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AN ERGODIC THEOREM
FOR CONSTRAINED SEQUENCES OF FUNCTIONS

JOHN C. KIEFFER

L Introduction. For each integern = 1,2,..., let .S, be a finite nonempty
set, and let §, be a nonempty family of real-valued functions on S,. This
announcement is concerned with the asymptotic behavior of sequences of
functions {f,} which are constrained by {§,} in the sense that f, € ¥, for
every n. Specifically, given an S,-valued random variable Y, (n > 1), an
examination is made of the almost sure asymptotic behavior of sequences
of random variables of the form {f,(Y,)/n}, where {f,} is constrained by
{3} is the above sense. (See Theorem 1.) Of particular interest for appli-
cations is the context in which for some finite set A, and some stationary
sequence X, X,... of A-valued random variables, we have S, = 4" and
Y, = (X,..., X,) for every n. In this context, our main result (Theorem 2)
is an ergodic theorem which gives sufficient conditions on the constraining
sequence {F,} so that {f,,(Xy,..., X,)/n} will converge almost surely when
{fn} is a certain sequence of functions constrained by {§,}. The subaddi-
tive ergodic theorem [4] for stationary, ergodic processes with finite state
space and the Shannon-McMillan-Breiman theorem [2] are special cases
of our main result.

At this point, we mention examples from information theory and statis-
tics illustrating the utility of results of the type just described.

ExAMPLE 1.1 (INFORMATION THEORY). Let S, be a set of messages,
each of which has length n. Let g, be the family of all functions f: S, —
{1,2,...} for which there is a uniquely decipherable code [1] which assigns
to each message m € S, a binary codeword of length f(m). Let Y, be a
random message from S,. One may want to select f, € ¥, so that, with
probability one, the codeword length per message length f,(Y,)/n does not
exceed a certain bound in the limit as the message length n — co.

ExAMPLE 1.2 (STATISTICS). Let S, be the set of all sequences of length n
that can be formed from a finite set A. Let O(u) be a real parameter of an
unknown probability distribution x4 on 4. Let Y, be a random sample of
size n drawn according to the distribution x. A family §, of functions on
S, is specified, consisting of the statistics that are to be allowed as possible
parameter estimators. It is desired to select a statistic f, € §, (n > 1) so
that f,(Y,) — ©(u) with probability one as the sample size n — oo, no
matter what may be the distribution of u.
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I1. Log-convex families of functions. Let S be a finite nonempty set and
¥ a nonempty family of real-valued functions on S. We say that § is
log-convex if the family of functions {e~/: f € §} is convex.

Constraining sequences {F, } considered later shall be required to consist
of log-convex families. In what follows, we will see that the log-convex
assumption on a family of functions allows us to select a certain function
from the family in a natural way.

To see this, fix a log-convex family of functions § on the finite set S, as
well as a probability measure u on S. Using the log-convex property of §,
one can easily show there exists at most one function f*: .S — R (in the
sense of u-almost everywhere equivalence) such that

(1 /f“du:min{/fdu:fe&}.

We assume throughout that this function does exist. It does exist, for
example, provided both of the following conditions are satisfied:
(i) There exists C € R such that f(x) > C, whenever f € §, x € S; and
(ii) If f is a real-valued function on S and there exists a sequence { f,}
from § such that

,u{s: nlergoﬁ,(s) =f(s)} =1, then feg.

The following Lemma shows that f* is an approximate lower bound for
the functions in §, in a probabilistic sense.

LEMMA 1. Let § be a log-convex family of real-valued functions on the
finite set S. Let u be a probability measure on S. Let f* € § be a function
Jor which (1) holds. Then

2) U{sES: f(s)>f*(s)—¢e}>1—-e%, f€EF e>0.

PrROOF. Statement (2) is true if
(3) /ef‘—fdus 1.

To show this, we adapt a line of argument given in [3]. Let RS denote the
set of all real-valued functions on S (considered as a finite-dimensional
Euclidean space) and let RS denote the set of all « € RS such that a > 0
throughout S. Let ®: RS — R be the concave, differentiable function

D(a) =Y _ u(s)loga(s), a€RS.
SES
Let B: S — R be the gradient of ® at e~/", which is easily seen to satisfy
(4) B(s) = u(s)e’”®),  ses.
Let H be the hyperplane

H= {aeRS: > a(s)B(s) = 1}.

ses
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A moment’s reflection will convince the reader that H must be the unique
separating hyperplane for the convex subsets C;, C, of RS given by

Ci={e/:feF}

C = {aeRf: O(a) > —/f*du}.
It follows from this that
(5) da@s)Bs)<1, aeC.

s
Substituting into (5) the expression for § given in (4), we obtain (3).
Our first theorem is an easy corollary of Lemma 1.

THEOREM 1. For each n = 1,2,..., let S, be a finite nonempty set, let
§n be a nonempty, log-convex family of real-valued functions on S,, and let
Y, be an Sy-valued random variable. Suppose that for each n there exists
i € §n for which

E[f; (Ya)] = min{E[f(Y,)]: f € Fn}.

Then for any sequence of functions { f,} constrained by {F,}
(a) imn~ f,(¥,) > limn=1 £ (Y,) a.s.

and L
(b) imn~!£,(Y,) > limn~! f*(Y,) a.s.

