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I. Introduction. For each integer n = 1,2,..., let Sn be a finite nonempty 
set, and let $n be a nonempty family of real-valued functions on Sn. This 
announcement is concerned with the asymptotic behavior of sequences of 
functions {ƒ„} which are constrained by {$n} in the sense that fn e $n for 
every n. Specifically, given an ^„-valued random variable Yn (n > 1), an 
examination is made of the almost sure asymptotic behavior of sequences 
of random variables of the form {fn(Yn)/n}, where {fn} is constrained by 
{Sn} is the above sense. (See Theorem 1.) Of particular interest for appli­
cations is the context in which for some finite set A, and some stationary 
sequence Xi,X2,... of ^4-valued random variables, we have Sn = An and 
Yn = (X\ 9...,Xn) for every n. In this context, our main result (Theorem 2) 
is an ergodic theorem which gives sufficient conditions on the constraining 
sequence {#„} so that {fn(Xu..., Xn)/n} will converge almost surely when 
{fn} is a certain sequence of functions constrained by {Sn}- The subaddi­
tive ergodic theorem [4] for stationary, ergodic processes with finite state 
space and the Shannon-McMillan-Breiman theorem [2] are special cases 
of our main result. 

At this point, we mention examples from information theory and statis­
tics illustrating the utility of results of the type just described. 

EXAMPLE 1.1 (INFORMATION THEORY). Let Sn be a set of messages, 

each of which has length n. Let $n be the family of all functions f:Sn-> 
{1,2 , . . .} for which there is a uniquely decipherable code [1] which assigns 
to each message m e Sn a binary codeword of length f(m). Let Yn be a 
random message from Sn. One may want to select fn e dn so that, with 
probability one, the codeword length per message length fn(Yn)/n does not 
exceed a certain bound in the limit as the message length n —• oo. 

EXAMPLE 1.2 (STATISTICS). Let Sn be the set of all sequences of length n 
that can be formed from a finite set A. Let Q(ju) be a real parameter of an 
unknown probability distribution fi on A. Let Yn be a random sample of 
size n drawn according to the distribution ju. A family $n of functions on 
Sn is specified, consisting of the statistics that are to be allowed as possible 
parameter estimators. It is desired to select a statistic fn e $n {n > 1) so 
that fn(Yn) —• O(JLL) with probability one as the sample size n —• oo, no 
matter what may be the distribution of //. 
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II. Log-convex families of functions. Let S be a finite nonempty set and 
# a nonempty family of real-valued functions on S. We say that # is 
log-convex if the family of functions {e~f : f e #} is convex. 

Constraining sequences {#„} considered later shall be required to consist 
of log-convex families. In what follows, we will see that the log-convex 
assumption on a family of functions allows us to select a certain function 
from the family in a natural way. 

To see this, fix a log-convex family of functions $ on the finite set *S, as 
well as a probability measure fi on S. Using the log-convex property of #, 
one can easily show there exists at most one function ƒ* : S —• R (in the 
sense of //-almost everywhere equivalence) such that 

(1) ƒ > < / / / = m i n { | f d j u : f e $ y 

We assume throughout that this function does exist. It does exist, for 
example, provided both of the following conditions are satisfied: 

(i) There exists C e R such that ƒ(JC) > C, whenever f e$, x eS; and 
(ii) If ƒ is a real-valued function on S and there exists a sequence {fn} 

from # such that 

ju\s: lim fn(s) = f(s)\ = 1, then ƒ e ff. 

The following Lemma shows that ƒ * is an approximate lower bound for 
the functions in ff, in a probabilistic sense. 

LEMMA 1. Let $ be a log-convex family of real-valued functions on the 
finite set S. Let fi be a probability measure on S. Let f* e$ be a function 
for which (1) holds. Then 

(2) fi{s € S: f(s) >f*(s)-e}>l- e~\ fe$,e>0. 

PROOF. Statement (2) is true if 

(3) [ef*-fdju< 1. 

