid (1979).

The full potential of this idea becomes apparent when graphs are used to represent the

Markov properties of the random variables studied – that is, a graph is introduced whose

vertices correspond to the variables at hand and whose separation properties reflect the

presumed conditional independence relations between the variables (Lauritzen 1979; Darroch

et al. 1980). The Markov properties are exploited, for example, in reducing the complexity

encountered in estimating the joint distribution of a large number of random variables. At

first the graphs defining graphical Markov models were undirected, but soon directed acyclic

graphs (DAGs) and chain graphs were used to model systems of random variables in which

either the flow of time or the presence of cause–effect relationships induces a fully or

partially directed process (Pearl 1988; Lauritzen and Wermuth 1989; Frydenberg 1990). Thus

for some time the scope of graphical Markov models remained restricted to recursive

processes or to systems in which directionality was irrelevant. However, Spirtes (1995) and

Koster (1996) showed independently that separation properties of graphs containing directed

cycles can be defined while maintaining consistency with the use of such graphs in Gaussian

structural equation modelling (where they are called path diagrams). As a consequence, it can

now be said that graphical Markov models provide a consistent common framework for

certain techniques belonging to applied multivariate statistics, such as covariance selection

modelling, factor analysis, path analysis, log-linear analysis, (recursive and non-recursive)

Bernoulli 8(6), 2002, 817–840

1350–7265 # 2002 ISI/BS



Gaussian structural equation modelling, latent class analysis, etc. The essential feature of the

graphical modelling approach to multivariate statistics is to merge ‘conditional independence’

with graphs. Let us briefly summarize some of the advantages of this approach.

First, a graphical model gives in a concise way a complete picture of the scope of the

analysis as it shows explicitly which variables are studied (i.e., which marginal probability

distribution is studied). Second, the graphical model allows one to separate Markovian

probabilistic aspects (i.e., its Markov properties, entailed by the presence or absence in the

graph of edges between variables and by the symmetric or asymmetric nature of these

edges) from other statistical aspects of the model (e.g., assumptions concerning the

parametric family, presumed linearity, and choice of link function). Third, when a positive

density exists, the graphical model is equivalent to a certain factorization of the density.

This so-called Gibbs factorization relative to the graph often enables one to perform the

statistical analysis by splitting it up into a set of local analyses. Fourth, as graphical models

are by their nature easy to visualize, they also provide a powerful tool for communication

with the statistical layman – a practical advantage that cannot easily be overestimated.

Finally, there are close similarities, both formally and graphically, with methods used in

related fields, such as expert systems and decision analysis, where inference networks and

influence diagrams are representations of Bayesian networks (Lauritzen and Spiegelhalter

1988; Pearl 1988; Jordan 1998; Cowell et al. 1999; see also Studený 1993 for a discussion

of formal similarities with other frameworks). The common language of graphical models

stimulates cross-fertilization between these different fields of research.

Even though the types of graph encountered in graphical Markov models – undirected

graphs, DAGs, chain graphs and recursive or non-recursive path diagrams – look quite

dissimilar, the way in which for any such graph the associated graphical Markov model is

defined is essentially the same. For each type of graph a purely graph-theoretical concept of

‘separation’ is introduced, allowing one to state whether or not in a certain graph two given

subsets of vertices are separated by a given third subset of vertices. Then the vertices of the

graph are associated (in one-to-one fashion) with the random variables that are studied.

Finally, the graphical Markov model is defined by stipulating that each valid separation

statement pertaining to vertices of the graph be mirrored by a valid conditional

independence statement pertaining to the associated random variables.

The main objective of the present paper is to show that the symbolism of graphs is rich

enough to deal straightforwardly with problems of marginalization and conditioning –

thereby strengthening the argument just given that graphical models constitute a convenient

framework for applied multivariate statistics. In Wermuth et al. (1998; see also Cox and

Wermuth 1996, Chapter 8) the problem of marginalizing and conditioning in graphical

models (defined by a DAG) was phrased as follows:

Suppose that we are given a [graphical model], defined over a set V of [variables]. We

divide V into three nonoverlapping components (s, c and m) and consider the distribution

of the variables in s, conditionally on those in c, i.e., marginalizing over those in m. [. . .]
We look for a graphical representation of the new distribution deduced from [the graph

defining the original model].

A more formal treatment based on the notion of a minor is given in Matúš (1997). In the
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present paper this problem is studied for models defined by graphs belonging to a very

general class. It will be shown that analysis of the Markovian consequences of marginalizing

and conditioning is possible by performing a sequence of elementary, local operations on the

defining graph only. To this end we introduce a new type of graph (so-called MC graphs) and

define for any such graph a concept of separation of subsets of vertices. Currently there are in

the literature two main lines of approach in defining ‘separation in graphs’. One approach,

defined in Frydenberg (1990) for the class of chain graphs, is based on the operation of

‘moralization’ of subgraphs induced by certain subsets of vertices.1 In Koster (1997) this is

generalized to the class of so called ‘general graphs’, that is, graphs which may have,

between each pair of distinct vertices i and j, any subset of fi! j, i j, i� jg as edges.

The other approach, introduced by Pearl (1988), is based on the notion of d-separation and

applies to DAGs. In d-separation two conditions are stated which determine whether a path in

the graph is either blocked by a certain subset of vertices, or open given this subset of

vertices. The relevant concepts can also be applied to directed cyclic graphs (Spirtes 1995)

simply by extending their definition to such graphs. In the same manner their scope was

enlarged still further in Koster (1999). Thus, d-separation became applicable to what in the

present paper are called ‘directional graphs’ (see also Spirtes et al. 1998; Richardson 1999),

that is, graphs which may have between each pair of distinct vertices i and j, any subset of

fi! j, i j, i$ jg as edges. In Lauritzen et al. (1990) it is shown that both ways of

defining separation in graphs are equivalent if the graph is a DAG; the proof of this result

holds for directed cyclic graphs as well. The present paper is in the Pearl tradition, but, unlike

in previous domain enlargements, this time ‘generalization by domain extension’ is no longer

feasible. In addition, although the new class of graphs strictly contains all chain graphs (and

indeed all ‘general graphs’), the separation concept defined for it will, for certain chain

graphs at least, differ from the Frydenberg (1990) separation concept which was based on the

operation of moralization.2

The rest of the paper is organized as follows. In Section 2 we introduce the class of MC

graphs. An MC graph can have up to four edges between each pair of its vertices i and j

(say). More precisely, i and j can be connected by an arrow from i to j (i! j), an arrow

from j to i (i j), a two-headed arrow (i$ j), an undirected edge (i� j), or any subset

of these four possibilities. Furthermore, at each vertex there can be an undirected self loop

(e.g., i� i). The most important innovation of this section, however, consists of a

simplification of the concept of an open path (by deleting the italicized words in Pearl’s

definition: ‘its noncolliders are all outside the conditioning set, whereas its colliders are

members of or have a descendant in the conditioning set’), which became possible after

generalizing the concept of a path (by dropping the usual stipulation that all its vertices be

different). It is a remarkable fact that, for graphs without undirected edges, these changes

do not lead to an alteration of the ensuing separation properties of the graph.3 In Section 3

we treat marginalization and conditioning, and show that the class of MC graphs is closed

1For chain graphs, a variant of this approach based on the operation of ‘augmentation’ of subgraphs leads to the so-
called alternative Markov property. See Andersson et al. (2001) for details.
2It also differs from the augmentation-based separation concept of Andersson et al. (2001).
3Independently, Studený (1998) proposes the same modification of Pearl’s d-separation concept and remarks that ‘it
is even simpler than the original’ definition.
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under these operations. In Section 4 the Markov property relative to an MC graph is defined

and a final theorem is stated, essentially summarizing the paper. The results formulated in

these sections enable one to consider in advance the effects upon the Markov properties of

the model of the decision to study a certain subset of variables and either ignore completely

or condition upon the value of all other variables. Readers will notice that most results are

not in any way surprising and can be proved straightforwardly. In fact, while working on

this paper the really surprising thing was that everything became very simple once the

concepts ‘path’ and ‘open path’ were endowed with their new content, whereas some results

remained totally unreachable without these two adjustments. Finally, in Section 5 relations

with approaches based on summary graphs (Cox and Wermuth 1996; Wermuth et al. 1998)

and on ancestral graphs (Richardson and Spirtes 2000) are discussed, and some concluding

remarks are made.

