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SMOOTH EXTENSIONS FOR A FINITE CW COMPLEX 

GUIHUA GONG 

The C* -algebra extensions of a topological space can be made 
into an abelian group which is naturally equivalent to the K-
homology group of odd dimension [1] which has a close relation 
with index theory and is one of the starting points of KK theory 
[8]. 

The Cp -smoothness of an extension of a manifold was intro­
duced in [3, 4], where Cp denotes the Schatten-von Neumann 
p-class [5]. We generalize the notion of Cp-smoothness to a fi­
nite CW complex and obtain necessary and sufficient conditions 
for an extension of a finite CW complex to be Cp -smooth modulo 
torsion. 

The notion of C^-smooth extensions is one of the motivations 
for Connes' cyclic cohomology. In [2] Connes constructs a Chern 
map from KK(C(M), C) to the cyclic cohomology of C°°(M), 
and proves that this Chern map is a surjection modulo torsion. 
One consequence of the even counterpart of our main results is 
that this Chern map is a graded surjection modulo torsion. We 
will make this statement precise in Theorem 3. 

Let H be an infinite dimensional complex separable Hubert 
space. By L(H) and K(H) we shall denote the C*-algebra of 
bounded operators and compact operators on H, respectively, and 
Q(H) will denote the quotient L(H)/K(H) with canonical sur­
jection n : L(H) —• Q(H). For X a compact metrizable space an 
extension T G Ext(Jf) of the algebra C(X) by K(H) is defined 
by a unital * monomorphism T : C(X) —• Q{H) [1], 

Definition 1. Let M be a smooth compact manifold (perhaps with 
boundary) and let C°°(M) denote the *-algebra of all smooth 
functions o n M . A t G Ext(M) is Cp -smooth if there exists a He-
linear map p : C°°(M) -• L(H) such that p(ab)- p(a)p{b) e Cp 

and 7ro/? = T|C°°(M). 
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This definition can be found in [2] and is equivalent to the def­
inition in [4] by means of the C°° functional calculus of Helton-
Howe [6, 7]. 

In order to define Cp -smooth for a general finite CW complex, 
we shall use the following Lemma: 

Lemma. If X is a finite CW complex, then there exist a com­
pact smooth manifold M {perhaps with boundary), and two maps 
ƒ : X —• M and g : M —• X such that {g o ƒ) is homotopic to 
id|A\ 

Definition 2. Let X, M and ƒ be as in the Lemma. Then x e 
Ext(JF) is C -smooth if f^x e Ext(Af) is C -smooth. 

It is not difficult to prove that the Cp -smoothness does not de­
pend on the choice of M and the maps by using the following 
fact: Any continuous map between two smooth manifolds is ho­
motopic to a smooth map. Similarly, we prove that the notion of 
C^-smoothness of a manifold does not depend on the particular 
differential structure which answers the question on p. 68 of [3]. 
And also we prove that if ƒ : X —• Y is a continuous map between 
finite CW complexes X and Y, then f^ maps the Cp -smooth el­
ements of Ext(-Y) to the Cp-smooth elements of Ext(7). 

Our main results are Theorems 1, 2, 3. 

Theorem 1. Let X be a finite CW complex, X denote the k-
skeleton of X, and x e Ext(-Y). Then there exists an integer 
m{ ^ 0 such that mxx is Cn-smooth if and only if there ex­
ists an integer m2 ^ 0 such that m2x e /j)t(Ext(^r2"~1)), where 
/„, : Ext(X " - 1 ) —• Ext(-Y) is induced by the inclusion map i : 
X n~l —• X. Furthermore, if X is a smooth compact {2n - 1)-
manifold, then each element in Ext(X) is Cp-smooth when p > 
n - i . 

The "only if' part of Theorem 1 generalizes the results in [3, 
4]. It was shown in [3, 6] that the C{-smooth elements of Ext(-Y) 
come from the 1-skeleton modulo torsion. And also it was shown 
in [4] that each Cn_{-smooth element of Ext(S'2w~1) is trivial. 