To show this, we adapt a line of argument given in [3]. Let R5 denote the 
set of all real-valued functions on S (considered as a finite-dimensional 
Euclidean space) and let R^ denote the set of all a G R 5 such that a > 0 
throughout S. Let O: R^ —• R be the concave, differentiable function 

*(*) = X^Cs)loga(s), a G R^. 
ses 

Let P : S —> R be the gradient of O at e~f*, which is easily seen to satisfy 

(4) p{s) = ii{s)ef^s\ seS. 

Let H be the hyperplane 

I ses J 
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A moment's reflection will convince the reader that H must be the unique 
separating hyperplane for the convex subsets C\, C2 of Rs given by 

C ! = { * - ' : ƒ € $ } 

C2 = j a e Rs
+: O(a) > - ƒ ƒ* dju\ . 

It follows from this that 

(5) ]•>(*)/?(*) < 1 , aeCi. 
s 

Substituting into (5) the expression for ƒ? given in (4), we obtain (3). 
Our first theorem is an easy corollary of Lemma 1. 

THEOREM 1. For each n = 1,2,..., let Sn be a finite nonempty set, let 
Sn be a nonempty, log-convex family of real-valued functions on Sn, and let 
Yn be an Sn-valued random variable. Suppose that for each n there exists 
fn € $n for which 

E[fn*(Yn)] = mm{E[f(Yn)]:fe$n}-

Then for any sequence of functions {fn} constrained by {$„} 
(a) Urnn~l fn(Yn) > limn"1 ft(Yn) a.s., 

and 
(b) limn-1 fn(Yn) > limn-lfn*(Yn) O.S.. 

III. Additive sequences of families of functions. Fix a finite set A through­
out this section. For each n = 1,2,..., let $n be a family of functions from 
An —• R. We say the sequence of families {#„} is additive if for each pair 
of integers n, m > 1 and each fn e $n, f m G dm, it is true that fn+m is a 
member of $n+m, where fn+m is the function 

Jn+m(Xl> • • • »Xn+m) = Jn\X\> • • • >Xn) ~̂~ Jm\Xn+Ï9 • • • ?Xn+m), 

(X\,... ,Xn+m) € A 

We point out two examples of additive sequences {3>J. 
EXAMPLE 3.1. Let {gn} be a sequence of functions such that for ra, « > 

1, the functions g„: 4" -+ R,gm: ,4m -• R, and #w+m: An+m -> R are 
related by 

(6) gn+m\x\, • • • )Xn+m) ^ <§M-*l5 • • • >Xn) ~t~ £mv*«+l? • • • j-X«+m)> 

( X l , . . . ,Xn+m) ^ ^* 

Let {#«} be the sequence of families in which, for each n,$n consists of 
all functions ƒ : An —• R satisfying f>gn. The sequence {#„} is additive. 

EXAMPLE 3.2. i>£ {#„} 6e £/*e sequence of families in which, for each n, 
$n consists of all functions f:An-+R satisfying 

J2 e~f{x) < 1-
xeAn 

The sequence {$n} is additive. 
We state now our main result. 
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THEOREM 2. For each n = 1,2,..., let $n be a nonempty log-convex 
family of functions on An. Suppose the sequence {#„} is additive. Let 
X\9X2,... be a stationary, ergodic sequence of A-valued random variables. 
Assume that for each n, there exists f* e #« such that 

Efi(Xl9...9Xn) = mmEf(Xu...9Xn). 
fedn 

Then, the sequence of random variables {f*(Xi,...9Xn)/n} converges al­
most surely to the extended real number M e [-oo, oo) given by 

M= infn-lminEf(Xu...9Xn). 