2. MC graphs

An MC graph is an ordered pair G ¼ (V , E), where V is a finite set consisting of elements

called points or vertices, and E is a collection of edges, that is, symbols denoted as i! j,

i j, i$ j, or i� j, where i and j are (not necessarily distinct) vertices of V . Here we

make no distinction between i$ j and j$ i, between i� j and j� i, or between i! j and

j i. However, if i 6¼ j we do distinguish between each of i! j, i j, i$ j, and i� j, so

there can be up to four different edges between each two distinct vertices. The edges i! j,

i$ j and i� j are called, respectively, a (one-headed) arrow (or directed edge), an arc (or

two-headed arrow, or bidirected edge) and a line (or undirected edge); the presence of an

edge between i and j makes these vertices adjacent. If i ¼ j, edges connecting i and j are

called self loops. It will turn out later that the only self loops that are of interest to us are

undirected self loops, that is, self loops of the type i� i, where i 2 V . Note that an

undirected graph is an MC graph without self loops in which all edges are lines; a directed

graph is an MC graph without self loops in which all edges are one-headed arrows. An MC

graph is called directional if it has no lines, that is, it may only have arrows and arcs. If

e 2 fi! j, i j, i$ j, i� jg is an edge of G, then i and j are called the end-points of e.

In that case we define [e] > fi, jg as the set of its end-points (a singleton set if i ¼ j). We

will also write e ¼ i � � � j to denote that e is some edge connecting the end-points i and j. If

e ¼ i! j, i is the tail of e, while j is its head; if e ¼ i$ j, both i and j are heads of e; if

e ¼ i� j, both i and j are tails of e. Henceforth, unless stated otherwise, by ‘graph’ we mean

‘MC graph’.

Let G > (V , E) and H > (W , F) be graphs. Then H is called a subgraph of G, H ? G,

if W ? V and F ? E. If a ? V , the subgraph of G induced by a is Ga :¼ (a, Ea), where

Ea :¼ fe 2 Ej[e] ? ag. Suppose i and j are (not necessarily different) vertices of the graph

G ¼ (V , E). Let, for some n > 1, � 2 V 3 (E 3 V )n, say � ¼ (i0, e1, i1, . . . , en, in), where

4There is some redundancy in the notation for a path, as a path of length n is determined uniquely by its end-
points and the n-tuple of its edges, that is, (i0, e1, i1, . . . , en, in) ¼ ( j0, f1, j1, . . . , f n, jn) if and only if
(i0, in) ¼ ( j0, jn) and (e1, . . . , en) ¼ ( f1, . . . , f n). Since this redundancy is convenient, it is maintained throughout.
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fik : 0 < k < ng ? V and fe1, . . . , eng ? E. Then � is called a path of length n from i to

j, if i0 ¼ i, in ¼ j and ek ¼ ik�1 � � � ik, for k ¼ 1, . . . , n.4 Sometimes, particularly in

examples, the more convenient notation (i0 � � � i1 � � � . . . � � � in�1 � � � in) will be used to

denote � (where each instance of ‘� � �’ is replaced by one of !,  , $, or �). The vertex

i0 (in) is called a tail or head end-point of � depending on it being a tail or head of e1

(en); vertices in the set fik j0 , k , ng are called intermediate points of � (if n ¼ 1 the

path has no intermediate points). End-points and intermediate points together are the points

of � (an end-point may also be an intermediate point on a given path), while fe1, . . . , eng
are its edges. Notice that it is not required that the points or edges of a path are all

different. If all points of � are distinct, that is, jfi0, . . . , ingj ¼ nþ 1, then the path is

acyclic, otherwise it is cyclic. It is called a loop if its end-points are the same vertex, i.e.,

i0 ¼ in. Suppose � > (i0, e1, i1, . . . , en, in) is a path from i0 to in. Then � is called a

directed path if ek ¼ ik�1 ! ik , 1 < k < n; in that case, if 0 < k , m < n, ik is called an

ancestor of im, and im a descendant of ik . If a ? V , an(a) > anG(a) :¼ a [
S

i2af j 2 V j j
ancestor of i}; note that an(a) contains a as a subset. Subsets a ? V which satisfy

anG(a) ¼ a are called G-ancestral. For a path � ¼ (i0, e1, i1, . . . , en, in), let

0 < k0 , . . . , k m < n (1 < m < n) be an increasing sequence of indices such that

ik sþ1 ¼ ik sþ1
, 0 < s , m. Then [eksþ1] ¼ fik s

, ik sþ1g ¼ fik s
, ik sþ1

g, so � > (ik0
, ek0þ1, ik1

,

. . . , ik m�1
, ek m�1þ1, ik m

) is a path of length m from ik0
to ik m

; � is called a subpath of �.

The following will be clear:

Fact 2.1. Let i and j be two different vertices of the graph G. If � is a path from i to j, then

there exists a subpath of � from i to j which is acyclic.

Suppose � ¼ (i0, e1, i1, . . . , en, in) is a path in G ¼ (V , E). The intermediate point j

occurs as a collider on � (at position k, where 0 , k , n) if j ¼ ik , ek 2
fik�1 ! ik , ik�1 $ ikg and ekþ1 2 fik  ikþ1, ik $ ikþ1g. On the other hand, the

intermediate point j occurs as a non-collider on � (at position k, 0 , k , n) if j ¼ ik ,

and ek 2 fik�1  ik , ik�1 � ikg or ekþ1 2 fik ! ikþ1, ik � ikþ1g. Intuitively these notions

correspond to the intermediate point j being or not being a point at which, along the path,

two arrow heads meet. Notice that, trivially, in undirected graphs an intermediate point on a

path can only occur as a non-collider. In general, however, due to the fact that one can have

multiple occurrences on a path of the same intermediate point, it is possible that a certain

intermediate point occurs both as a collider and as a non-collider on �. So the sets

C� :¼ f j 2 V j j occurs as a collider on �g, and N� :¼ f j 2 V j j occurs as a non-collider on

�g need not be disjoint. In fact, since a path can have self loops as edges, an intermediate

point can occur as a collider and as a non-collider on � at the same position. To give an

example of this, consider the graph G ¼ (f1, 2, 3g, f1! 2, 2! 2, 2! 3g). Now, let

� > (1! 2! 2! 3), so � is a path of length 3 from 1 to 3. Then the intermediate point

2 occurs as a non-collider on � at position 1, as e1 ¼ 1! 2 and e2 ¼ 2! 2. But 2 also

occurs as a collider on � at position 1, since e2 ¼ 2 2. If the self loop 2! 2 is deleted

from �, the subpath � :¼ (1! 2! 3) is obtained. Clearly, N� ? N� and C� ? C�. This

example brings us to the following general observation.
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Fact 2.2. Suppose � ¼ (i0, e1, i1, . . . , en, in) is a path from i0 to in, and � is the subpath of

� obtained by deleting some self loops from � (more precisely, if ik�1 ¼ ik , then the pair

(ek , ik) may be deleted from �). Then N� ? N�. Moreover, if no undirected self loops are

deleted from �, then C� ? C�.

If � > (i0, e1, i1, . . . , en, in) is a path from i0 to in, then �� :¼ (in, en, in�1, . . . , e1, i0)

is a path from in to i0. Clearly, this reversal of the order of points and edges of the path

has no effect on the collider status of the intermediate points, that is, C�� ¼ C� and

N�� ¼ N�. In situations where the difference between � and �� (i.e., the order of points

and edges) is immaterial, we will sometimes say that the path is between its end-points i0

and in. A path � is called a pure collision path (collisionless path) if all its intermediate

points occur as colliders (non-colliders) only, that is, N� ¼ ˘ (C� ¼ ˘). This is trivially the

case if � has length 1.

Definition 2.3. Separation for MC graphs. Suppose i and j are two distinct vertices of the MC

graph G ¼ ( V , E), and let c ? Vnfi, jg. Let � be a path between i and j. Then � is open

given c if C� ? c and N� ? Vnc. If the path is not open given c, then it is blocked by c.

Clearly, this means that either C� \ Vnc 6¼ ˘ or N� \ c 6¼ .̆ If all paths between i and j

are blocked by c, then i and j are separated by c. Finally, let a, b and c be pairwise disjoint

subsets of V. Then a and b are separated by c if, for all i 2 a, j 2 b, i and j are separated by

c (it is understood that this holds trivially if a ¼ ˘ or b ¼ ˘).

Remarks 2.4. (i) Clearly, if G is undirected, all intermediate points on a path can only occur

as non-colliders. Hence, in this case the definition of ‘separation’ is equivalent to the more

common definition which is as follows: subsets a and b are separated by c if all (acyclic)

paths in G between a and b intersect c. (Note that acyclicity is irrelevant.)

