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It has recently become evident that two apparently different formula­
tions of the foundations of mathematics are merely opposite sides of the 
same coin. The first of these is the theory of types, going back to Russell 
and Whitehead in their monumental attempt to rescue Frege from para­
dox, while the second is the theory of categories, invented by Eilenberg and 
Mac Lane and conceived as the appropriate language for the foundations 
of mathematics by Lawvere. 

The theory of types, or higher order logic, is called local set theory by 
Bell. As he puts it "types may be thought of as natural kinds or species 
from which sets are extracted as subspecies. The resulting theory of sets is 
local in the sense that, for example, the inclusion relation will only obtain 
among sets which have the same type " 

Unfortunately, the original type theory in Principia Mathematica had 
proved too cumbersome for most people and, in spite of more elegant 
formulations by Church and Henkin, was replaced by the set theories 
of Gödel-Bernays, favoured by mathematicians, and Zermelo-Fraenkel, 
favoured by logicians. However, in these languages one can ask such mean­
ingless questions as whether the Klein four-group is included in n. 

The following simple presentation of type theory had been proposed by 
Phil Scott and the reviewer [LS 1983]. There are given three basic types: 

1 = a specified one-entity type introduced for convenience, 
Q, = the type of truth-values or propositions, 
N = the type of natural numbers. 

From these other types are built up by two operations: 
A x B = the type of pairs of entities of types A and B, 
PA = the type of all sets of entities of type A. 

In pure type theory there will be no other types than those in the hierarchy 
constructed from the three basic types by the two operations; but in applied 
type theories there may very well be other types, as we shall see later. 

A type theory, pure or applied, is a formal language consisting of terms 
of different types. Among the terms there are countably many variables of 
each type; we write x e A to say that x is a variable of type A. From the 
variables other terms are defined inductively as follows: 

1 Q N AxB PA 
* a = af 0 (a, b) {xeA\<p(x)} 

a e a Sn 

where it is assumed that a and a' are terms of type A already constructed, 
a of type PA, n of type N, b of type B and q>(x) of type Q. The usual 
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logical connectives and quantifiers may now be defined, for instance: 
T = * = *, 

pA0ss<p,0) = <r,r) , 
p=>q=pAq=p, 

VxeA(p{x) =={xe A\cp{x)} = {xe A\T}. 

Bell does essentially the same thing; except that, in place of 1 and A x B, 
he has A\ x • • • x An, with n > 0. This allows him to incorporate function 
symbols f:A\X---xAn->B.To this reviewer, these function symbols 
appear to be analogous to Gentzen's sequents or Bourbaki's multilinear 
mappings; they may in fact be viewed as operations in a multisorted alge­
braic theory. 

After the grammar of type theory has been presented, it remains to 
state the axioms and rules of inference. This is usually done in terms of a 
deduction symbol K Of course, one should be able to infer the usual rules 
of universal specification and existential generalization, in particular, 

(1) Vx€A(p(x) H PW, <p(x)\-3xeA<p(x). 

From these one would expect to infer, by transitivity of deduction, that 

(2) VxeAcp(x) h 3xeA<p(x). 

In an applied type theory, a difficulty would now arise when A is an 
"empty" type, for example the type of unicorns. Modern mathematicians 
would accept the statement 

(a) all unicorns have horns, 
but not 

(b) some unicorns have horns. 
Aristotle would have got around the difficulty by denying (a); but we cannot 
do so, as long as we paraphrase VxeA(p(x) as Vx(x e A => (p{x)). 

In [LS 1980] we used the device of putting a subscript X, denoting a 
finite set of variables, on the deduction symbol. We wrote 

Pi,...,Pn b r A i + i 

only when all the variables occurring freely in the pt are elements of X. 
The symbol \~x is subject to two structural rules, in addition to the usual 
ones of Gentzen: 

/3v Pi,.--,P*brl?;i+i <P\(*)>.-.,9n(x) \~xu{x} <Pn+i{x) 
Pi,...,pn bru{.*} Pn+\' 9i(a)9...,(Pn{a) \-x (pn{a) ' 

where it is assumed that a is of the same type as x and contains free 
occurrences of only such variables as are elements of X. 

If variables are thus declared, (1) should be replaced by 

(1;) VxeA(p(x) he <p(x)9 <p(x) hx 3xeAcp(x). 

From this it then follows by transitivity of \-x, a special case of Gentzen's 
cut, that 

(20 \fxeA(p(x) \-x 3xeA(p{x). 
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From (2') we may infer (2) according to (3), provided we can substitute a 
closed term a of type A for x. But when A is "empty," there are no closed 
terms of type A; our language does not contain the names of entities which 
do not exist. 

