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Modular forms have been studied, accidently or intentionally, 
for about 200 years, beginning seriously with Jacobi and Eisen-
stein. A key word here is "accidentally": Historically, many pe­
culiar things were discovered and studied in an ad hoc fashion; a 
great number of these are now construed as corollaries of a general 
phenomenology with the unfortunately unevocative appellations 
"theory of modular forms" or "theory of automorphic forms." 
This "underlying phenomenology" is distant from more tangible 
and elementary issues, and so often seems obscurely technical and 
tiresomely unmotivated (to the uninitiated, at least). 

Because it does provide an underlying pattern, the subject is 
currently of intense research interest. Either provably or conjec-
turally, a large fraction of the objects of interest in number theory 
is intimately related to modular forms. There are also pleasantly 
surprising connections with many other things: string theory, com­
binatorics, Kac-Moody algebras, and so on. 

To develop a sympathy for the subject, it seems necessary to 
shift what one believes to be the primary objects of study. Because 
of the efficacy of "the theory of modular forms" as a methodology 
in number theory, one might study modular forms as fundamental 
objects, rather than directly consider number fields themselves (for 
example). To add to the confusion of the novice, there is not 
a single fixed notion of "modular form": The general idea has 
many different incarnations, whose common spirit is apparent only 
after considerable reflection (and proof). Yet, each incarnation of 
"modular form" has its own utility. 

With just a few exceptions, the subject languished for the first 
half of this century. Its resurrection in the late 1950s and early 
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1960s was possible not only because of the technical adeptness of 
Shimura, Piatetski-Shapiro, Langlands, and others, but also be­
cause other parts of mathematics {especially number theory) had by 
that time developed to a point inviting subtler explanations. Perhaps 
more so than with many other parts of mathematics, the general 
theory of modular/automorphic forms has evolved as an explana­
tion of "secret causes" of more perceptible phenomena. 

Even the ambitious and assiduous student, in attempting to be­
gin reading on the subject, may be disheartened by the impression 
that the prerequisites are esoteric and onerous. A bald statement of 
definitions is neither suggestive nor illuminating. Indeed, a treat­
ment of the subject can achieve inclusiveness and unity only by 
invoking very powerful auxiliary machinery. Some of the ideas 
(and primitive motivation) can be illustrated in simple examples; 
however, in this subject it is not always easy to discriminate be­
tween parlor tricks and entertaining examples of important general 
ideas. 

Motivated by the resurgence of research interest, many books 
have appeared in the past twenty years or so, offering more-or-
less elementary introductions to parts of the theory of automor-
phic and modular forms. Of necessity, there is considerable over­
lap. Miyake's text gives the usual classical foundational material 
on modular forms, but the text also treats some topics found in 
few other texts. Further, the discussion throughout is quite de­
tailed, which may be appropriate for students not yet oriented to 
the "standard methods" in the subject. 

A historically important motivation for studying modular forms 
was the study of quadratic forms, especially the problem of count­
ing the number vk{ri) of ways an integer n is representable as 
a sum of k squares of integers (with k fixed). Jacobi first saw 
the relevance of modular forms to such questions. A generating 
function for counting representations as a sum of k squares is 

9kü) = Yl vk^)^n = YL vn'+'"+n k 

n>0 nl9n2,...tnk 

Letting q = eniz with z in the upper half-plane 4 , put 0(z) = 
<p{{q) ; this 6 is the simplest example of a theta series. From the 
representability of functions on R/Z by their Fourier series one 
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obtains the Poisson summation formula for a nice (e.g., Schwartz) 
function (p on R: 

nez nez 

where Q is the Fourier transform. Applying this to cp(n) = e~nn y 

with y > 0, one obtains 0(iy) — 6(-l/iy)/y{^2, which by analytic 
continuation gives 0(z) = 0 ( - 1 / Z ) / ( - J Z ) 1 / 2 . Visibly 0(z + 2) = 
0(z), so 0(z) satisfies certain transformation rules under the group 
re of linear fractional transformations generated by z —• z + 2 
and z —• - 1 / z . This becomes much simpler if we consider powers 
of 0 divisible by 8: It becomes 

8(yZ)*" = (cz + d)4n8(z)*n, (fory=(^ J ) e r , ) . 

