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In 1985, Andrew Casson defined an invariant À(M) of an ori­
ented integral homology 3-sphere M [C, AM]. This invariant can 
be thought of as counting the number of conjugacy classes of non-
trivial representations nx (M) —• SU(2), in the sense that the Lef-
schetz number of a map counts the number of fixed points. Casson 
proved the following three properties of A. 

(i) If nx(M) = 1, then A(M) = 0. 
(ii) Let N be the complement of a knot in a homology sphere 

and let N{, denote TV Dehn surgered along one meridian and n 
longitudes (see below for terminology). Then 

X{Nl/n) = X(N) + nA"N{l), 

where A^(/) is the second derivative of the Alexander polynomial 
of N. 

(iii) 4A(Af) is congruent modulo 16 to the //-invariant (see be­
low) of M. 

This paper describes an extension of Casson's methods to the 
case where M is a rational homology 3-sphere, including general­
izations of (ii) and (iii). (This extension is different from the one 
given in [BN].) In addition, an alternate definition of A, using the 
generalized Dehn surgery formula, is given (Theorem 1). 
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Let M be a rational homology 3-sphere (H^(M, Q) = H^(S3 ; 
Q)), and let (Wx, W2 , F) be a Heegaard splitting of M (i.e., M 
is the union of handlebodies Wx and W2, and dW{ = dW2 = 
W{ n W2 = F). Let # be the genus of F . Let 

R= hom(nl(F)9SU(2))/SU(2) 

QJ = hom(nx(Wj)9SU(2))/SU(2)9 

where SU(2) acts via conjugation. R and Q are smooth, com­
pact, locally conelike stratified spaces of dimensions 6g - 6 and 
3g - 3 , respectively. It is, therefore, tempting to try to define an 
intersection number (Q{, Q2) of Q{ and Q2 in R. 

Denote the trivial representation in R by 1. If M is an integral 
homology sphere (H^(M; Z) = H^S3 ; Z)), then Q{ D ô 2

 d°es 
not contain any singular points of R, apart from 1, which is iso­
lated. Hence Q, can be isotoped into general position with respect 
to Q2 via an isotopy supported away from the singularities of R . 
Define (Q{, Q2) to be the signed (finite) number of irreducible 
representations in Qj n Ö2 after this isotopy. It is easy to see that 
this is independent of the choice of isotopy. Up to sign (and a 
factor of \), (Q{, Q2) is Casson's definition of k{M). It is easy 
to show, using the Reidemeister-Singer theorem, that X(M) does 
not depend on the choice of Heegaard splitting of M. 

If M is a rational homology sphere (RHS), Q{ n Q2 meets 
the singularities of R, and things are more complicated. Before 
giving the definition of (Q{, Q2) in this case, it will be necessary to 
discuss the singularities of R in more detail. (The basic reference 
for this is [Gol].) 

R has a stratification 

RDSDP, 

where S consists of representations with Abelian image and is dif-
feomorphic to a 2g-torus modulo a Z2 action, and P consists of 
representations into Z2 (the center of SU(2)). Q. has a similar 
stratification 

QjDQjnSDQjHP. 
Let R_ = R\S, S_ = S\P. Let v be the Zariski normal bundle 
of S_ in JR and let r\. be the Zariski normal bundle of Q. n S_ 
in Qj. 

R has a natural symplectic structure with respect to which Q. is 
Lagrangian. This symplectic structure induces a symplectic struc­
ture of v with respect to which r\. is a Lagrangian subbundle 
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(defined over Qj C\S_). The first Chern class of v, c{(u), is 
represented by the symplectic form co restricted to S_ . 

Since M is a RHS, Q{ and Q2 are in general position near P, 
and Q{nS and Q2C\S are in general position inside 5*. It follows 
that Qx can be put into general position with respect to Q2 via a 
symplectic isotopy of R which is fixed near P and on S. After 
this isotopy, Qxr\Q2 consists of a finite number of points. For 
P € Q\ n Ô2 n £\{1} , we wish to define a number ƒ(/?) so that 

(!) <ö1 ,e2>= E siên(^)+ E 7(p) 
/>eG,nQ2n/t_ P€e,nö2n5\{i} 

does not depend on the choice of general positioning isotopy. 
Let p e Q{ D Q2 D S_ . Let L. be the fiber of r\} at p . If, at 

some time during a generic isotopy of Qx , Lj is not transverse to 
L 2 , then an irreducible intersection of Q{ and Q2 (i.e. a point of 
(?! n Q2 n JR_) is created or destroyed near p . Hence I(p) must 
be defined so that it changes by ± 1 when this occurs. 

Let aj be an arc from 1 to p in Q.nS. Let y be the loop 
a{ * (-a2). Choose a complex structure on F . This induces an 
almost Kàhler structure on v with respect to which r\. is a totally 
real subbundle. w. gives rise to a section det(w ) of the deter­
minant line bundle det(i/) of 1/ over 7. Patching det(^/l) and 
det(*/2) together in a canonical fashion over 1 and p determines 
a (homotopy class of) trivialization O of det(i/)| . The patching 
procedure is such that when Lx passes through a Lagrangian not 
transverse to L2, O changes by ± 1. 

Let E c 5 be a surface bounded by y . Let c{(det(v)\E , O) be 
the relative first Chern class. Since c{ (u) ^ 0, this depends on the 
choice of E. But since c{(u) is represented by œ, 

/(p) = c1(det(i/)|£, <!>)-ƒ cw 

is independent of the choice of E and also has the properties 
necessary to make ( 1 ) above isotopy invariant. 