I was surprised to see that Bell does not put a subscript on his deduc­
tion symbol to declare the variables which are allowed to occur freely. So 
how does he get around the nonexistence of horned unicorns? By denying 
the transitivity of deduction and Gentzen's cut, except in special circum­
stances! In fact, his restrictions don't allow him to infer (2) from (1) if x 
is free in <p(x), since it is free in neither VxeA<p{x) 

nor in dxç.^ <p(x). Still, 
he could have inferred (2) from (1) if x is not free in (p{x)\ but in that case 
he would have denied (1) in the first place. In other words, he does not 
accept VxeAP •" P if P does not contain x\ Strange as this interlocking set 
of restrictions seems at first sight, it appears to do the job and presumably 
occurs in the literature and has been tested by time. Personally, I believe 
in transitivity of deduction and, to the best of my recollection, proposed 
the device of declaring variables in Oberwolfach in 1974, where I was told 
that I had been anticipated by Mostowski. 

Type theory as presented here suffices for arithmetic and analysis, al­
though not for category theory and modern metamathematics, provided 
one carries out the reductionist program of Frege et al. and takes the trou­
ble to define all the concepts needed in terms of the basic symbols * ,=,€ , 
0, 5, { | } and (, ). 

However, there is another way of presenting the foundations of math­
ematics, essentially due to the vision of Bill Lawvere. Let me quote Bell, 
who puts it very elegantly: "In category theory the morphisms (arrows) 
between structures (objects) play an autonomous role which is in no way 
subordinate to that played by the structures themselves. So category the­
ory is like a language in which the 'verbs' are on equal footing with the 
'nouns'." Lawvere's earlier attempt [1964] to axiomatize the category of 
sets led ultimately to the introduction of "elementary" toposes by Lawvere 
[1972] and Tierney [1972], generalizing the "Grothendieck" toposes [GV 
1972] which were being used in algebraic geometry. 

A topos is a category with finite cartesian products, a subobject clas­
sifier Q, power objects PA and, usually also, a natural numbers object 
N. The subobject classifier is to allow us to mimic the usual one-to-one 
correspondence between subsets of A and their characteristic functions 
A —> Q = {T, JL}, while PA is meant to be isomorphic to QA, the set of 
all funtions A —> £2. Among the examples one has in mind are not only 
the usual category of sets, but also the category of sheaves on a topological 
space. This makes it necessary to drop the requirement that Q = {T, _L} 
in general, although this is so in what one calls a Boolean topos. Finally, 
the natural numbers object is the "least fixpoint" of the functor which 
sends the object A onto the coproduct of A with the terminal object 1, as 
computer scientists would rephrase Lawvere's original definition. 

Just about everyone who thought about toposes came up with the obser­
vation that a topos has an internal language, a version of applied type the­
ory, though the first to publish a description of this language for Boolean 
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toposes was Mitchell [1972]. One thinks of the objects of the topos as 
types and of the arrows 1 —• A as terms of type A, hence the possibility 
of "empty" types when Hom(l,^) = (j). In particular, arrows 1 -» Q are 
formulas and arrows 1 —• N are numerals. Moreover, p\,...,pn H Q is 
taken to mean: if pt = T for i = 1,..., n then q = T. Here T: 1 —• Q, is a 
distinguished arrow, implicit in the description of Q as subobject classifier. 

In a Boolean topos one has h V^GQ(X V -oc), but in general this is not 
so. Thus, the internal language of a topos turns out to be intuitionistic! 
This, I believe, came as a surprise to the founders of topos theory, as they 
had not been motivated by the philosophy of Brouwer, but rather by the 
philosophy of Heraclitus and his modern disciples. 

On the other hand, given an intuitionistic type theory J?', one can con­
struct the topos generated by J?', exactly as a nominalist would construct 
the category of sets from the theory of types. Thus, a set a of type PA is 
just a closed term of type PA modulo provable equality. A function from 
a to /?, say of type PB, is a set p of type P(A x B) for which one can prove 
that p ç a x /? and that 

VxeA{x e a =» 3\yeB{x,y) € p). 

These "sets" are the objects and these "functions" are the arrows of the 
topos generated by J5?. The first to publish this construction was Hugo Vol­
ger [1975], although it probably occurred to many people independently. 
It was also noticed that the topos generated by the internal language of a 
topos y is equivalent to ST. Thus every topos is equivalent to a linguistic 
topos, justifying a nominalistic view of mathematics. 