Thus, 08w is an automorphic form for Te of weight An. We will 
see the significance of this peculiar transformation property for the 
sum-of-squares problem shortly. The study of such theta series was 
a large part of the historical motivation for studying automorphic 
forms. 

Generally, for a subgroup T of SL(2, R) acting on the complex 
upper half-plane 4 by linear fractional transformations 

( * b
dyz) = {az + b)l{cz + d), 

let IJL : T x 4 —• Cx be an "automorphy factor", i.e., having the 
property that for y, S eT and z e 4 

ju(yô, z) = /i(y9 8z)//(8, z). 

The function 

has this property. Define an automorphic form for T with au­
tomorphy factor ju to be a holomorphic function ƒ satisfying 
f{yz) = /i(y, z)f(z) (plus some modest growth constraints which 
we neglect). If T is of finite index in SL(2, Z), then one says that 
ƒ is an elliptic modular form. In particular, if 

then ƒ is of weight k. 
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When T is a subgroup of SL(2, Z), we can easily construct 
modular forms of weight 2k > 4 in another way, the Eisenstein 
series: For example (with 2k > 4 for convergence) 

E2k^)= £ (cz + d)-2k 

c, d not both 0 

is a modular form of weight 2k for SL(2, Z). The Fourier ex­
pansion of an Eisenstein series can be determined by elementary 
means; for the previous example, it is just 

E2k(z) = 2C(2fc) + 2(-2ni)2kr(2k)-l^2a2k_l(n)e2ninz, 
n>0 

where o2k_x{n) is the sum of the 2k - 1 powers of the positive 
divisors of n . The explicit definition of the Eisenstein series and 
the rather elementary nature of the Fourier coefficients are two 
of their important features. Eisenstein series and theta series to­
gether are the explicitly constructible example automorphic forms-, 
everything else is subtler. 

A very important technical virtue of the space of modular forms 
of a fixed weight for a fixed subgroup T is that it is finite-dimen­
sional, with a dimension calculable in a variety of ways. In par­
ticular, for weight 4, the space of modular forms for the subgroup 

o 

Td for 6 is so small that this theta series must be an Eisenstein 
series. From this, one finds an explicit formula for the number of 
ways an integer is expressible as a sum of 8 squares, by equating 
Fourier coefficients; for n odd, vs(n) = 16(T3(«). Standing alone, 
this formula is a mere amusement, thought it is suggestive. To this 
reviewer, the method of proof is the most piquant aspect of this 
example. 

In general, there are many other modular forms than Eisen-
stein series, so 6 is not generally an Eisenstein series, and the 
previous "explicit formula" result for a sum of 8 squares has no 
simple analogue for 16 squares (nor for 24, 36, etc.). Still, some­
thing of significance can be salvaged for this sum-of-squares prob­
lem. A vector space complement to the space of Eisenstein se­
ries can be aptly described by a rapid decay condition (for ex­
ample); for T = SL(2, Z), the condition can easily be described 
by a condition on Fourier coefficients: In the Fourier expansion 
fiz) = Yl,ncnelninZ °f a m°dular form ƒ , we say that ƒ is a 
cuspform if cn = 0 for n < 0. An important feature of cuspforms 
of weight k is Hecke's {elementary) estimate on the Fourier co­
efficients: n\h Fourier coefficient of cuspform = 0(n ' ). Then, 



238 BOOK REVIEWS 

from the expression of 0 as a sum of a weight- 4k Eisenstein 
series plus a cuspform, we can obtain, not an exact formula, but a 
good error term: For n odd, 

uu(n) = ( /* / ( ! - 2-4A:)r(4fc)C(4fc))<T4,_1(n) + 0(n2k). 

