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One of the basic problems of mathematics is finding the so­
lutions of a system of equations. The easiest case is when the 
equations are linear and the general form of the set of solutions is 
well known to every mathematician. The next case one could take 
is that of polynomials. Suppose we have a collection of polynomi­
als px, p2, . . . , pm in n variables with coefficients in some field 
k . An algebraic set X is the set of common zeroes in kn of such 
a set of polynomials, X = {x e kn \ pt{x) = 0, i = 1, . . . , m) . 
Unless one restricts the problem quite a bit (say by taking the pt 's 
to be quadratic and n = 3 and k = the real numbers R ) we are 
nowhere near to completely understanding algebraic sets. Even re­
stricting the polynomials to be quadratic is no help since by adding 
new variables which are products of the old variables one can re­
duce the degrees of the polynomials to the point where they are 
quadratic. (For example y1 = x3 can be changed to the quadratic 
y =xz 9 z — x .) 

The study of algebraic sets spawned the field of algebraic geom­
etry which is very active and attracts some of the best mathemati­
cians. However, the natural development of algebraic geometry 
led to a shift in point of view from the algebraic sets themselves 
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to the algebraic properties of the polynomials which define them. 
This shift in point of view was quite successful, modern algebraic 
geometry is a very beautiful and powerful theory with numerous 
deep results. Furthermore, if the field k is algebraically closed 
there is a close connection between an algebraic set and the alge­
braic properties of the polynomials which define it. In fact much 
of algebraic geometry restricts itself to algebraically closed fields. 
Take any algebraic geometry text and near the beginning you are 
very likely to find a statement such as "From now on we will as­
sume our field k is algebraically closed." But a very important 
field, the real numbers, is not algebraically closed. As a result, if 
k = R there is not such a close connection between the geometry 
of an algebraic set and the algebra of its equations; or in any case 
the connection is much more subtle. 

If an real algebraic set is studied by modern algebraic geome­
ters, a different space is usually studied, namely the set of complex 
zeroes of p{, pk divided out by the complex conjugation involu­
tion with a certain non-Hausdorff topology (that is the set of closed 
points of the scheme 

S p e c ( R [ x 1 5 . . . , x J / ^ ) 

where <7 is the ideal of real polynomials vanishing on X). While 
this space is easier to work with from the algebraic point of view, 
results about it do not always translate into meaningful results 
about the underlying algebraic set. There are notable exceptions 
to this, a good example is Hironaka's resolution of singularities 
which says that you can smooth out the singular points of schemes 
over certain fields. Since it is true for schemes over R, it is not 
hard to show that it is true for real algebraic sets. But often the 
connection between real algebraic sets and schemes is not close 
enough. As a result, the successful study of real algebraic sets 
requires more techniques. 

Additional techniques required to study real algebraic sets were 
developed over the years by various random individuals with ran­
dom points of view. Results were scattered throughout the litera­
ture. Géométrie algébrique réelle by J. Bochak, M. Coste and M-F. 
Roy is an attempt to present the basic techniques of many of these 
points of view in a coherent form for the first time. It succeeds 
quite well. I will describe below many of the topics in Géométrie 
algébrique réelle. 

From the topological point of view, real algebraic sets are quite 
different from their complex counterparts. For example, in con-
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trast to the complex case, irreducible real algebraic sets need not 
be connected, their nonsingular points need not be dense and their 
image under a proper polynomial map need not be an algebraic set. 
This last property (illustrated by projecting a circle to the x-axis) 
gives rise to an offshoot of real algebraic geometry. Although the 
image of a real algebraic set under a polynomial map may not 
be a real algebraic set it is what is called a semialgebraic set— 
a set defined by polynomial equalities and inequalities. We may 
define a semialgebraic map to be a continuous map whose graph 
is a semialgebraic set. Then the Tarski-Seidenberg theorem says 
that the image of a semialgebraic set under a semialgebraic map is 
semialgebraic. 

A semialgebraic set (and hence a real algebraic set) has the struc­
ture of a stratified set, i.e. a semialgebraic set is a disjoint union 
of a finite number of smooth manifolds (called strata) which are 
themselves semialgebraic sets. This stratification can be taken to 
satisfy certain niceness conditions called the Whitney conditions 
which regulate how one stratum can be contained in the closure of 
another. What is more, a compact semialgebraic set is triangulable, 
in fact semialgebraically isomorphic to a finite polyhedron. Thus 
semialgebraic sets form a very attractive collection of spaces, they 
are not very pathological, they include a large number of topologi­
cal types and are more graceful than, say, polyhedra since they can 
be curved. In fact, anything you can draw in Rn can be closely 
approximated by a semialgebraic set (witness splines). There is 
even a movement to develop topology entirely in a semialgebraic 
setting. 

On the other hand, the topology of real algebraic sets is more 
subtle. Sullivan noticed the even local Euler characteristic property 
which says that for any real algebraic set V and any x e V the 
relative Euler characteristic # ( F , V - x) is even. Equivalently, 
in any triangulation a simplex is a proper face of an even number 
of simplices. One consequence is that a compact real algebraic set 
has a fundamental homology class with Z/2Z coefficients—just 
take any triangulation and let the fundamental class be the sum 
of the top dimensional simplices. The even local Euler character­
istic condition will then guarantee that the boundary of this class 
is 0 so it represents a homology class. In particular, a compact 
/c-dimensional real algebraic subset of a real algebraic set V gives 
an element of the homology group Hk(V ; Z/2Z). The homology 
classes which come from compact real algebraic subsets of a real al­
gebraic set V form a subgroup 7/fg(V ; Z/2Z) of H^V ; Z/2Z). 
We shall see that this subgroup turns out to be very important to 
understand. 
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The conditions above on triangulability and even local Euler 
characteristic give necessary conditions on the topology of a real 
algebraic set. One can also ask which topological spaces are home-
omorphic to a real algebraic set. The answer is not yet completely 
known, however Géométrie algébrique réelle gives a nice exposition 
of the results for compact smooth manifolds. Nash, in a paper very 
much ahead of its time (1952), was able to show that any compact 
smooth manifold is a union of components of a real algebraic set. 
Later, Tognoli was able to show that any compact smooth manifold 
is diffeomorphic to a real algebraic set. Tognoli's method of getting 
rid of the unwanted components employed a very useful cobordism 
device which gives rise to the general principal that cobordism im­
plies isomorphism. More particularly, if a topological entity X is 
cobordant with an algebraic entity then (after a sometimes consid­
erable bit of work) X is isomorphic to an algebraic entity. Thus 
Tognoli's proof succeeded because Milnor gave explicit real alge­
braic generators for unoriented bordism of a point. The above 
principal explains the importance of Hfg(V; Z/2Z) since unori­
ented bordism of a space is determined by H^(V; Z/2Z). 

Géométrie algébrique relie develops all of the above topics. 
Other topological topics discussed are algebraic vector bundles and 
representing cohomotopy classes by polynomial or regular maps. 

Another point of view of real algebraic sets is the algebraic point 
of view, to try to discover the relation between the algebra and 
the geometry of a real algebraic set. For example, a basic tool of 
algebraic geometry is the nullstellensatz which allows you to find 
the ideal of all polynomials which vanish on an algebraic set. For 
an algebraically closed field, it is an old theorem that this is just the 
radical of the ideal y generated by the polynomials p{, . . . , pk . 
The real nullstellensatz was not discovered until about twenty years 
ago, first by Dubois and then in a better form by Risler. For the 
reals, if the sum of squares of â bunch of polynomials is in S , 
throw them all in—then take the radical. 

The algebraic theory of real algebraic sets really starts with E. 
Artin's solution of Hubert's 17 th problem showing that a non-
negative polynomial on Rn is a sum of squares of rational func­
tions. To prove this one needs to consider more general fields 
than the reals, but these fields share many properties with the re­
als. Thus for much of Géométrie algébrique réelle one considers 
real closed fields, fields R which are not algebraically closed but 
for which R[\/^T] is algebraically closed. E. Artin and Schreier 
developed the theory of real closed fields further, showing that be­
ing real closed is equivalent to having an order compatible with 
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the field structure. Later, Lang contributed to the theory with the 
theory of real places. As mentioned above, there is a real nullstel-
lensatz. Other results along this line are the positivstellensatz— 
characterizing nonnegative or positive polynomials on a closed 
semialgebraic set. Hilbert's 17th problem leads to a study of quad­
ratic forms and such questions as how many squares are necessary. 

The consideration of real closed fields other than R is not con­
fined to the algebraic parts of Géométrie algébrique réelle, A large 
number of the topological results referred to above are proven for 
a general real closed field R, although the interpretation would 
seem strange to a conventional topologist. For example, homology 
results would refer to simplicial homology defined using simplices 
in Rn where, for example, R could be the real closed field of 
Puiseux series YfHk aix^q > a

t
 e ^ • 

One of the more recent developments in real algebraic geome­
try is the real spectrum. In mainstream algebraic geometry, one 
studies an algebraic set V by taking the ring A of polynomial 
functions on V and associating to it a topological space Spec(^4) 
and a sheaf of functions on Spec(^). For an algebraically closed 
field, V and Spec(v4) are quite similar. But for a real closed 
field, Spec(^4) is very much bigger than V. The real spectrum 
Specr(A) invented by Coste and Roy seems to be a good replace­
ment in many contexts. One has an injection V —• Specr(^4) which 
actually gives a homeomorphism to its image (with the usual Eu­
clidean topology on V). Moreover, if S c V is a semialgebraic 
set one can associate to it a S c Spec, (-4) and a sheaf of continu­
ous semialgebraic functions on S. One could not do this directly 
to S, since continuous semialgebraic functions might not form a 
sheaf on S (locally semialgebraic need not imply semialgebraic). 

Finally, Géométrie algébrique réelle proves various relations be­
tween Witt rings and AT-theory K0 for rings of semialgebraic maps 
and polynomial maps. 