(ii) Since a path is open given c if and only if all its colliders are in c and all its non-

colliders are outside c, N� and C� partition the set of intermediate points if � is an open

path.

(iii) If a, b and c partition V , then a shortest open path between (a vertex of) a and (a

vertex of) b necessarily is a shortest pure collision path between a and b, and vice versa.

Hence, in this situation, a and b are separated by c if and only if there are no pure collision

paths between vertices of a and vertices of b.

Example 2.5. Consider the graph (V , E) depicted in Figure 1(a) which has V ¼ f1, 2, 3, 4g,
E ¼ f1! 3, 2! 4, 3 4, 3� 4, 3! 4g. In this graph f1g and f2g are separated by

f3, 4g. To see this, note that any path � from 1 to 2 must have 3 2 N� or 4 2 N� (or both),

hence N� \ f3, 4g 6¼ ˘. On the other hand, for example f1g and f2g are not separated by

f3g, for the path � > (1! 3 4 2) has C� ¼ f3g, N� ¼ f4g, so C� ? f3g and

N� \ f3g ¼ ˘, thus � is open given f3g. It is easy to check that ‘f1g and f2g are separated

by f3, 4g’ is the only valid non-trivial separation statement for this graph. In contrast, the

graph in Figure 1(c) which has the arrow 3 4 replaced by the arc 3$ 4 only satisfies the

statement ‘f1g and f2g are separated by f3g’; for example, the path � > (1! 3$ 4 2)

now is open given f3, 4g (since N� ¼ ˘, C� ¼ f3, 4g), so 1 and 2 are no longer separated
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by f3, 4g. The reader may wish to verify that the graph in Figure 1(b) satisfies ‘f1, 3g are

separated from f2g by f4g’, ‘f2, 4g are separated from f1g by f3g’, and all statements

which can be deduced from these by the properties of decomposition and weak union (cf.

Proposition 2.10, below).

Our first lemma is a reduction result stating that self loops of type i! i or i$ i may be

deleted from a graph without changing its separation properties.

Lemma 2.6. Suppose G ¼ (V , E) is a graph, and let H ¼ (V , F) be the subgraph of G

obtained by removing all self loops of type i! i or i$ i, where i 2 V, that is,

F ¼ fe 2 Ej8 i 2 V : e 6¼ i! i, e 6¼ i$ ig. Let j and k be two distinct vertices, and let

c ? Vnf j, kg. Then j and k are separated by c in G if and only if j and k are separated by c

in H.

Proof. First note that any path in H is also a path in G. Necessity is now clear.

To prove sufficiency, let � be a path in G between j and k. Let � be the subpath of �
obtained by deleting all self loops of type i! i or i$ i from �. Then � is a path between

j and k in H , so � is blocked by c. Thus, C� \ Vnc 6¼ ˘ or N� \ c 6¼ .̆ By Fact 2.2 it

now follows that C� \ Vnc 6¼ ˘ or N� \ c 6¼ ˘, that is, � is blocked by c in G. h

Convention 2.7. Self loops of type i! i or i$ i, being irrelevant for a graph’s separation

properties by the preceding lemma, are henceforth ignored completely in all MC graphs.

Alternatively, we assume that MC graphs do not contain such self loops. The self loop i� i

will also be denoted by i�. Occasionally, particularly in Section 3, it is convenient to denote

the loop (i, i�, i) simply by its distinctive characteristic, which is the self loop i�, so the

symbol i� is then considered as ‘self loop plus end-points’.

One may wonder if the possibility of having any subset of fi! j, i j, i$ j, i� jg as

edges between two different vertices i and j really enlarges the number of independence

models over the set of vertices which are defined by the separation properties of the graph.

Here, if G ¼ (V , E) is a graph, then the independence model it defines over V is given by

Figure 1. Three MC graphs defining distinct independence models: (a) G(f1, 2, 4g); (b) G(f4g); (c)

G(f1, 3, 4g). See Example 2.8 for explanation.
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all triples (a, b, c) of pairwise disjoint subsets of V such that a ¼ ˘, or b ¼ ˘, or a and b

are separated by c. The following example suggests a positive answer to the question.

Example 2.8. Put V > f1, 2, 3, 4g, e1 > 3! 4, e2 > 3 4, e3 > 3$ 4, and e4 > 3� 4.

Let, for a ? f1, 2, 3, 4g, E(a) :¼ f1! 3, 2! 4g [ fek jk 2 ag and G(a) :¼ (V , E(a)).

Also, let s1 denote the statement ‘f1g and f2g are separated by f4g’; let s2 denote the

statement ‘f1g and f2g are separated by f3g’; let s3 denote ‘f1g and f2g are separated by

f3, 4g’; finally, let s4 denote ‘f1g and f2g are separated by ˘’. Whenever a ? f1, 2, 3, 4g,
S(a) will denote the statements sk , k 2 a. One may easily verify that, for all a ? f1, 2, 3, 4g,
the separation statements in S(Vna) hold for graph G(a), whereas the statements in S(a) do

not hold for this graph. See Figure 1.

The next result entails that the separation concept defined above (Definition 2.3) is a

proper generalization of Pearl’s d-separation concept for DAGs to the class of MC graphs.

Recall that a path is acyclic if all its points are distinct. In particular, acyclic paths cannot

have self loops as edges. Also recall Pearl’s definition of an open path (assumed acyclic) in

a DAG, here rephrased slightly: ‘An acyclic path between vertices i and j is open given a

subset of vertices c if and only if all its non-colliders are outside c and all its colliders

either are in c or have a descendant in c’ (cf. Pearl 1988). This definition can be applied

verbatim to directional graphs, that is, to MC graphs which do not contain undirected

edges.

Proposition 2.9. Suppose G ¼ (V , E) is a directional graph (that is, E contains no

undirected edges). Let i and j be two distinct vertices, and let c ? Vnfi, jg. Then i and j

are separated by c if and only if i and j are d-separated given c (in the sense of Pearl).

Proof. Note that, for j 2 V , c ? V , an( j) ¼ f jg [ fi 2 V j j is a descendant of ig and

an(c) ¼
S

j2c an( j). Pearl’s condition for an acyclic path � to be open, is C� ? an(c) and

N� ? Vnc. First suppose i and j are d-separated given c (in the sense of Pearl), but there

exists in G an open path � > (i0, e1, i1, . . . , en, in) from i ¼ i0 to j ¼ in given c. We will

show that there exists an acyclic subpath of � from i to j which is open given c (in the sense

of Pearl), contradicting the hypothesis. Invoking Fact 2.1, denote by � an acyclic subpath of

� from i to j, say � > (ik0
, ek0þ1, ik1

, . . . , ik m�1
, ek m�1þ1, ik m

), where 0 < k0 , . . . ,
k m < n is an increasing sequence of indices such that i ¼ ik0

, j ¼ ik m
, and ik sþ1 ¼ ik sþ1

,

0 < s , m. We will first show that N� ? N�. Suppose ik s
2 N� for some 0 , s , m. Then

eks�1þ1 ¼ ik s�1
 ik s

, or eksþ1 ¼ ik s
! iksþ1

, that is, eks�1þ1 ¼ ik s�1
 ik s�1þ1 or eksþ1 ¼

ik s
! ik sþ1. It follows that ik s�1þ1 ¼ ik s

occurs as a non-collider on � at position ks�1 þ 1 or

at position ks, hence ik s
2 N�. To show that � is open given c (in the sense of Pearl) it now

suffices to show that C� ? an(c), and since C� ? c it is sufficient to show that

C� nC� ? an(c). So assume ik s
2 C� nC�, that is, eks�1þ1 2 fik s�1

! ik s
, ik s�1

$ ik s
g,

eksþ1 2 fik s
 ik sþ1

, ik s
$ ik sþ1

g, eks�1þ2 ¼ ik s�1þ1 ! ik s�1þ2 (otherwise ik s�1þ1 ¼ ik s
would

occur as a collider on � at position ks�1 þ 1) and eks
¼ ik s�1  ik s

(otherwise ik s
would

occur as a collider on � at position ks). So � has (ik s�1þ1 ! ik s�1þ2 � � � . . . � � � ik s�1  ik s
) as

a subpath (in fact, a loop). But then, since G has no undirected edges, at least one of the
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intermediate points ir, ks�1 þ 2 < r < ks � 1, must occur as a collider on �. Let r be the

smallest index for which this is the case. Then ir 2 C� ? c, and as

(ik s�1þ1 ! ik s�1þ2 !. . .! ir) is a directed path from ik s�1þ1 ¼ ik s
to ir, ik s

2 an(c).