Note that the sum-of-divisors function still occurs as the main 
term, with an interesting constant; and the error term is much 
smaller than the main term. The irregularity of (f4k_x matches 
the irregularity of v%k inexplicably well. 

The precise size of the error term is a very subtle matter. Ra-
manujan made a conjecture, broadened in scope by Petersson, 
which asserts that the error term should actually be 0(n2 -1/2+e) 
for every e > 0, i.e., that the Fourier coefficients of cuspforms of 
weight k grow like n /2~1/2 , not just n /2 . The seemingly slight 
difference belies the profundity of the distinction: The better es­
timate was proven only as late as the early 1970s by Deligne, as a 
corollary of his work on the Weil conjecture. 

In a different direction, consider Dirichlet series 

The simplest case, Riemann's zeta function 

cc*)=£!//!'= n v u - o 
n>\ p prime 

has well-known applications to prime number theory: From this 
Euler factorization one easily proves the infinitude of primes, and 
by a subtler analysis of £/C one proves (by a variety of means) 
the prime number theorem: 

Number of primes less than x ~ xj logx. 

For the latter, not only the Euler product factorization is impor­
tant, but also the fact that 

Z(s) = s(i-s)n-s/2r(^s)Jt;(s) 

has an analytic continuation to an entire function, and has a func­
tional equation £(s) = {(1 - s). To prove these things, the func­
tional equation of JacobVs theta function 0(z) enters again (!), and 
also the integral representation 

n-s,2r Q s ) C(s) = lo°°yl2\my) - l)dy/y. 
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From the proven utility of this zeta function (and kindred Dirich-
let L-functions and zeta functions of larger number fields), one 
might become interested in the general problem of determination 
ofDirichlet series with analytic continuations, functional equations, 
and Euler product factorizations. 

The integral expression for the Ç-function in terms of the theta 
function and use of the functional equation of the theta function 
provide a good clue. Let 

n>\ 

be a cuspform for SL(2, Z), of weight 2k. Then, forming the 
same sort of integral as for the zeta function (without having to 
subtract the constant term as with 6), consider 

/•OO 

/ ysf(iy)dy/y. 
Jo 

Expanding ƒ in its Fourier series and integrating term by term, 
we see that this integral is 

(2n)-sr(s)^Tcn/n
s. 

n>\ 

Now we use the (Weyl) element ( °{ ~0
l ) of SL(2, Z) and the rela­

tion / ( -1 /z) = z2kf(z), similar to Jacobi's functional equation 
for the theta function. We have 

f°° s f°° s fl s 
/ y f(iy)dy/y = ƒ y f(iy)dy/y + / y f(iy)dy/y. 

Jo J\ Jo 
Since ƒ is rapidly decreasing as y —• +oo, the first integral on the 
right is an entire function of s e C. In the second integral, we use 
the Weyl element to obtain 

flysf(iy)dy/y = flysf(-l/iy)(iy)2kdy/y 
Jo Jo 

r»oo 

= {-\)k j%2k2-sf{iy)dyly. 

This integral is again entire in s. Thus, we find that 

{2nT5T{s)Y,cnln 
n>\ 

has an analytic continuation to an entire function of s G C, and 
has a functional equation: Under s -+ 2k - 5, it is multiplied by 
(-1)". 
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Conversely, Hecke showed that any Dirichlet series D(s) so that 
(2n)~sr(s)D(s) has these properties (and is of reasonable verti­
cal growth) must come from a modular form of weight Ik for 
SL(2, Z). The functional equations satisfied by the Dirichlet se­
ries attached to modular forms for proper subgroups of SL(2, Z) 
are themselves more subtle, and a more general form of the con­
verse theorem (for GL(2)) was not known until Weil proved the 
following: If a Dirichlet series ^2ncn/n

s and {sufficiently many 
of) its "twists" ^2n cnx{n)/ns by Dirichlet characters x have suit­
able analytic continuations and functional equations (with a mild 
vertical growth condition), then f(z) = Yln cne

2ninz is a modular 
form. This result concludes an early chapter in the classification of 
Dirichlet series with analytic continuations and functional equa­
tions. 