(Actually, the above constructions must be carried out equi-
variantly in the double cover of S. This is necessary in order for 
det(i/) to extend over P and for r\. to be an oriented bundle. 
(The orientation determines the sign of det(rç •).) Also, there is 
not a unique candidate for the canonical patching procedure, but 
rather two equally canonical candidates, so O should be thought 
of as the average of the two resulting trivializations.) 
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Finally, define 

(Öi , Q2) (2) k(M) 
\HAM\Z)Y 

(Dividing by \HX(M\ Z)| makes A additive under connected sums 
and leads to a nicer Dehn surgery formula.) It is not hard to show 
that (2) does not depend on the choice of Heegaard splitting for 
M. 

It is possible to prove a Dehn surgery formula for X which 
generalizes (ii) above. Before stating it, it will be necessary to give 
a few definitions. 

Let K be a knot in a RHS. Let N be the complement of a 
tubular neighborhood of K . Let A^ be the Alexander polynomial 
of N. Normalize A^ so that Ayv(l) = 1 and AN(t~l) = AN(t). 
Let A^(l) denote the second derivative of AN(t) evaluated at 
/ = 1. 

Let / G Hx(dN\ Z) be a longitude of N, that is, a genera­
tor of keriH^dN; Z) -> H{(N; Z)). Let (•, •) denote the in­
tersection pairing on H{(dN; Z) . (The orientation of dN is in­
duced from that of N via the "inward normal last" convention.) 
Let a, b e Hx(dN\ Z) be primitive homology classes such that 
(a, /) Ï 0, (b, I) ^ 0. Choose a basis x, y of Hx(dN\ Z) such 
that (x, y) = 1 and / = dy for some d e Z . Define 

T(a,b;l)= - s((x, a), (y, a)) + s((x , è ) , ( y , 6)) 

12 V d2)\(y,a) (y,b))> 

where s(q, p) denotes the Dedekind sum 

«••«-goo r o, X G Z 
((*)) = \ 

{ x - [x] - j , otherwise. 
Note that x(a, ô ; /) depends only on a , b , / , and (•,•), not on 
x , y , or the topology of N. 

For a a primitive element of Hx(dN\ Z) , let A^ denote the 
Dehn surgery of iV along a . That is, Na = iV|J^(Z) x 5 ) , where 
ƒ : <9D2 x S 1 ^ dN maps <9D2 x {0} to a curve representing a . 
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Proposition 1. Let a, b, and I be as above. Then 

X(Na) = X(Nb) + x(a,b;l)+ < g ^ ^ ( l ) . 

The proof of Proposition 1 is long and technical, and relies 
heavily on the isotopy invariance of (Q{, Q2). 

One can actually take Proposition 1 as the definition of X. In 
other words, one can give an elementary proof to the following 
theorem. 

Theorem 1. There is a unique Q-valued invariant X of rational ho-
mology spheres such that X(S ) = 0 and X and X satisfies Propo­
sition 1. 

Note. Boyer and Lines [BL] have shown independently that the 
Dehn surgery formula of Proposition 1, applied to the case where 
N is a knot complement in an integral homology sphere, yields a 
well-defined invariant of homology lens spaces. 

Sketch of proof. First one shows that any RHS M can be obtained 
from S via a sequence of Dehn surgeries such that each inter­
mediate manifold is a RHS. Call such a sequence a permissible 
surgery sequence. This sequence, together with Proposition 1 and 
the axiom that X(S ) — 0, determines X(M). This establishes the 
uniqueness of X. 

To establish existence, it must be shown that any two permis­
sible surgery sequences resulting in the same RHS M yield the 
same value for X(M). Using standard techniques, it is possible 
to modify any permissible surgery sequence into an integral per­
missible surgery sequence (i.e., one such that each surgery curve 
intersects the corresponding meridian once). This modification 
does not affect the computation of X(M). Any integral permissi­
ble surgery sequence can be represented by an ordered framed link 
in S . (The ordering is the order in which the components are to 
be surgered.) 

Using Kirby's theorem [K], one can show that any two permis­
sible ordered framed links representing the same RHS are related 
by a finite sequence of the following three moves: ( 1 ) Adding or 
subtracting an unknotted component of framing ± 1, anywhere in 
the ordering; (2) "Sliding" a component over another component 
which precedes it in the ordering; (3) Transposing two components 
which are adjacent in the ordering (so long as this does not violate 
"permissibility"). 
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Invariance of À(M) under moves (1) and (2) is easy to show. 
(Note that move (2) does not change (modulo isotopy) the surgery 
sequence represented by the ordered framed link.) Showing in­
variance under move (3) is more involved, but still elementary. 

The following are easily derived from Proposition 1. 
(A) Let M be a RHS and let —M denote M with the opposite 

orientation. Then 
X(-M) = -X(M). 

(B) Let Mx and M2 be RHS's. Then 

A(Af1#M2)=A(Af1)+A(M2). 

(C) Let Lp denote the p, q lens space. Then 

(It follows that 4\Hx(Lp ; Z)|A(L ) is equal to the signature 
defect of Lpq (see [HZ]).) 

(D) 6\HX(M\ Z)|A(Af) is an integer for any M. (This uses the 
fact that 6ps(q , p) is always an integer.) 

For M a Z2-homology sphere, let ju(M) denote the signature, 
modulo 16, of a spin 4-manifold bounded by M. Proposition 1 
and a mild generalization of Theorem 2 of [Gor] yield 

Proposition 2. For M a Z2-homology sphere, 

4\HX(M; Z)\h(M) = ju{M) (mod 16). 
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