To show the converse, suppose there exists an open (in the sense of Pearl) acyclic path

� > (i0, e1, i1, . . . , en, in) from i ¼ i0 to j ¼ in given c. The only ‘problematic’

intermediate points of � (preventing � from being an open path given c in our sense)

are vertices ik satisfying ik 2 C� \ an(c)nc. However, for such vertices there exists

a minimum length directed path (ik ! j1 ! . . . ! jm�1 ! jm) such that jm 2 c. Clearly,

if in � all ‘problematic’ vertices ik are substituted by the loop (ik !
j1 ! . . . ! jm�1 ! jm  jm�1  . . .  j1  ik), then the resulting path � (say) will be

open since fikg [ f jrj1 < r , mg ? N� \ Vnc and jm 2 C� \ c, hence N� ? Vnc and

C� ? c. h

Proposition 2.9 is false if the supposition that the graph has no lines is dropped. In

Figure 2(a), all acyclic paths between 1 and 2 are blocked by .̆ However, the cyclic path

(1! 3� 4� 3 2) is open given ˘, so it is not true that f1g and f2g are separated by

˘. On the other hand, f1g and f2g are separated by f4g. As this graph is a member of the

class of chain graphs (Frydenberg 1990), this example also shows that the present

separation concept is not equivalent with the separation concept defined for that particular

class of graphs (Lauritzen and Wermuth 1989; Frydenberg 1990). Indeed, applying the latter

separation concept to the graph gives that, for example, f1g and f2g are separated by ˘
but not by f4g. According to Proposition 2.9, for directional graphs the separation concept

of the present paper is equivalent to Pearl’s d-separation, although acyclic paths may be

open in the sense of Pearl but closed in our sense. Consider the graph in Figure 2(b), which

is a DAG. The acyclic path (1! 3 2) is open given f4g in the sense of Pearl, but it is

closed in our sense, since the collider 3 is not a member of the conditioning set f4g.
However, the cyclic path (1! 3! 4 3 2) is open given f4g in our sense, and this

‘trick’ is precisely what makes the necessity part of the proof of Proposition 2.9 work.

The separation concept given in Definition 2.3 induces for each MC graph G ¼ (V , E)

an independence model over the set of vertices which satisfies various properties. Here the

independence model is defined as the set of all triples (a, b, c) of pairwise disjoint subsets

of V such that a and b are separated by c. Some of these properties are summarized in the

following proposition:

Figure 2. Two MC graphs: (a) chain graph; (b) directed acyclic graph.
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Proposition 2.10. Let G ¼ (V , E) be an MC graph. Then the following properties hold (in all

cases a, b, c and d are pairwise disjoint subsets of V ):

(i) a and b are separated by c, b and a are separated by c. (Symmetry.)

(ii) a and b are separated by c, and a and d are separated by c, a and b [ d are

separated by c. (Composition/decomposition.)

(iii) a and c are separated by d, and a and b are separated by c [ d , a and b [ c are

separated by d. (Contraction.)

(iv) a and b [ c are separated by d ) a and b are separated by c [ d. (Weak union.)

(v) a and b are separated by c [ d, and a and c are separated by b [ d ) a and b [ c

are separated by d. (Intersection.)

Proof. We will only show (iii) and (v), leaving the rest to the reader.

(iii) To show necessity, suppose a and c are separated by d, and a and b are separated by

c [ d. We must show that all paths from a to b [ c are blocked by d. Let

� > (i0, e1, . . . , en, in) be such a path. If � is from a to c there is nothing to prove, so

assume � is from a to b. Since � is blocked by c [ d, either C� � (c [ d), hence C� � d,

so � is blocked by d, or N� \ (c [ d) 6¼ .̆ In the latter case, if N� \ c ¼ ˘, then

N� \ d 6¼ ˘, hence � is blocked by d. Thus, assume N� \ c 6¼ ˘. Let k (0 , k , n) be

such that ik 2 N� \ c. Then � > (i0, e1, . . . , ek , ik) is a path from i0 2 a to ik 2 c, so by

hypothesis � is blocked by d. Since � is a subpath of �, � is blocked by d as well.

To see sufficiency, assume a and b [ c are separated by d. Then clearly a and c are

separated by d, so it suffices to show that all paths from a to b are blocked by c [ d. Let

� > (i0, e1, . . . , en, in) be such a path. Since � is blocked by d, either N� \ d 6¼ ˘, hence

N� \ (c [ d) 6¼ ˘, so � is blocked by c [ d, or C� � d. In the latter case, if C� \ c ¼ ˘,

then C� � (c [ d), hence � is blocked by c [ d. Thus, assume C� \ c 6¼ ˘. Now, let k

(0 , k , n) be the smallest index such that ik 2 C� \ c. Then � > (i0, e1, . . . , ek , ik) is a

path from i0 2 a to ik 2 c, so by hypothesis � is blocked by d, that is, either N� \ d 6¼ ˘,

hence N� \ (c [ d) 6¼ ˘, or C� � d, hence C� � (c [ d) (since C� \ c ¼ ˘). So � is

blocked by c [ d. As � is a subpath of �, it follows that � is blocked by c [ d as well.

(v) Let a 6¼ ˘, b 6¼ ˘, c 6¼ ˘ and d be pairwise disjoint subsets of V , such that a and b

are separated by c [ d, and a and c are separated by b [ d. We must show that a and b [ c

are separated by d. To obtain a contradiction, suppose there exists an open path given d

between a and b [ c. Let � > (i0, e1, . . . , en, in) be a shortest open path given d from

a vertex of a to a vertex of b [ c, say, without loss of generality, i0 2 a and in 2 b. As

� is open given d, N� ? Vnd and C� ? d. Since � has minimum length,

fi1, . . . , in�1g \ (b [ c) ¼ ˘, hence N� ? (Vn(b [ c)) \ (Vnd) ? Vn(c [ d). Also, C� ?
d ? c [ d, so � is an open path given c [ d from i0 2 a to in 2 b, contradicting the

hypothesis. h

Proposition 2.11. Suppose G ¼ (V , E) is a directional graph. Let a, b and c be pairwise

disjoint subsets of V , and let d > an(a [ b [ c). Then a and b are separated by c in G if and

only if a and b are separated by c in Gd .
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Proof. Since any open path in H > Gd is an open path in G as well, necessity is immediate.

For sufficiency, suppose a and b are separated by c in H , whereas � >
(i0, e1, . . . , en, in) is an open path (given c) in G from i0 2 a to in 2 b. Since

C� ? c ? d and N� ? Vnc, to obtain a contradiction it suffices to show that N� ? d, as

it follows from this that � is an open path in H . Let ir, is 2 C� be two successive colliders

on �, that is, i t 2 N� for r , t , s. The subpath � > (ir, erþ1, irþ1, . . . , es�1, is) of � has

one of the following two generic forms: either � ¼ (ir  . . .  i t ! . . . ! is) for some

r , t , s, or � ¼ (ir  . . .  i t $ i tþ1 ! . . . ! is) for some r < t , s. Since d is

G-ancestral, N� ? d. A slight adaptation of this arguments (allowing for the fact that

neither i0 nor in needs to be a head end-point of �) shows that essentially the same

conclusion regarding the generic form of � holds when is is the first collider on � and

� > (i0, e1, i1, . . . , es, is), or when ir is the last collider on � and

� > (ir, erþ1, irþ1, . . . , en, in), or when � is collisionless and � > �. But then

N� ¼ [� N� ? d. h

Proposition 2.12. Suppose G ¼ (V , E) is a directional graph. Let a, b and c be pairwise

disjoint subsets of V , and let d > an(a [ b [ c). Then a and b are separated by c in G if and

only if there exist disjoint subsets a9 ? Vnc and b9 ? Vnc such that: (i) a9 [ b9 [ c ¼ d; (ii)

a ? a9, b ? b9; and (iii) a9 and b9 are separated by c in Gd . Furthermore, b9 :¼
f j 2 dn(a [ c)j j is separated from a by cg and a9 :¼ dn(b9 [ c) satisfy the conditions of the

proposition.