II1. Additive sequences of families of functions. Fix a finite set 4 through-
out this section. Foreachn = 1,2,..., let §, be a family of functions from
A" — R. We say the sequence of families {§,} is additive if for each pair
of integers n,m > 1 and each f, € §n, fim € Im, it is true that f,,,, is a
member of §,.,,, where f,.,, is the function

Jnem(Xts oo Xngm) = fo(X1s ooy Xn) + fon(Xnats -« o> Xngm)s
(xl’ .. ,xn+m) € An+m'
We point out two examples of additive sequences {F,}.
ExAMPLE 3.1. Let {g,} be a sequence of functions such that for m,n >

1, the functions g,: A" — R, g,: A" — R, and gy m: A" — R are
related by

(6) gn+m(xl, e axn+m) S gn(xly e ,xn) + gm(er-la oo ,xn+m)a

(X15 v s Xntm) € A™H",
Let {F,} be the sequence of families in which, for each n,F, consists of
all functions f: A" — R satisfying f > g,. The sequence {F,} is additive.

ExAMPLE 3.2. Let {F,} be the sequence of families in which, for each n,
$n consists of all functions f: A" — R satisfying

Z e"f(x) S 1.
XEA"

The sequence {F,} is additive.
We state now our main result.
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THEOREM 2. For each n = 1,2,..., let §, be a nonempty log-convex
Jamily of functions on A". Suppose the sequence {F,} is additive. Let
X1, Xa,... be a stationary, ergodic sequence of A-valued random variables.
Assume that for each n, there exists f,} € §, such that

Efi(Xi,..., Xn) = min Ef(Xi,..., Xp).
Then, the sequence of random variables { f,}(Xy,...,X,)/n} converges al-
most surely to the extended real number M € [—o0, ) given by

=i ~!mi LX),
M ;gfln %ISI:Ef(Xlg- s Xn)

REMARKS. Before proceeding with the proof of Theorem 2, we point out
two classic convergence theorems that follow from it, viz., the subadditive
ergodic theorem [4] and Shannon-McMillan-Breiman theorem [2]. First,
let {g,} be a sequence of functions satisfying (6). Then, applying Theo-
rem 2 to the family {F,} of Example 3.1, we see that {g,(X,,...,X,)/n}
converges almost surely. This result is the subadditive ergodic theorem for
stationary ergodic sequences {X,} with finite state space. Secondly, the
Shannon-McMillan-Breiman theorem states that if H is the entropy rate
[1] of the stationary, ergodic sequence {X,}, then

nlin(;lo{—n‘1 logPr{X; = x1,..., Xp =x,]} = H

holds for almost every sequence x, X5, ... of observed values of X;, X>,...;
it can be obtained applying Theorem 2 to the sequence of families {,} in
Example 3.2.

LEMMA 2. Let § be a log-convex family of functions on the finite set S.
Then, for any positive integer k, if f1, f2,..., fi are functions from §, there
exists a function f € § such that

f< fi+logk, i=1,... k.

PROOF OF LEMMA 2. Set f = —loglk~' Y5 e~ /i].
PROOF OF THEOREM 2. Abbreviate (X;,...,X,) by X,,, n > 1. The
relation

(7 mn=1f}(X,) <M as.
follows from Theorem 1(b) and the fact that {F,} is additive, using the
pointwise ergodic theorem. Applying Theorem 1(a),
limn~" f¥(X,) < Lim[n~" £ (X0) + 07" o (X2, - X))
=limn~ '} (Xa,...,Xn) as.,
from which it follows that lim n~! £*(X,) is, with probability one, a shift-

invariant function of (X, X,...). Since the sequence { X, } is ergodic, this
means there is a constant B € [—o00, M] such that

limn~'f¥(X,) =B as.

In view of (7), the proof is complete once we show that M < B. Our
demonstration that M < B is an adaptation of a line of argument origi-
nated by Ornstein and Weiss [5] and modified by Shields [6]. Fix a real
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number B’ > B, an ¢ > 0, and a positive integer N. For each j > 1,
partition the block X; into random sub-blocks {U;: i = 1,..., K} ordered
from left to right so that

(i) The length L; of each U; is either 1 or at least N.

(ii) If L; > N, then fZ'(U,) < L;B'.

(iii) Almost surely, {i: L; = 1} has no more than j¢ elements for suffi-
ciently large j.

Using Lemma 2 and the fact that {J,} is additive, we may choose for
each j a function 4; € §; such that the sequence {4;(X;)/j: j > 1} is
bounded above, and

K;
(8) hj(X;) <logl1 + Cl+ > f7,(U),
i=1
where C; is the number of values of the random vector of random length
(L1, Ly, ..., Lg;). Applying (i)-(iii) to (8), we see that with probability
one,
hj(X;) < log[1 + Cj1+ jB' + je + je(|B'| + sup|f7]),
for sufficiently large j. This yields

9) E [@j-‘h,(x,)] < l‘ijﬁj-‘log[l + Cj1+ B’ + ¢+ ¢[|B'| + sup| f{]].
Since {/;(X;)/Jj} is bounded above, Fatou’s Lemma tells us that
(10) E [T~ (X,)| > T B~ (%)) > M.

J J

The integer C; is no greater than ), <i<j /N({ )2. Consequently, the right
side of (9) is less than or equal to B in the limitas N — oo, ¢ = 0, B’ —
B. This observation, combined with inequality (10), yields the desired
inequality M < B.

FINAL REMARKS. If M > —oo, one can also obtain convergence of
{fr(X1,...,Xy)/n} to M in L' mean. Also, Theorem 2 can be generalized
to the case of a stationary random sequence {X,} which is not necessar-
ily ergodic. (If {X,} is not ergodic, {f;(X,..., Xn)/n} converges almost
surely to a random variable whose expected value is M.) With some addi-
tional assumptions, one can also remove the requirement that the set 4 be
finite. These improvements to Theorem 2 (and applications) shall appear
elsewhere.
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