The proof of Weil's converse theorem makes very serious use of 
an idea which is also essential in addressing the question of Euler 
factorization of Dirichlet series attached to modular forms: the 
so-called Hecke operators. In the context of SL(2, Z) itself, these 
are easy to understand, though perhaps obscure in motivation; 
for proper subgroups of SL(2, Z) some nasty technicalities arise, 
which cannot be transparently overcome in this classical setting. 
For SL(2, Z) itself, the consideration of these operators shows 
the following: There is a basis {ƒ} for the space of cuspforms 
of weight 2k for SL(2,Z) so that the Dirichlet series J2n

c
n/

nS 

attached to such a basis element has a Euler product factorization 

n i / / i s , 2k-\ -2sN 

1/(1 -cpV +P P )• 
p prime 

Implicit in this is the multiplicative property cmn = cmcn for m 
and n relatively prime. Further, the coefficients cp for p prime 
evidently determine all the rest. A happy coincidence is that the 
eigenvalue of the /?th Hecke operator is essentially the pth Fourier 
coefficient, so that relations among the Hecke operators imply re­
lations among Fourier coefficients. The analogous Euler product 
attached to Eisenstein series of weight Ik (without constant term, 
and renormalized) is merely 
^a2 ,_1(«)/«5 = CWC(^-2/c+l)= J ] l/(l-P~S)(l-/>2fe_1~*). 

n p prime 

In general the numbers cp do not have such a ready elementary 
interpretation, though in a slightly different case we do obtain some 
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L-functions already known, as follows. Let 

f(z) = 4 2 ^ (irn + n) e 
m, n not both 0 

This pluriharmonic theta series is a mild variant of the theta series 
6 considered earlier, and is a modular form of weight 1 + 4k ; 
again, this is proven via the Poisson summation formula. The 
associated Dirichlet series is 

A-\ V"v 4^i i -2s A-I V ^ / /i I \ 4 ^I \-{2s+4k) 
4 2^a \a\ = 4 2^(a/\a\) \a\ 

a a 
= LQ{i)(co, 2s + 4k), 

which is a grossencharacter L-function over Q( ƒ) with the grossen-
character 

a-+(a/\a\) . 

Though the analytical aspects of this type of less elementary 
L-function had already been treated by Hecke (and in Tate's the­
sis), the fact that it arises as well from modular forms is essential 
for more delicate arithmetic investigations, as in Shimura's work 
on special values of such L-functions (extending that of Damerell). 

Though the consideration of the quotients T\d as Riemann 
surfaces allows quite explicit study of the dimensions of spaces 
of cuspforms and analysis of Hecke operators, there is another 
very interesting idea which has a bearing on these matters and 
is applicable in much more general circumstances, that of trace 
formulas. For example, with T = SL(2, Z) and 2k > 4, the 
function 

_2fc —Ik ( 

(yz-w) (cz+d) ( with y = 

with 
c2, = (2/c- l ) (2/) 2 / : (4^r 1 

is a reproducing kernel for the space of cuspforms of weight 2k, 
in that 

f 2k— 1 
/ f(z)K(z, w)y dx dy/y = f{w). 
Jr\/f 

Therefore, the dimension of the space of cuspforms of weight 2k 
is 

f 2k—2 
dim{cuspforms of weight 2k} = ƒ K(z, z)y dx dy. 