Proof. Sufficiency is clear. For necessity, define a9 and b9 as in the final sentence of the

proposition. As conditions (i) and (ii) are obvious, it suffices to show that a9 and b9 are

separated by c in G. Using Proposition 2.11, we may assume without loss of generality that

an(a [ b [ c) ¼ V . We will show that i and j are separated by c whenever i 2 a9, j 2 b9. If

i 2 a this holds by the definition of b9, so in order to obtain a contradiction, assume i 2 a9na,

j 2 b9 are such that an open path � exists from j to i given c, say � ¼
( j0, e1, j1, . . . , en, jn), where j0 ¼ j and jn ¼ i. Since i =2 b9 there exists an open (given

c) path � from i to some k 2 a, say � ¼ (i0, f 1, i1, . . . , f m, im), i0 ¼ i and im ¼ k. Let r
denote the concatenation of � and � , that is, r > ( j0, e1, j1, . . . , en, i, f 1, i1, . . . , f m, im)

is a path from j0 ¼ j to im ¼ k. As j 2 b9 and k 2 a, r is blocked by c. Since

Nr ? N� [ N� [ fig ? Vnc and Cr ? C� [ C� [ fig ? c [ fig, necessarily i 2 Crnc. Now,

V ¼ an(a [ b [ c) ¼ an(a) [ an(b) [ an(c). Suppose i 2 an(c). Let 
 denote a shortest

directed path from i to some l 2 c, and let 
� denote the reverse path (i.e., going from l to i).

It is easily seen that the concatenation of �, 
, 
� and � now constitutes an open path (given

c) from j to k, which is a contradiction. Hence i 2 an(a)nan(c), or i 2 an(b)nan(c). If

i 2 an(a)nan(c), then there exists a directed path 
 (say) from i to some vertex l 2 a. Clearly,

all intermediate points of 
 are non-colliders (as 
 is a directed path), and none of the points

of 
 is in c (as otherwise i 2 an(c)). By concatenating the paths � and 
 we now obtain an

open path (given c) from j 2 b9 to l 2 a, which is a contradiction. Finally, if i 2 an(b)nan(c),

then there exists a directed path 
 (say) from i to some vertex l 2 b. Clearly, all intermediate

points of 
 are non-colliders (as 
 is a directed path), and none of the points of 
 is in c (as
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otherwise i 2 an(c)). By concatenating the paths � � (i.e., � traversed in reverse order) and 

we now obtain an open path (given c) from k 2 a to l 2 b, which again is a contradiction.h

3. Marginalizing and conditioning

In this section we will first show that the class of MC graphs is closed under marginalization,

then that it is closed under conditioning. In Koster (1999) it is shown that the class of

directional graphs is closed under marginalization. The class of undirected graphs possesses

both closure properties (see Examples 3.1 and 3.7 below), but most other classes of graphs

encountered in the literature do not share either of them (one notable exception is the class of

ancestral graphs, which is discussed in Section 5). Finally, we will show that the order in

which the operations of marginalization and conditioning are carried out is immaterial – as

should be the case from a probabilistic point of view. We will first make explicit what is

meant by ‘closed under marginalization’.

3.1. Marginalizing

Let G denote a class of graphs such that for each member of G a concept of ‘separation’ is

defined (applying to triples of subsets of vertices) whose associated independence model

satisfies the properties stated in Proposition 2.10. Let G ¼ (V , E) be a member of G, and

suppose for all subsets m ? V the class G contains a (possibly not unique) graph

Gm� > (Vnm, F) with vertex set Vnm and edge set F ¼ F(m) (say), such that, for all

pairwise disjoint subsets a, b and c of Vnm, a and b are separated by c in G if and only if a

and b are separated by c in Gm�. Clearly, if m ¼ V or m ¼ ˘ this is trivially satisfied by

putting GV � ¼ (˘, ˘), and G˘� ¼ G. The class G is closed under marginalization if the

stated property holds for all its members G. Preferably, a simple algorithm (e.g., consisting of

local operations only) should be available to construct Gm� from G and m. For the present

class of graphs, as for the class of undirected graphs, this is the case, as will be shown below.

Example 3.1. Consider the undirected graph G in Figure 3(a). Vertex 5 is encircled since we

intend to marginalize over this vertex, that is, we wish to obtain Gf5g�. This can be done by

Figure 3. (a) Undirected graph G. (b) After marginalizing over vertex 5 the graph Gf5g� is obtained.

See Example 3.1 for explanation.
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applying the so-called rubber band procedure: for each pair of vertices (i, j) for which there

is a path (i� 5� j), a new edge i� j is added; then vertex 5 and all edges adjacent to it are

wiped out. In this way, Gf5g� is obtained as the graph in Figure 3(b). It is easily verified that,

for all pairwise disjoint subsets a, b and c of f1, 2, 3, 4g, a and b are separated by c in G if

and only if a and b are separated by c in Gf5g�.

Moving now to the general case, let G ¼ (V , E) be an MC graph. Suppose i, j and k are

vertices of G, k =2 fi, jg, such that f 2 E and g 2 E satisfy f ¼ i � � � k and g ¼ k � � � j.

Then (i, f , k, g, j) is a path of length 2 from i to j with intermediate point k. Also, if

k� 2 E, then (i, f , k, k�, k, g, j) is a path of length 3 from i to j with both intermediate

points equal to k. (In fact, in that case the pair (k�, k) can be repeated arbitrarily often to

obtain a path (i, f , k, k�, k, . . . , k�, k, g, j) of any finite length n > 3.) The latter type of

path, which contains (k, k�, k, . . . , k�, k) as subpath, will be denoted by (i, f , k�, g, j). In

that case we will say that the intermediate point k occurs as a self loop on the path (see

Convention 2.7). Now define the edge f � g ¼ g � f by Table 1.

Table 1 essentially states that, if f ¼ i � � � k and g ¼ k � � � j, then the edge

f � g ¼ i � � � j if and only if (i, f , k, g, j) or (i, f , k�, g, j) is a collisionless path in G

from i to j. We define, for k 2 V , the MC graph Gfkg� as the graph on Vnfkg obtained

after the �-operation of Table 1 is applied to all pairs of edges ( f , g) satisfying f ¼ i � � � k

and g ¼ k � � � j, where fi, jg ? Vnfkg. Formally, Gfkg� :¼ (Vnfkg, Efkg�), where the edge

set Efkg� is given by Efkg� :¼ fe 2 Ej[e] ? Vnfkgg [ f f � gj f ¼ i � � � k,

g ¼ k � � � j, fi, jg ? Vnfkgg. It is understood here that Convention 2.7 applies, that is,

if i ¼ j, then the resulting self loop f � g is void, unless it equals the undirected self loop

Table 1. Creation of edges by marginalizing over or conditioning on k. If f ¼ i � � � k and g ¼ k � � � j,

then the edge f � g is created by marginalizing over k conforming to the entries of the table; for

example, when f ¼ i$ k (third row) and g ¼ k � j (final column), then the edge i j is produced.

The four boxed entries of the table only apply when k occurs as a self loop, and are understood to be

void otherwise. The edge f h g is created by conditioning on k conforming to the boxed entries of the

table; for example, when f ¼ i$ k (third row) and g ¼ k  j (first column), then the edge i j is

produced. Notice that the edge produced ( f � g or f h g) inherits its ‘edge ends’ (i.e., the head or tail

property of the end-points i and j) from the constituent edges f and g. Also, by Convention 2.7, if

i ¼ j the resulting self loop is void, unless it equals the undirected self loop i� ¼ i� i

g

f k  j k ! j k $ j k � j

i ! k i � j i ! j i ! j i � j

i  k i  j i $ j i $ j i  j

i $ k i  j i $ j i $ j i  j

i � k i � j i ! j i ! j i � j
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i� ¼ i� i. The next example may help clarifying the procedure of marginalizing over a

single vertex k 2 V using the relevant entries of Table 1.

Example 3.2. Consider the MC graph G in Figure 4(a). Vertex 4 is encircled since we wish to

marginalize over this vertex. Thus, when applying Table 1, k ¼ 4. Now, if f ¼ 3� 4,

g ¼ 4! 5, then the edge f � g ¼ 3! 5 is produced as indicated by the final row, second

column of the table. Furthermore, putting f ¼ g ¼ 3� 4 generates the self loop

f � g ¼ 3� 3 ¼ 3� (cf. final row, last column of the table). No other edges are produced

by marginalizing over 4; for example, f ¼ g ¼ 4! 5 results in the self loop f � g ¼ 4$ 5

(second row, second column of the table) which, however, drops out by Convention 2.7. Thus

the graph Gf4g� is obtained as Figure 4(b). Due to the presence of the self loop 3� 3 in Gf4g�,
1 and 2 are not separated by ˘ (the path (1! 3�  2) is open given ˘).

