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"The theory of functions of several real variables": sounds old-fashioned, 
doesn't it? But look in your copy of Hewitt and Stromberg [2] or Royden 
[3]. You'll find plenty of analysis on the real line, and plenty of analysis 
on abstract topological spaces and measure spaces, and not much in be­
tween. This gap is partly a reflection of the temper of the times; but in the 
early 1960s when these books were written, beyond the level of calculus 
there really wasn't much in between, at least not much that was ready to 
be transplanted from research journals to books. 

In the intervening quarter-century the situation has changed enormously, 
and analysis on R" is now a thriving subject. Among the main lines of de­
velopment are the following: 

(1) Banach spaces of functions and generalized functions defined in 
terms of various growth or smoothness conditions: Lp spaces, Hardy 
spaces, