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ACCURATE STRATEGIES 
FOR SMALL DIVISOR PROBLEMS 

R. DE LA LLAVE AND DAVID RANA 

I. INTRODUCTION 

Many interesting problems in mechanics are close to systems 
that can be solved exactly. In such systems it is natural to con­
sider perturbative expansions about the known system. Frequently 
it is possible to compute all of the terms in the expansion recur­
sively, which can lead to expressions involving denominators that 
become arbitrarily small. The convergence of these expansions 
is difficult to establish and sometimes even false. In the 1960s, 
Kolmogorov, Arnold and Moser developed a systematic method, 
known as K.A.M. theory, to deal with these small divisor problems. 

An unfortunate limitation of the K.A.M. theory is that the range 
of validity of the perturbation expansions that are established are 
very small in comparison to physically relevant values (see [Mo] 
in this regard). We have considered the problem of systematically 
improving the values yielded by K.A.M. theory. In two examples 
discussed below, we have proven lower bounds for the range of 
validity which are 90% of values for which the results are known 
to be false. 

Two classical theorems whose proofs present all of the essential 
complications of K.A.M. are 

Theorem LI. Given a family fe of analytic functions on C, 

fe(z) = az + -f(ez) 

where f(z) = &(z2), and, for some C, v > 0, 

\a\ = 1, la" - I f 1 <Cn Vn>0. 
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Then 3e0 > 0, s.t. if \e\ < e0 there is a conformai change of 
variables y/ on the unit disk for which y/(0) = O, (/(O) = 1 and 

(1.1) V~l°f9oy-f0 = 0. 

Theorem 1.2. Let Fe be a C family of C diffeomorphisms of 
R x S1 

FB{x90) = (f(x,0),<Kx,0)) 
for which 

(i) the area dx A d6 is preserved, 
(ii) (/>x(x,6)>c>0f 

(in) f(f(x,d)-x)dd = o, 
(iv) F0(x,6) = (x,{6 + x)modl). 

Let co € R satisfy 
\nco-m\~ <Cnn, meZ, n^O, C,v>0, 3v<k. 
Then 3e0 > 0 s.t. if\e\ < eQ there is a Ck~3" map K : S1 *-+ RxS1 

whose image is a topological^ nontrivial circle and for which 
(L2) FeoK-KoTw = 0 

with TJd) = (d + œ)modl. 

Applying most versions of these theorems one can find in the 
literature to specific families, e.g., 

(1.3) fe(z) = e2*»z + ez2 y = ^ -

or 
(1.4) 

Fe{x 90) = (x + j - sin(27T0), (x + 6 + j - sin(27T0)) mod l) 

we find that the e for which the smallness conditions of the theo­
rems (K.A.M. bounds) are met come out several orders of magni­
tude smaller than those relevant for physical situations. See [Mo] 
for a discussion of K.A.M. bounds in realistic applications. 

We consider the question of improving the K.A.M. bounds. We 
find that systematic optimizations of some K.A.M. type proofs 
yield bounds converging to optimal. Other proofs have intrinsic 
limitations that do not allow such optimization. 

II. DEFINITIONS 

The proofs of LI and 1.2 involve infinitely many arbitrary 
choices such as analyticity losses, parameters entering in the choice 
of various norms, etc. At the expense of computational effort, 
these theorems can yield improving K.A.M. bounds by optimizing 
the choices. 
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Definition II.1. A strategy is an algorithm which, for a family ^ 
(fe of Theorem I.1 or Fe of 1.2), produces an eN > 0 computed 
from SF in < N algebraic operations and branches s.t. the conclu­
sions of the theorems hold when \e\ <eN. 

Some strategies are optimal in the following sense: 

Definition II.2. A strategy is accurate when l im^^^ eN = e* and 
if e** > e*3e in (e*, e**) for which the theorem is false. 

Analogous definitions of strategy and accuracy are made for 
statements of the form "if |e| > eN then S? does not verify 
the conclusions of the theorem." We call such strategies accurate 
strategies for converse K.A.M. bounds. This concept of accuracy is 
very similar to the "finite computability hypothesis" of [MP] (see 
also [S]). 

III. THEORY 

We have constructed accurate strategies for all of the classical 
small denominator problems in [Z]. Following Zehnder, we ob­
serve that each of these problems can be reformulated as a ques­
tion on the existence of zeros of an appropriately chosen func­
tional, e.g. equations 1.1 and 1.2. Then, the strategies are made 
up of three ingredients, a "constructive" implicit function theo­
rem (I.F.T.) that asserts that, from an approximate zero satisfying 
certain conditions, one can construct an actual zero and two al­
gorithms that systematically construct approximations and verify 
the conditions: 

Theorem III.l. For certain choices ofBanach spaces X0, Xx and 
certain functional <^ : X0 H-> X0 there exist a computable func­
tion g : R " X R + H R satisfying l im^o g(M{, . . . , Mn ; ju) = oo 
VMj, . . . , Mn and computable functional 2CX, . . . , J2? : X0 •-• R 
with the following property. Suppose that h* e X0 satisfies: 

(i) \\^e(h*)\\Xi<n, 
(ii) &l(h*)<Ml,...93'n(h*)<Mn, 

(iii) g(M{9...9Mn9/i)>0. 

Then, 3heX{ s.t. ^e(h) = 0 and \\h-h*\\x < ^ ( / i ) . 