Marginalizing over m > fk1, . . . , ksg ? V results in the graph Gm� which is defined

recursively as Gm� :¼ (Gmnfksg�)fksg� ¼ (Vnm, Em�), where Em� :¼ (Emnfksg�)fksg�. Clearly, it

must be shown that this does not depend on the order k1, . . . , ks of the members of m. But

this is an immediate consequence of the next proposition. Recall that a path � is called

collisionless if all its intermediate points are non-colliders only, i.e., C� ¼ ˘.

Proposition 3.3. Let Gm� ¼ (Vnm, Em�) be the graph obtained by marginalizing G ¼ (V , E)

over the vertices k1, . . . , ks of m ? V (in some fixed order). Let fi, jg ? Vnm. Then the

following two statements are equivalent:

(i) 9e 2 Em� : i is a head (tail ) of e, and j is a head (tail ) of e.

(ii) There exists in G a collisionless path � between i and j with all intermediate points

in m, such that i is a head (tail ) end-point of � and j is a head (tail ) end-point of �.

If i ¼ j it is understood here that in both (i) and (ii) only ‘tail’ applies.

Corollary 3.4. The graph Gm� is a well-defined MC graph.

Proof of Proposition 3.3. The proof that (ii)) (i) is by induction on s > jmj. If s ¼ 1 the

result is immediate from Table 1, so assume s . 1. Let � > (i, e1, i1, . . . , in�1, en, j) be a

collisionless path from i to j having all its intermediate points in m. If

Figure 4. (a) MC graph G. (b) After marginalizing over vertex 4 the graph Gf4g� is obtained. The

symbol 3� denotes the configuration of vertex 3 plus self loop 3� 3.
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firj0 , r , ng ? mnfksg, then the induction hypothesis entails that e 2 Emnfksg�, so e 2 Em�

as well. If ks 2 firj0 , r , ng, say ks ¼ irt
, t ¼ 1, . . . , q, where r1 , . . . , rq, then there

are two cases to consider.

First, q ¼ 1, that is, ks occurs only once as intermediate point on �. The induction

hypothesis implies that there exist f , g 2 Emnfksg� such that f ¼ i � � � ks and g ¼ ks � � � j,

so after marginalizing Gmnfksg� over ks (using the non-boxed entries of Table 1) the edge

e > f � g will result which has the required properties.

Second, q > 2. By the induction hypothesis, there exist f , g 2 Emnfksg� such that

f ¼ i � � � ir1
and g ¼ k rq

� � � j, so if ks is a tail of either f or g, then marginalizing over ks

(again using the non-boxed entries of Table 1) will result in the edge e > f � g which has

the required properties. On the other hand, if ks is a head of both f and g (hence, of both

er1
and erqþ1), then the edge e > f � g having the required properties will result by

applying the boxed entries of Table 1 – if it can be shown that the graph Gmnfksg� contains

the self loop k�s . But this follows from the induction hypothesis, since at least one of the

loops (ks, ertþ1, irtþ1, . . . , ertþ1, ks), t ¼ 1, . . . , q� 1 (each of them a subpath of �) must

have both its end-points as tails (note that ks is a tail of both er1þ1 and erq
, since it would

occur as a collider on � otherwise).

The induction proof (again on s > jmj) that (i)) (ii) is rather similar, and is left to the

reader. h

If G ¼ (V , E) is a directional graph (that is, G has no lines or undirected self loops),

then the intermediate points of a collisionless path between vertices i and j are ancestors of

either i or j. Combining this observation with Proposition 3.3 immediately leads to the

following.

Proposition 3.5. Suppose G ¼ (V , E) is a directional graph. Let a ? V be a G-ancestral set,

and let m > Vna. Then Gm� ¼ Ga.

The next result entails that the class of MC graphs is indeed closed under

marginalization.

Proposition 3.6. Let G ¼ (V , E) be a graph, and let m ? V . Then, for all pairwise disjoint

subsets a, b and c of Vnm, a and b are separated by c in G if and only if a and b are

separated by c in Gm�.

Proof. First note that the result is trivial if m ¼ ˘. Clearly, due to the recursive definition of

Gm� it suffices to prove the proposition for the case m ¼ fkg, for k 2 V arbitrary. Suppose a,

b and c are pairwise disjoint subsets of Vnm. We must show that there exists an open path

from i 2 a to j 2 b given c in G if and only if there exists an open path from i 2 a to j 2 b

given c in Gm�. Let � > (i0, e1, i1, . . . , en, in) be an open path from i 2 a to j 2 b given c in

G. Without loss of generality we may assume that the length n of � is minimal. If k is not an

intermediate point of �, then � obviously is an open path given c in Gm� as well. If k ¼ ir

(say) is an intermediate point of �, then k is a non-collider on �, since C� ? c and k =2 c

(this includes the possibility that k occurs as a self loop on �). Applying the �-operator to er,
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erþ1 then has two possible consequences. It either results in the non-void edge

er � erþ1 2 Em�, so in � the subpath (ir�1, er, ir, erþ1, irþ1) can be substituted by

(ir�1, er � erþ1, irþ1); repeating this for all occurences of k as an intermediate point of �
eventually results in an open path from i 2 a to j 2 b given c in Gm�. Alternatively, the edge

er � erþ1 is void (namely, when ir�1 ¼ irþ1, and er 2 fir�1  ir, ir�1 $ irg or

erþ1 2 fir ! irþ1, ir $ irþ1g). But as the length n of � is minimal, the latter case

cannot happen. (Otherwise, the sequence (er, ir, erþ1, irþ1) can be deleted from � to obtain a

shorter open path; note that N� \ C� ¼ ˘, hence, if ir�1 ¼ irþ1 is a (non-)collider on � at

position r � 1, then it is also a (non-)collider at position r þ 1, and this collider status

remains unchanged when the sequence (er, ir, erþ1, irþ1) is deleted from �.) To prove the

converse, let � > (i0, e1, i1, . . . , en, in) be an open path from i 2 a to j 2 b given c in Gm�.
Applying Proposition 3.1 to each edge of � immediately renders a path in G. This path will

be open given c since, if k is one of its intermediate points, then k will be a non-collider,

and k =2 c by hypothesis. (Of course, the collider status of the other intermediate points

remains invariant.) h

We will now show that the class of MC graphs is closed under conditioning as well. As

was the case with closure under marginalization, the class of undirected graphs also has this

closure property, but no other class of graphs discussed thus far in the literature shares it.

We will first make explicit what we mean by ‘closure under conditioning’.

3.2. Conditioning

Let G denote a class of graphs such that for each member of G a concept of ‘separation’ is

defined whose associated independence model satisfies the properties stated in Proposition

2.10. Let G ¼ (V , E) be a member of G, and suppose that, for all subsets c ? V , the class G
contains a (possibly not unique) graph G�c > (Vnc, F) with vertex set Vnc and edge set

F ¼ F(c) (say), such that, for all pairwise disjoint subsets a, b and d of Vnc, a and b are

separated by c [ d in G if and only if a and b are separated by d in G�c. Clearly, if c ¼ V of

c ¼ ˘ this is trivially satisfied by putting G�V ¼ (˘, ˘), and G�˘ ¼ G. The class G is closed

under conditioning if the stated property holds for all its members G. As was the case with

marginalization, it would be nice if a simple algorithm consisting of local operations only

were available to construct G�c from G and c. Fortunately, for the class of MC graphs (as for

the class of undirected graphs) this is indeed the case, as will be shown below.

Example 3.7. For undirected graphs, the operation of conditioning is even simpler than the

operation of marginalizing. Consider the undirected graph G in Figure 5(a). Vertex 4 is

enclosed by a square to indicate conditioning upon this vertex, that is, we wish to obtain

G�f4g. This can be done by simply wiping out vertex 4 and all edges adjacent to it. No new

edges are to be added. In this way, G�f4g is obtained as the graph in Figure 5(b). Clearly, for

all pairwise disjoint subsets a, b and d of f1, 2, 3, 5g, a and b are separated by d [ f5g in G

if and only if a and b are separated by d in G�f5g.
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Let G ¼ (V , E) be an MC graph. Suppose i, j and k are vertices of G, k =2 fi, jg, such

that f 2 E and g 2 E satisfy f ¼ i � � � k and g ¼ k � � � j. Then (i, f , k, g, j) is a path of

length 2 from i to j with intermediate point k. Now define the edge f h g ¼ g h f by the

boxed entries of Table 1. Thus, if i 6¼ j, then the edge f h g is non-void if and only if k is

a collider on the path (i, f , k, g, j). If i ¼ j, then f h g is non-void if and only if

f ¼ g ¼ i! k (and f h g equals the undirected self loop i� in that case). We define, for

k 2 V , the MC graph G�fkg as the graph on Vnfkg obtained after the h-operation of Table

1 is applied to all pairs of edges ( f , g) satisfying f ¼ i � � � k, and g ¼ k � � � j, where

fi, jg ? Vnfkg. Formally, G�fkg :¼ (Vnfkg, E�fkg), where the edge set E�fkg is given by

E�fkg :¼ fe 2 Ej[e] ? Vnfkgg [ f f h gj f ¼ i � � � k, g ¼ k � � � j, fi, jg ? Vnfkgg. Again,

it is understood that Convention 2.7 applies, that is, if i ¼ j, then the resulting self loop

f h g is void, unless it equals the undirected self loop i� ¼ i� i. Conditioning over

c > fk1, . . . , ksg ? V results in the graph G�c which is defined recursively as

G�c :¼ (G�cnfksg)�fksg ¼ (Vnc, E�c), where E�c :¼ (E�cnfksg)�fksg. Clearly, it must be shown

that this does not depend on the order k1, . . . , ks of the members of c. But this is an

immediate consequence of the next proposition. Recall that a path � is a pure collision path

if all its intermediate points are colliders only, that is, N� ¼ ˘.

Proposition 3.8. Let G�c ¼ (Vnc, E�c) be the graph obtained by conditioning G ¼ (V , E)

over the vertices k1, . . . , ks of c ? V (in some fixed order). Let fi, jg ? Vnc. Then the

following two statements are equivalent:

(i) 9e 2 E�c : i is a head (tail ) of e, and j is a head (tail ) of e.

(ii) There exists in G a pure collision path � between i and j with all intermediate points

in c, such that i is a head (tail ) end-point of � and j is a head (tail ) end-point of �.

If i ¼ j it is understood here that in both (i) and (ii) only ‘tail’ applies.

Corollary 3.9. The graph G�c is a well-defined MC graph.

Proof of Proposition 3.8. The proof that (ii)) (i) is by induction on s > jcj. If s ¼ 1 the

result is immediate from Table 1, so assume s . 1. Let � > (i, e1, i1, . . . , in�1, en, j) be a

pure collision path from i to j having all its intermediate points in c. If

firj0 , r , ng ? cnfksg, then the induction hypothesis entails that e 2 E�cnfksg, so

Figure 5. (a) Undirected graph G. (b) After conditioning on vertex 4 the graph G�f4g is obtained. See

Example 3.7 for explanation.
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e 2 E�c as well. If ks 2 firj0 , r , ng, say ks ¼ irt
, t ¼ 1, . . . , q, where r1 , . . . , rq,

then there are two cases to consider.

First, q ¼ 1, that is, ks occurs only once as intermediate point on �. The induction

hypothesis implies that there exist f , g 2 E�cnfksg such that f ¼ i � � � ks and g ¼ ks � � � j,

so after conditioning G�cnfksg upon ks (using the boxed entries of Table 1) the edge

e > f h g will result which has the required properties.

Second, q > 2. By the induction hypothesis, there exist f , g 2 E�cnfksg such that

f ¼ i � � � ir1
and g ¼ irq

� � � j, so (as ks is a head of both f and g), conditioning on ks

results in the edge e > f h g which has the required properties.

The induction proof (again on s > jcj) that (i)) (ii) is similar, and is left to the

reader. h

Proposition 3.10. Let G ¼ (V , E) be a graph, and let c ? V . Then, for all pairwise disjoint

subsets a, b and d of Vnc, a and b are separated by c [ d in G if and only if a and b are

separated by d in G�c.

Proof. First note that the result is trivial if one of a, b or c is empty, so assume otherwise.

We must show that there exists an open path from i 2 a to j 2 b given c [ d in G if and only

if there exists an open path from i 2 a to j 2 b given d in G�c. By the recursive definition of

G�c, G�c ¼ (G�cnfkg)�fkg whenever k 2 c. Thus, it suffices to prove the proposition for the case

c ¼ fkg, k 2 V .

Let � > (i0, e1, i1, . . . , en, in) be an open path from i 2 a to j 2 b given c [ d in G,

hence C� ? c [ d and N� ? Vn(c [ d). Without loss of generality, we may assume that the

length n of � is minimal. If k is not an intermediate point of �, then C� ? d, and since

N� ? (Vnc)nd, � obviously is an open path given d in G�c. If k is an intermediate point of

�, then k is a collider on �, since k 2 c [ d ? VnN�. Since the length of � is minimal, k

occurs only once as an intermediate point of � (otherwise, the loop between two

occurrences of k can be deleted from �, thus resulting into a shorter path), say k ¼ ir.

Applying the h-operator to er, erþ1 then results in the non-void edge er h erþ1 2 E�c, so the

subpath (ir�1, er, ir, erþ1, irþ1) of � can be substituted by (ir�1, er h erþ1, irþ1) to obtain a

path � > (i0, . . . , ir�1, er h erþ1, irþ1 . . . , in) in G�c. Since C� ? (c [ d)nfkg ¼ d and

N� ¼ N� ? (Vnc)nd, � is open given d in G�c.

To prove the converse, let � > (i0, e1, i1, . . . , en, in) be an open path from i 2 a to j 2 b

given d in G�c (hence, C� ? d, N� ? (Vnc)nd). Applying Proposition 3.8 to each edge of

� immediately renders a path � (say) in G. If k is one of the intermediate points of �, then

it can only occur as a collider. Since the collider status of the other intermediate points

remains unchanged, C� ? d [ fkg ¼ c [ d and N� ¼ N� ? Vn(c [ d), so � is open given

c [ d in G. h

3.3. Marginalizing and conditioning

Let G ¼ (V , E) be a graph, and let m and c be disjoint subsets of V . As noted in Cox and

Wermuth (1996, pp. 207–8), in order for the operations of marginalizing and conditioning in
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graphs to be consistent with standard probability theory the graphs (Gm�)�c, and (G�c)m�

should define the same independence model over their vertex set Vn(m [ c). In fact, the next

result shows that both graphs are identical.

Proposition 3.11. Let G ¼ (V , E) be an MC graph, and suppose m and c are disjoint subsets

of V. Let (Gm�)�c ¼ ((Vnm)nc, (Em�)�c) be the graph obtained by first marginalizing over m

and then conditioning on c. Let (G�c)m� ¼ ((Vnc)nm, (E�c)m�) be the graph obtained by first

conditioning on c and then marginalizing over m. Then the following three statements are

equivalent:

(i) 9e 2 (Em�)�c : i is a head (tail ) of e, and j is a head (tail ) of e.

(ii) 9e 2 (E�c)m� : i is a head (tail ) of e, and j is a head (tail ) of e.

(iii) There exists in G a path � between i and j satisfying N� ? m, C� ? c, i is a head

(tail) end-point of � and j is a head (tail) end-point of �.

In all cases, if i ¼ j it is understood that only ‘tail’ applies.

Proof. Using Propositions 3.3 and 3.8 it is immediately clear that both (i) and (ii) are

equivalent to (iii). h

Henceforth we will denote (Gm�)�c ¼ (G�c)m� simply by Gm�c.

Corollary 3.12. The graph Gm�c ¼ (Vn(m [ c), Em�c) is a well-defined MC graph.

Theorem 3.13. Let G ¼ (V , E) be an MC graph, and suppose m and c are disjoint subsets of

V. Then, for all pairwise disjoint subsets a, b and d of Vn(m [ c), a and b are separated by

c [ d in G if and only if a and b are separated by d in Gm�c.

Proof. Just apply Propositions 3.6 and 3.10 (in either order). h

4. The Markov property for MC graphs

Thus far all results have been strictly graph-theoretic in nature. We will now introduce the

Markov property for MC graphs, thereby giving the main results in the preceding section a

probabilistic slant.