As a corollary of Theorem 1, we know that all the elements of 
Ext(S2"-1) are Cp -smooth when p > n - \ . This result solves the 
problem on p. 109 of [4]. As a special case, we have the following 
fact: If (Tz , Tz , . . . , Tz ) is the «-tuple ofToeplitz operators on 

H {dBn), then there exist n compact operators K{, K2, . . . , Kn 

such that [Tz + Kt, T + Kj\ e Cp and [Tz + Ki, T* + K*] € Cp 
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when p > n-\ . There doesn't seem to be any direct proof of this. 
The author does not know whether the elements of Ext(52w~1) are 
C^-smooth when n- \ <p <n- \ . 

The following result is almost equivalent to Theorem 1 but is 
perhaps more useful in practice. 

Theorem 2. Let X be a finite CW complex, x e Ext(Jf) = KX(X) 
and ch : KX(X) ® C -* Hodd(XyC) be the Chern map, where 
HQdd(X, C) denotes the direct sum of all the ordinary homology 
groups with complex coefficients of odd dimension. Then there ex­
ists an integer m ^ 0 such that mx is C„-smooth if and only if 
chr e EJU «*_,(*, C). 

We also obtain some similar results about the /7-summable Fred-
holm modules of C°°(M), which can be thought of as elements 
of K0(M) = KK(C(M), C), and about their Chern characters in 
the cyclic cohomology //*(C°°(M)). In particular, we prove the 
following theorem. 

Theorem 3. If M is a compact smooth manifold without boundary 
and cp e Hk (C°°(Af)) (k even), then there exist (k + 1) sum-
mable Fredholm modules TZ (/ = 1, 2, . . . , n) and complex num­
bers at (i = 1 , 2 , . . . , « ) such that X^=i c .̂ch* xt ~ cp in 
H^(C°°(M)), where ch* is Connesf Chern map. 

We would like to point out that A. Connes constructed the 
graded Chern characters 

ch* : {n + 1 summable Fredholm module} -• H"(C°°(M)) 
in §2 of [2], and that he also proved that 
ch* : {finite summable Fredholm module} —• //*(C°°(M)) 
is surjective modulo torsion. Theorem 3 says that the 
Chern map is a graded surjection. 
In order to prove our main theorems, we need some results from 

topology. Theorem 5 is a special case of the theorem on p. 210 line 
7 of [9]. And Theorem 4 is perhaps also familiar to topologists. 
We provide an outline of a proof for Theorem 4 since we have 
been unable to find a precise reference. 

Theorem 4. Let X be compact metrizable space. For any x e 
Kl (X), there exist maps f\\ X -+ S2"' - 1 (/ = 1, 2, . . . , k) such 
that mx = £^= 1 jTdi for some integer m, where dt is the canon­
ical generator of Kx{Slnr 1 ) . 

Theorem 5. If X is a finite CW complex and x G Hk{X), then 
there exist a smooth compact oriented k-manifold M without 
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boundary and a map ƒ : M —• X such that mx = f^O for some 
integer m ^ 0 and 6 e Hk(M). 

To prove Theorem 4, we only need to prove the case of X = 
U(n) because each element of Kl(X) can be realized as the pull-
back of an element in Kl(U(n)) via a map from X to U(n). 
The idea is to use obstruction theory and a result about White­
head products [10, Theorem 8.9] to construct two maps: u : S{ x 
S3 x • • • x S2n~l - U(n), v : U(n) -> S1 x S3 x • • • x S2n~l, such 
that 

{vouf : K\S1 X S 3 X - X S 2 " - 1 ) 

can be represented by a matrix 

(
mt 0 0 \ 
0 m2 . . . 0 | 

o 
0 0 ... m2„-, / 

* 1 2"_1 

where mk ^ 0 are integers, and (wot;) : Â  (U(n)) = Z -» 
AT1 (U(n)) has the same form as (v o w)*. Then we can reduce the 
problem to the case of S1 x S3 x • • • x 5,2w~1 which can be easily 
done. 

Using Proposition 3 in [4] and Theorem 4, we can prove the 
"only if' part of Theorem 1. For the " i f part we use Theorem 5. 

The even counterpart of Theorems 1, 2 can be obtained in a 
similar manner and this is used in proving Theorem 3. 
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