REMARKS. Before proceeding with the proof of Theorem 2, we point out 
two classic convergence theorems that follow from it, viz., the subadditive 
ergodic theorem [4] and Shannon-McMillan-Breiman theorem [2]. First, 
let {gn} be a sequence of functions satisfying (6). Then, applying Theo­
rem 2 to the family {#„} of Example 3.1, we see that {gn(X{9.. .9Xn)/n} 
converges almost surely. This result is the subadditive ergodic theorem for 
stationary ergodic sequences {Xn} with finite state space. Secondly, the 
Shannon-McMillan-Breiman theorem states that if H is the entropy rate 
[1] of the stationary, ergodic sequence {Xn}9 then 

lim {-n~l logPr[X! =x\,...,Xn= xn]} = H 
n—•oo 

holds for almost every sequence x\, X2,... of observed values of X\, Xi,... ; 
it can be obtained applying Theorem 2 to the sequence of families {$n} in 
Example 3.2. 

LEMMA 2. Let $ be a log-convex family of functions on the finite set S. 
Then, for any positive integer k, if f 9f2,...9fk are functions from $, there 
exists a function fed such that 

ƒ < fl + logfc, / = l,...,/c. 

PROOF OF LEMMA 2. Set ƒ = -logtfc"1 £*=1 e~fi]. 
PROOF OF THEOREM 2. Abbreviate (X\,...,Xn) by X„, n > 1. The 

relation 

(7) \hRn-lf:(Xn)<M a.s. 

follows from Theorem 1(b) and the fact that {$n} is additive, using the 
pointwise ergodic theorem. Applying Theorem 1(a), 

Mn'lm^)<Min-lfr(Xl) + n-lJ:_l(X29...9Xn)] 

= \jmn-{f*(X29 ...,Xn) a.s., 

from which it follows that lim«_1/„*(X„) is, with probability one, a shift-
invariant function of (X{9 X2,... ). Since the sequence {Xn} is ergodic, this 
means there is a constant B e [-00, M] such that 

hmn-lfi(Xn) = B a.s. 

In view of (7), the proof is complete once we show that M < B. Our 
demonstration that M < B is an adaptation of a line of argument origi­
nated by Ornstein and Weiss [5] and modified by Shields [6]. Fix a real 
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number B' > B, an e > 0, and a positive integer N. For each j > 1, 
partition the block X,- into random sub-blocks {£// : / = 1 , . . . , Kj} ordered 
from left to right so that 

(i) The length Lt of each C/,- is either 1 or at least N. 
(ii) If Lt > N, then ƒ£.(£/,) < LtB'. 
(iii) Almost surely, {/: Lt = 1} has no more than je elements for suffi­

ciently large j . 
Using Lemma 2 and the fact that {$„} is additive, we may choose for 

each j a function hj e $j such that the sequence {hj(Xj)/j: j > 1} is 
bounded above, and 

(8) hj(Xj) < log[l + Cj] + £ ƒ £ ( # / ) , 
/=i 

where Cj is the number of values of the random vector of random length 
(LI,L2,...9LKJ). Applying (i)-(iii) to (8), we see that with probability 
one, 

hj(Xj) < log[l + Cj] + jB' + je + je(\B'\ + sup|/J*|), 

for sufficiently large j . This yields 

(9) E limj-lhj(Xj) < l imy-'logtl + Cj] 4- B' + e + e [ | ^ | + sup|/TI]. 

Since {hj(Xj)/j} is bounded above, Fatou's Lemma tells us that 

(10) limr1/^,) 
; 

>limE[j-{hj(Xj)]>M. 

The integer Cy is no greater than E I< /< ; / JV( | ' ) 2 ' Consequently, the right 
side of (9) is less than or equal to B in The limit as N —• oo, e —• 0, B' -> 
2?. This observation, combined with inequality (10), yields the desired 
inequality M <B. 

FINAL REMARKS. If M > -oo, one can also obtain convergence of 
{f*(Xi,...,Xn)/n} to M in L1 mean. Also, Theorem 2 can be generalized 
to the case of a stationary random sequence {Xn} which is not necessar­
ily ergodic. (If {Xn} is not ergodic, {f*(Xi,...,Xn)/n} converges almost 
surely to a random variable whose expected value is M.) With some addi­
tional assumptions, one can also remove the requirement that the set A be 
finite. These improvements to Theorem 2 (and applications) shall appear 
elsewhere. 
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