Remarks. ( 1 ) The point of this theorem is that a finite number 
of bounds on a specific function h*, show that there is a true 
solution. When the bounds in (ii) are finite, it suffices that h* 
satisfies the equation with sufficient approximation. 

(2) Not all functional admit I.F.T.'s of this type. For a review 
of functional relevant for these problems see [Z]. 
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(3) In the literature h* is usually chosen such that ^(A*) = 0. 
Then (iii) holds only for e small. 

Lemma III.2. There is a sequence of finite dimensional Banach 
spaces, X{N) c XQ, and two algorithms, srf and 38 such that 

(i) sf yields an hN e X^ in < N operations. If <9^ has a 
zero in X0 then, \imhN = h exists in X0, and ^(h) = 0. 

(ii) For any h* in some X^N\ & yields a sequence of bounds: 

(in.1) 
3\(hm)<Mltfi,...,&n{hm)<Mntfi and H ^ O l l , , < ^ . 

The M. ~, / / - can be computed in less than N operations and 
(III.2) 
lim^M.^^^ih*) l<i<n, and l i m ^ ~ = ||^(A*)||^ . 

There are many ways of generating approximate solutions hN, 
but (i) requires that the approximations converge whenever there 
is a true solution. Expansions in powers of e can fail to satisfy 
(i) if there are complex singularities in e of small modulus. This 
method is used in [CC] to find "good" numerical values for 1.2. 

For the problems we consider, there are different equivalent 
functional admitting constructive I.F.T.'s, each employing slightly 
different approximation schemes. Certain "standard" proofs use 
functional as in 1.1 since solutions can be built from an infinite 
sequence of coordinate changes; but then bounds III. 1 are difficult 
as approximations of both y/ and i//~{ are necessary. 

Arnold uses 1.1 with truncated Taylor series to approximate y/ 
and y/~x [A]. As the maximal domain of y/ is a disk [R], but that 
of y/~x is generally more complicated, the truncations converge to 
y/ but not to y/~l, on their whole domain. Therefore III.2 fails 
for / i - . This explains why [LT] only obtain K.A.M. bounds 65% 
of optimal for fe as in 1.3, even though they ignored computer 
roundoff error. 

We have constructed accurate strategies for 1.1 using pointwise 
interpolation of y/~x [R] but find that it is more efficient to con­
sider instead 

(III.3) ^ ( ^ ) = / £ O ^ - ^ o / 0 = : 0 

which is equivalent to LI, and involves no functional inverses. 
It is important to choose functional whose solutions have do­

mains convenient for approximations, e.g. disks or strips in C, 
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for which we use as X^ order JV polynomials or Fourier poly­
nomials. For example, 1.1 has solutions defined on disks, but the 
equivalent equation for y/~l = (j> : 

has solutions whose maximal domains are complicated sets and 
which therefore require complicated approximants. 

Solutions of III. 3 are univalent on their maximal domains of 
definition [R]. When the domain contains the unit disk the Taylor 
coefficients satisfy a priori bounds such as the Bierbach-de Branges 
bounds. Since the (e dependent) Taylor coefficients are computed 
by power matching we find upper bounds to e for which Theo­
rem 1.1 holds. These converse K.A.M. bounds can be shown to be 
accurate [R]. 

We also use the above a priori bounds to find limits on the 
number of operations required to reach a fixed precision: 

Theorem III.3. For equation 1113 with f(z) a polynomial and any 
0 < p < 1, 3N0 > 0 depending on fe and p such that for N > N0 

and 
* -{\/Np) 

e < e e w ; 

where e* is the optimal value, the assumptions of the I.F.T. are 
verified with h* the order N Taylor expansion of i//. 

IV. COMPUTER IMPLEMENTATION 

Since a strategy involves an algorithm it is natural to use a 
computer for an implementation. Unfortunately, computers are 
equipped with an approximate form of arithmetic, so their results 
cannot be used as ingredients of a proof. This limitation is over­
come by constructing a computer arithmetic on intervals that is 
guaranteed to generate upper and lower bounds of algebraic oper­
ations [M]. 

Of course, in the process of performing a computation these 
upper and lower bounds may stray quite far from the real results 
because of numerical instability of uncontrolled growth of round­
off error. 

In the implementation of the algorithms of Lemma III.2, we 
minimize roundoff error by carefully choosing the spaces Xm and 
analyzing the growth of intervals to eliminate instabilities in the 
computer procedures. Certain implementations based on interpo­
lation are prone to roundoff error. For example, in an interesting 
paper, [BZ] construct an accurate strategy based on interpolation 
that they implement with approximate arithmetic. They find that 
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roundoff error makes the results hard to interpret even by the stan­
dards of numerical analysis. 

We use a framework suggested by Lanford [L] for the applica­
tion of interval arithmetic to function space problems and wrote 
a package of routines in C. After running a few hours on a Vax 
11/750 we prove 

Theorem IV.l. For fe as in 1.3 the results of Theorem I.l hold if 
\e\ < .306 and are false if \e\ > .342. 

Theorem IV.2. For Fe as in 1.4, there is a nontrivial invariant circle 
when e = 0.91. 

Converse K.A.M. bounds complementing IV.2 are available 
from [MP] who prove that Theorem 1.2 is false if \e\ > 63/64. 
In both cases our K.A.M. bounds are at least 90% of the converse 
K.A.M. bounds. 
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