Jr\/ 

C5 
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The right-hand side may be "unwound", in the following sense. Let 
q(z, w) = (z - w)~ . We have the formal property q(gz, gz) = 
q(z, z). Therefore, letting Y(S) be the centralizer in T of an 
element ô of T = SL(2, Z) , and letting X be a set of represen­
tations for conjugacy class in T, 

^ / * ( y , z)q{yz, z) 
yeT 

= c2kYl Yl n(y~Xày,z)q{y~xôyz,z) 
ôex yer(ô)\r 

= c2k^Z Yl ^y'Xày,z)q{dyz,yz). 
ôex yer(ô)\r 

If we fail to worry about convergence, then by changing variables 
in the integral 

i K(z, z)y dx dyjy 

=c"£/„ q(Sz9 z)y dx dy/y. 
' ôeXJnô)V 

Letting G(S) be the centralizer of ô in SL(2, R), this is 

i K(z,z)y dxdy/y 
IV 

= c2k^vo\(r(ô)\G(ô)) [ q(ôz,z)y 
TTC JG(Ô)U 

Ik 

sex JW)V 

where we must normalize measures on r(S)\G(S) and G{ô)\4 
appropriately. A problem here is that we have ignored problems 
of convergence; since it turns out that the above expression is not 
absolutely convergent/, we may err. Indeed, the previous formula 
is not valid. The error can be repaired (with considerable effort), 
but let us consider a situation where the previous manipulation 
is literally correct: We must consider a discrete subgroup T of 
SL(2, R) so that Y\d is compact. 

From the uniformization theorem, any compact Riemann sur­
face of genus > 2 occurs as a quotient Y\d for some discrete 
subgroup T of SL(2, R), but this does not give us much infor­
mation about the group T. Rather, we can construct a group Y by 
arithmetic means so that the quotient is compact, as follows. Let 
D be a division algebra of dimension 4 over Q so that D 0 R is 
isomorphic to the ring Af2(R) of two-by-two real matrices, and fix 
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such an isomorphism. Let @ be an order in D, i.e., a subring of D 
which is finitely-generated as a Z-module. Let T = (9 n SL(2, R). 
Then (much as one gives the adelic proof of the units theorem 
and finiteness of class numbers) one can prove that T\ SL(2, R) 
is compact, from which follows the compactness of Y\d . Groups 
T of this sort are quaternion unit groups. 

The compactness of Y\4 perfectly legitimizes the previous for­
malism. Let T be a quaternion unit group, as above. Further, for 
simplicity, we assume that there are no torsion elements in T other 
than 1 ; this can always be accomplished by taking a subgroup de­
fined by a congruence condition. Then a direct computation shows 
that the only conjugacy class whose integral makes a nonzero con­
tribution to the trace formula is that of 1. Therefore, the trace 
formula yields 

dimension of space of weight- k automorphic forms 
for 

T = ƒ K(z, z)yk~{ dx dy/y 
Jr\/ 

= {k - l)(4n)~l xvol(IV). 

Thus, we have obtained a form of the Riemann-Roch theorem 
for the compact connected Riemann surface T\4 . 

The potential strength of the previous sort of argument invites 
a more general definition of holomorphic automorphic form. Let 
X be a complex manifold, let G be a semi-simple real Lie group 
acting transitively on X by holomorphic maps, and suppose that 
the isotropy group in G of a point of X is compact. Let T 
be a discrete subgroup of G so that T\G has finite (invariant) 
measure. Let // : TxX —• C be an automorphy factor, i.e., satisfy­
ing fi(gh, z) = fi(g, hz)/a(h, z). Then a holomorphic function 
ƒ on X is an automorphic form if f(yz) = fi(y, z)f(z) for all 
y eT and z e X. (Some growth restrictions may be necessary.) 
This definition includes the particular situations studied classically, 
such as Siegel modular forms, Hilbert modular forms, and hermi-
tian modular forms. In this general situation, the formalism of 
the (holomorphic) trace formula above still works (with substantial 
technical modifications if F\X is noncompact). 

This more general notion of automorphic form does not have an 
immediately visible application to Dirichlet series. Indeed, the ap­
plication is much subtler, but is nevertheless of great importance. 
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For example, by construction, the quaternion unit groups T have 
no unipotent elements, so modular/automorphic forms with re­
spect to them do not have Fourier expansions. On the other hand, 
a suitably enlightened understanding of the idea of "Hecke opera­
tors" allows one to define such on these automorphic forms. Then 
we may certainly write a formal Dirichlet series Yln^n/

nS > where 
kn is the eigenvalue of "the «th Hecke operator" on a fixed auto­
morphic form ƒ (assumed to be an eigenfunction for the Hecke 
operators). Unfortunately, we have lost the connection to ana­
lytic properties: We have no obvious integral representation of this 
Dirichlet series whereby to demonstrate its analytic properties; co­
gent treatment of the latter problem requires a more sophisticated 
viewpoint. 