More can be said: if L{£T) is the internal language of the topos F and 
T(J?) is the topos generated by the type theory J?7, we may extend L and T 
to functors between two categories, the category of (small) toposes and the 
category of (small) type theories. The morphisms of the former category 
are well known, they are the logical functors which preserve everything 
on the nose. Morphisms of the latter category were called translations in 
[LS 1986], they are meant to send types to types and function symbols to 
function symbols. As we pointed out in a series of exercises, a different 
choice of morphisms would have yielded an equivalence of categories; but 
this was not needed, as all our applications could be obtained from the 
fact that T is left adjoint to L. 

What this means is that there is a natural one-to-one correspondence be­
tween the translations 5f —• L(^) and the logical functors T(J?) -> &'. 
Unfortunately, this statement requires some handwaving, unless we tighten 
the definition of "topos" somewhat: we insist that toposes possess "canon­
ical" subobjects and that logical functors preserve them. If this seems 
unnatural at first sight, it should be pointed out that all toposes occurring 
in nature do have canonical subobjects, as do all linguistic toposes, and 
we recall that every topos is equivalent to a linguistic one. Bell wisely 
prefers not to bother with tightening the definition of topos and proving 
adjunction, although perhaps he could have done this cheaply by confining 
himself to linguistic toposes. 
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Either of the arrows £? -• L{9T) or T(&) -> 3" may be taken to 
be an interpretation of S* in &. Bell wishes to define this term at an 
earlier stage, before having discussed the morphisms of the two categories 
involved. This obliges him to give a rather tedious inductive definition. He 
establishes soundness and completeness: a statement in a type theory 2? 
is provable if and only if it holds under every interpretation in a topos. In 
particular, a statement in pure intuitionistic type theory, ostensibly about 
sets, also holds for sheaves in place of sets. This added generality is the 
reward one reaps for doing mathematics constructively. 

This reviewer would prefer to attach the word "completeness" to a more 
difficult theorem, an intuitionistic generalization of the Gödel-Henkin com­
pleteness theorem [H 1950] of higher order logic. An interpretation of a 
type theory in a topos is to be regarded as a model only if the topos shares 
the following three properties with the category of sets: 

(1) not every proposition holds; 
(2) if p V q holds then p holds or q holds; 
(3) if 3xeA(p(x) holds then <p(a) holds for some arrow a: 1 —• A in the 

topos. 
As was first observed by Peter Freyd [1978], these three properties of a 

"model" topos have algebraic translations concerning the terminal object 
1: 

(1) 1 is not initial; 
(2) 1 is indecomposable; 
(3) 1 is projective. 
A fairly deep result, mentioned but not proved in Bell's book, asserts 

that the so-called free topos, the topos generated by pure type theory, an 
initial object in the category of all small toposes, is a model topos. This 
implies for pure type theory: 

(1) _L is not provable; 
(2) if h p V q then Y- p or h q\ 
(3) if h 3xeA(p(x) then \- <p(a) for some term a of type A. 

While every mathematician believes in (1), (2) and (3) fail in classical type 
theory, as follows from Gödel's famous incompleteness theorem [1931]. 
Yet intuitionists have always believed in (2) and (3), even before these 
assertions had been proved as metatheorems. 

The free topos, like every model topos, may be viewed as a "possible 
world," acceptable to moderate intuitionists. Being an initial object, it may 
justly be called "the best of all possible worlds," which Platonists might 
view as the "real world." 

The internal language of a topos may be exploited to prove categorical 
properties of the topos linguistically. Bell does this even for properties 
which other people have included in the definition of a topos, such as 
being cartesian closed, finitely complete and cocomplete. 

To a type theory Sf one easily adjoins a "parameter" x of type A to 
obtain the type theory Sf{x) whose closed terms are terms of £? with no 
free occurrences of variables other than x. The corresponding construction 
for toposes is equally simple: the slice category £T jA has as objects arrows 
C —• A, where C ranges over objects of &", and as arrows the obvious 
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commutative triangles. The connection between these two constructions 
is that J'IA is equivalent to T(L(^)(x)). Thus fTjA may be thought of 
as the result of adjoining an indeterminate arrow x: 1 -» A to ^, much as 
one adjoins an indeterminate element to a commutative ring, as was first 
noticed by Joyal in this generality. 

With any arrow f:A—>B there is associated a translation ty : S?(y) —• 
<Sf{x), where y is a variable of type B, which sends any term <p(y) of 
-^(y) onto the term <p(fx) of £?(x). The corresponding logical functor 
ƒ* : .772? -» «^/^ happens to have both a right and a left adjoint. When 
<p(y) is of type il, one says that 2? forces <p(f), or that ƒ satisfies <p at stage 
2?, to mean that VxeA<p{fx) holds in <9r. This is the categorical version of 
Paul Cohen's forcing relation. When defined inductively on the complexity 
of (p, it gives rise to Joyal's version of Beth-Kripke [1965] semantics for 
intuitionistic logic. 