Let V be a finite set, and let, for i 2 V , (Xi, X i) be a measurable space. Suppose P is a

multivariate probability distribution defined on the product space (X, X ) >
(3i2V Xi, 3i2VX i). We will assume that each space (Xi, X i) is sufficiently regular to

ensure the existence of regular conditional probability distributions. More specifically, we

assume that all versions of conditional distributions encountered induce probability

measures and two such versions define the same probability measures outside some P-

negligible set. For a ? V , define (Xa, X a) ¼ (3i2aXi, 3i2aX i) (X˘ > X, endowed with the

trivial � -algebra). We may assume P is the distribution of an X-valued random vector

X > (X i : i 2 V ), and for a ? V , define X a ¼ (X i : i 2 a); similarly, if x 2 X,

Marginalizing and conditioning in graphical models 835



xa :¼ (xi : i 2 a) (X˘ > x˘ > constant). The marginal distribution of X a on (Xa, X a) is

denoted by Pa, so Pa(A) :¼ P(X a 2 A) ¼ P(A 3 XVna) whenever A ? Xa is a measurable

subset. If c ? V , c \ a ¼ ˘, the expression PX ajX c¼xc
is used to denote the conditional

distribution of X a given X c ¼ xc, i.e., PX ajX c¼xc
(A) > P(X a 2 AjX c ¼ xc). (If c ¼ ˘ this

denotes the marginal distribution Pa of X a.) For pairwise disjoint subsets a, b and c of V ,

let a ?? bjc[P] denote that X a and X b are conditionally independent given X c under

distribution P, that is, P(X a 2 A, X b 2 BjX c ¼ xc) ¼ P(X a 2 AjX c ¼ xc) P(X b 2 Bj
X c ¼ xc), for all measurable subsets A ? Xa and B ? Xb, and for Pc-almost every

xc 2 Xc. Recall that, by the assumed regularity conditions, the left-hand side and both

factors on the right-hand side denote regular versions of the conditional distribution of,

respectively, X a[b, X a and X b given X c, that is, for Pc -a.e. xc 2 Xc they are all probability

measures. Now suppose G ¼ (V , E) is an MC graph, hence that the components of

X > (X i : i 2 V ) are indexed by the vertices of G.

Definition 4.1. Markov property for MC graphs. The distribution P > PV is called a Markov

random field with respect to G (G-Markov for short) if, for all pairwise disjoint subsets a, b

and c of V , a ?? bjc[P] whenever a and b are separated by c.

Theorem 4.2. Let G ¼ (V , E) be an MC graph, and let P denote the probability distribution

of X > (X i : i 2 V ). Then P is G-Markov if and only if, for all disjoint subsets m and c of V,

the conditional distribution PX sjX c¼xc
is Gm�c-Markov, Pc-a.e. xc 2 Xc. Here s > Vn(m [ c).

Proof. Sufficiency is immediate by putting m ¼ c :¼ ˘ (hence s ¼ V ).

To see necessity, let a, b and d be pairwise disjoint subsets of s, and assume that a and

b are separated by d in Gm�c. By Theorem 3.13, a and b are separated by c [ d in G, so

a ?? bjc [ d[Ps[c]. Equivalently, a ?? bjd[PX sjX c¼xc
], Pc-a.e. xc 2 X c. Hence PX sjX c¼xc

is

Gm�c-Markov, Pc-a.e. xc 2 Xc. h

Example 4.3. In Besag (1974) a submodel of the following Gaussian linear structural

equation system is discussed for random variables Yij, where the index (i, j) is an integer pair

which varies over some finite rectangular lattice A ? Z3 Z:

Yij ¼ bi�1, jYi�1, j þ b9iþ1, jYiþ1, j þ ci, j�1Yi, j�1 þ c9i, jþ1Yi, jþ1 þ Eij:

Here (Eij : (i, j) 2 A) - N jAj(0, �) (i.e., a multivariate normal distribution with expectation

0 and positive definite covariance matrix �), where it is assumed that � is a diagonal matrix.

In Koster (1999) it is shown that the distribution of YA > (Yij : (i, j) 2 A) is Markov relative

to the path diagram associated with this system (Figure 6 shows a 5 3 5 subgraph of the path

diagram.). Let us call the entire graph G; thus the distribution of YA is G-Markov. To give an

example of what can be deduced from this, note that (i, j) is separated from AnAij by

Aijnf(i, j)g, where Aij :¼ f(k, l) 2 A : ji� kj þ j j� lj < 2g, that is, Aij is the subset inside

the dashed line contour. Hence Yij ?? YAnAij
jYAijnf(i, j)g is entailed by the Markov property.

Now suppose the boundary of the system (i.e., the outer layer of the rectangular lattice), call

it bd(A), is observed, say Ybd(A) ¼ ybd(A). Then by Theorem 4.2 the conditional distribution of

YAnbd(A) given Ybd(A) ¼ ybd(A) is Markov relative to the graph G˘�bd(A). It is easy to see that
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the graph G˘�bd(A) has the same structure as G, except for the fact that the vertices at its

boundary (i.e., bd(B), where B > Anbd(A)) become self loops. As this does not change the

separation properties of the graph (in this example) we can conclude that observing the

boundary of the system does not influence the Markov properties of the remainder of the

system. On the other hand, if the boundary is ‘neglected’, then Gbd(A)�˘ is the graph

describing the Markov properties of the remaining variables YB. In this graph, each pair of

distinct vertices in the boundary (say, i, j 2 bd(B)) are connected by each of the edges i! j,

i j and i$ j. This strongly changes the Markov properties of variables at and near the

boundary of the remaining system, although the Markov properties of deeper layers remain

unchanged.

5. Concluding remarks

In this paper we have introduced the class of MC graphs and shown that it is closed under the

operations of marginalizing over a certain subset of vertices m, or conditioning on a subset of

vertices c. The operations on the graph G can be carried out ‘locally’ by applying Table 1 to

each vertex in m [ c successively, rendering the well-defined MC graph Gm�c. Proposition

3.11, however, shows that the edges of graph Gm�c can be characterized by a ‘global’

criterion as well. Key to these results is the deletion of the requirement that all vertices along

a path be distinct, and the simplification of Pearl’s d-separation concept which is made

possible by this modification.

In the recent literature on graphical models, two other approaches to the problem of

marginalizing and conditioning in graphical models can be found. The first is based on

Figure 6. Part of path diagram of Gaussian linear structural equations system. See Example 4.3 for

explanation.
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summary graphs (Cox and Wermuth 1996; Wermuth et al. 1998), and the second considers

ancestral graphs (Richardson and Spirtes 2000). Both summary graphs and ancestral graphs

are MC graphs, and the separation criteria involved are equivalent to Definition 2.3.

However, the operations of marginalizing and conditioning are defined differently for each

type of graph; thus, for example, after marginalizing a given DAG G ¼ (V , E) over a

subset m ? V and conditioning over a subset c ? (Vnm), each of the three approaches may

render a distinct (though separation-equivalent) ‘graphical object’.

Pearl (1995; 2000) uses DAGs to represent causal theories formulated as (possibly

nonlinear) recursive structural equation systems. Here each edge (arrow) has a substantive

interpretation as a causal relation. Whenever a summary graph has a DAG as its point of

departure, the independence model associated with it is said to be accounted for by some

data generating process. It is shown in Richardson and Spirtes (2000) that the class of

maximal ancestral graphs constitutes the smallest class of graphs that contains the class of

DAGs, and which is closed under marginalizing and conditioning (in their sense). The class

of independence models associated with maximal ancestral graphs therefore coincides with

the class of models which can be accounted for by a data generating process. The present

paper addresses the marginalization and conditioning problem for a (much) larger class of

graphs, containing at least all undirected graphs and all directional graphs. Directional

graphs are important, since they occur as path diagrams in Gaussian linear structural

equation systems (Jöreskog and Sörbom 1989). Example 4.3 shows that our results can be

applied straightforwardly to such systems. It is tempting to view the present paper,

particularly Table 1, as offering a mode of data generation (in some generalized sense) for

undirected edges (lines) and bidirected edges (arcs). Roughly speaking, lines are created by

conditioning upon common effects, whereas arcs are created by marginalizing over common

causes. However, it is not generally true that, for example, an MC graph can be obtained by

marginalizing and conditioning starting from some directed (cyclic or acyclic) graph. A

counter-example is given in Richardson and Spirtes (2000). Note that similar remarks hold

for chain graphs when the Lauritzen–Wermuth–Frydenberg separation concept is employed

(Lauritzen and Wermuth 1989; Frydenberg 1990). In Richardson (1998) it is shown that, in

general, Lauritzen–Wermuth–Frydenberg chain graphs containing undirected edges cannot

be obtained by marginalization or conditioning in DAGs. Therefore, in this sense, neither

chain graphs endowed with Lauritzen–Wermuth–Frydenberg separation nor MC graphs

generally have a straightforward substantive interpretation.
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