Nash manifolds by M. Shiota is a more specialized book. Sup­
pose one wished to develop a theory of algebraic manifolds. Al­
though any compact smooth manifold is diffeomorphic to a non-
singular real algebraic set, one really needs a more convenient 
algebraic category to work in than that of nonsingular algebraic 
sets and rational functions. For example, you have no inverse 
function theorem since a rational function which is a diffeomor-
phism need not have a rational inverse. A simple example is 
V = set{(x,y) e R2\y3 + y = x} and n: V -+ R defined by 
n(x, y) = x. Then n is a diffeomorphism, but n~x is not a 
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rational function since the solution to a cubic is not a rational 
function. So to obtain a more workable theory it is necessary to 
allow yourself more functions. Thus we may define a Cr Nash 
map 0 < r < co to be a Cr function between Euclidean spaces 
whose graph is a semialgebraic set. Géométrie algébrique réelle 
develops the basic results of Nash functions for r = œ. Having 
defined a Cr Nash map we may define a Cr Nash manifold to 
be a manifold obtained by gluing together a finite number of open 
semialgebraic sets with Cr Nash diffeomorphisms. A Cr Nash 
manifold is called affine if it has a Cr Nash imbedding in some 
R" . It turns out that any compact C1 manifold has a unique 
affine Cœ Nash manifold structure. The nice thing about Nash 
manifolds is that they are endowed with certain properties not ev­
ident when one thinks of them as smooth manifolds. This was 
exploited by M. Artin and Mazur to obtain an exponential bound 
on the number of isolated periodic points for a dense set of au­
tomorphism of a manifold. Palais studied Cœ Nash manifolds 
extensively. 

Shiota's book develops basic differential topology type results 
on Cr Nash manifolds. For example, if 0 < r < oo then any Cr 

manifold is affine, but if r = œ it might not be. Notice that a 
compact PL manifold is a special case of a C° Nash manifold. 
For a while it was hoped that C° Nash manifolds might be more 
general than PL. But Shiota showed that any compact C° Nash 
manifold has a unique PL structure (although the complete proof 
does not appear in Nash manifolds). The most interesting result 
in Shiota's book is that any noncompact C° (or affine Cœ ) Nash 
manifold is the interior of a unique compact C° (or affine Cw ) 
Nash manifold with boundary. This contrasts with the TOP, PL 
or smooth case where Siebenmann showed an open manifold need 
not be the interior of a compact manifold with boundary and if 
it is, there might be many different ways to compactify it. Thus 
Nash manifolds seem to offer an approach to differential topology 
which gives you automatic control at infinity. 

In summary, both books do a good job in what they set out to do. 
Shiota's book is largely a research text developing a special topic. 
Géométrie algébrique réelle develops many of the techniques used 
in studying real algebraic sets. It is not really a fault of Géométrie 
algébrique réelle, but I should point out one topic not covered. 
Suppose one has a particular collection of real polynomials and 
one wants specific information about their solution. This is of 
obvious practical importance but is not addressed directly by the 
general theory presented in Géométrie algébrique réelle. However, 



214 BOOK REVIEWS 

it is clear that the development of all areas of real algebraic geom­
etry will benefit greatly from the existence of Géométrie algébrique 
réelle, 
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Abelian l-adic representations and elliptic curves, by Jean-Pierre 
Serre. Addison-Wesley Publ. Co., Reading, Mass., 1989, 140 
pp., ISBN 0-201-09384-7 

Addison-Wesley has just reissued Serre's 1968 treatise on /-adic 
representations in their Advanced Book Classics series. This cir­
cumstance presents a welcome excuse for writing about the subject, 
and for placing Serre's book in a historical perspective. 

The theory of /-adic representations is an outgrowth of the 
study of abelian varieties in positive characteristic, which was ini­
tiated by Hasse and Deuring (see, e.g., [3, 1]) and continued in 
Weil's 1948 treatise [12]. Over the complex field C, an abelian 
variety A of dimension g may be viewed as an (algebrizable) 
complex torus W/L, where L « Z 8 is a lattice in the C-vector 
space W of dimension g. The classical study of A relies heavily 
on the lattice L, which is intrinsically the first homology group 
H{(A, Z) . However, the quotients L/nL (for n > 1) have a 
purely algebraic definition. Indeed, over C the quotient L/nL is 
canonically the group 

A[n] = {PeA\n-P = 0} 

of «-division points on A. Over an arbitrary field K, one de­
fines A[n] as the group of points on A (with values in a sepa­
rable closure K of K) of order dividing n. When n is prime 
to the characteristic of K, A[n] is a free Z/«Z-module of rank 
2g = 2dim^4, just as in the classical case. Moreover, the mod­
ule A[n] carries natural commuting actions of the Galois group 
GalÇK/K) and the ring EndK(A) of A^-endomorphisms of A. 
Most information provided by L can be extracted from the col­
lection of groups A[lu] {y > 1), where / is a fixed prime which 
is different from the characteristic of K. 