As an introduction to a viewpoint which does yield informa­
tion about analytic properties of more general Dirichlet series, we 
consider more general Eisenstein series, which are of fundamental 
importance in this and many other regards. We restrict our atten­
tion to T = SL(2, Z), for simplicity. For s eC and 0 < k e Z , 
define 

E(z \2k,s)= J2 (Im z ) V l " + d\2S(cz + d^k-
c, d not both 0 

For 2k > 4 and s = 0 this is the holomorphic Eisenstein series 
mentioned earlier; whenever k + Re(^) > 1, this series is nicely 
convergent. By use of Poisson summation, it is not hard to show 
that E(z\2k9 s) has an analytic continuation to an entire function 
of s e C (as k > 0), and has a functional equation. For two 
cuspforms f{9 f2 of weights 2k{ and 2k-2k{ (respectively), we 
can form the integral 

I(fl9f29s)= [ fl(z)E(z;2k,s)f~(z)y2kdxdy/y\ 

which must be an entire function of s. (The integral exists for all 
s G C away from the poles of the Eisenstein series, since one can 
show that for such s the Eisenstein series is "of moderate growth 
at infinity," and since cuspforms are "of rapid decay.") Now we 
come to another "unwinding trick," originally due to Rankin. In 
the region of convergence of the Eisenstein series, by unwinding 
the Eisenstein series, we have 

\{fx ,f2,s)= fx{z)f~{z)ys+2kdx dy/y2, 
•frooVf 
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where r ^ is the group of transformations z -+ z + n for n € Z . 
Let the nth Fourier coefficient of f{ (resp. f2) be bn (resp. cn). 
Then by expanding the f. in their Fourier series and using the 
orthogonality of distinct exponential functions, we have 

/•OO 

= (4nr{s+2k-i)r(S+2k-1)£ v;/"*+2*_1-
n>0 

Therefore, we find that the "Rankin convolution L-function" 
^2n>0 bnc~ /ns+ _ 1 has an analytic continuation to an entire func­
tion of s e C, and has a functional equation. Further, if f{ and f2 

are both Hecke eigenfunctions, the Rankin convolution L-function 
has a Euler product whose p-factor is of degree 4. This use of 
Eisenstein series "with parameter s " is the faintest shadow of re­
cent developments. 

In this cursory discussion only analytic aspects of holomorphic 
automorphic forms have been mentioned, and mainly for groups 
acting on the upper half-plane. This is the scope of Miyake's book, 
and is a very reasonable limitation for an introduction. However, 
as briefly indicated in the "more general definition" above, the no­
tion of automorphic form has a much broader sense. Further, for 
analytic purposes, the condition of holomorphy can be replaced by 
other significant eigenfunction conditions. A glaring omission in 
the above remarks is the "arithmetic theory of holomorphic auto­
morphic forms," with its applications to class field theory, special 
values of L-functions, Hasse-Weil zeta functions of curves, and 
representations of Galois groups; these omissions do not reflect 
current interest, but the orientation of Miyake's book. 

The parts of Miyake's book of most interest are his treatment 
of Weil's converse theorem, holomorphic trace formulas for quater­
nion unit groups, and analytic continuation of Eisenstein series for 
GL(2). These are tractable illustrations of very important themes, 
and Miyake treats these topics very carefully, fully justifying his 
offering yet another introductory book on this subject. Neverthe­
less, the student must realize that these are only illustrations which, 
while suggesting the quality of general phenomena, cannot reveal 
the provocative richness of uthe big picture." Miyake's bibliography 
gives good directions for further reading. 
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