As we have seen, topos theory was born from a union between logic 
and geometry. Just as logical functors were inherited from one parent, 
so geometric morphisms were inherited from the other. The latter were 
completely ignored in [LS 1986], but are covered extensively by Bell. The 
motivation is this: given a continuous function ƒ : X —• Y between topo­
logical spaces, one constructs a functor f : Sets*°P —• Setsy°P as follows: 
for any presheaf P: X°P -> Sets define the presheaf f*(P): Y°» -• Sets on 
any open subset V of Y by f+(P)(V) = P(f~l(Y)). It turns out that f 
has a left adjoint ƒ*, which moreover is left exact, that is, which preserves 
finite products and equalizers. 

Quite generally, if f : &~ —• 5 r / is any functor between toposes which 
possesses a left exact left adjoint, one calls ƒ* a geometric morphism. In 
particular, the inclusion functor from Sh(X), the category of sheaves on 
X, to Sets*°P, the category of presheaves on X, is a geometric morphism, 
its left adjoint being called sheafification. This process was generalized 
by Grothendieck, who introduced something called a "topology" on any 
small category &, allowing him to obtain in the same way a full reflective 
subcategory of Sets^°P, called a Grothendieck topos, such that the reflector 
is left exact. In fact, every such subcategory of Sets^°P can be obtained in 
this way. 

There is an interesting analogy with module categories, where the corre­
sponding reflectors are called "localizations" and the corresponding "topolo­
gies" were introduced by Gabriel. The latter are certain filters of right 
ideals of the ring. They are in one-to-one correspondence with (hered­
itary) torsion theories. Moreover, "torsionfree modules" correspond to 
"separated presheaves" and "torsionfree divisible modules" correspond to 
sheaves. 

One can play a similar game in elementary toposes in place of functor 
categories. There the topologies are determined by arrows j : il —• il, 
called modalities by Bell, which satisfy the following conditions: 

x\-fxv\y 
X \~x JX,JJX hx JX, —^ ^?'— ' Jxï-{x,y} J'y' 
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where x and y are variables of type £2. He thinks of j as a kind of "pos­
sibility" operator. 

Bell proposes an interesting and original analogy with the theory of 
relativity. He views a geometric morphism between two toposes as some­
thing akin to a coordinate transformation, which may serve to simplify the 
description of some phenomena. For example, consider a continuous real-
valued function ƒ on a topological space X. In the category of sets, f(x) 
may be viewed as a real number varying continuously over X, However, 
in the topos Sh(X), everything varies over X, so the variation of f(x) is 
not noticed and ƒ becomes a constant real number. "The concept of 'real 
number,' interpreted in Sh(X) corresponds to the concept of 'real-valued 
continuous function on X' interpreted in Set." 

To pursue a related analogy discussed by Bell, recall that Maxwell's 
equations have been formulated so as to be invariant under change of co­
ordinate system, while Ohm's law has not. In the same way, constructively 
provable statements are valid in any topos, but the law of excluded middle 
is not. Although this law is preserved by logical functors, it is not preserved 
by geometric morphisms. 

The first order formulas which are preserved by geometric morphisms 
are called geometric implications. They have the form 

VJC, • • • Vxn(V>(xi,. ..,*„)=> v{xÏ9...,*„)), 

where cp and y/ may contain A, V and 3 but not => and V. It has been known 
[MR 1976] that any geometric implication which has a classical proof also 
has an intuitionistic one. Bell gives an interesting, but quite simple, proof 
of this, using the following theorem by Barr [1974], for which the reader is 
referred to the book by Johnstone [1977]: for every Grothendieck topos 3? 
there is a Boolean topos 3§ and a geometric morphism ƒ* : 3$ —• & such 
that ƒ* is faithful. I am told that this is the application Lawvere had in 
mind when he suggested the theorem to Barr. 

Having co-authored a monograph on a very similar topic, I approached 
this review with some apprehension. I need not have worried; Bell confirms 
most of our views and adds a number of new insights. He covers a lot of 
material that we did not, not all of which has been touched in this review. 
His book is a delight to read and I would recommend it to my students as 
well as to mathematicians at large. 
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In the past ten years, there have been a good number of developments 
in information-based complexity theory; in addition, the field and related 
issues have gained more attention in the mathematical community. This 
book fills a need for information on recent developments, and it compre­
hensively describes older and better-known results. 


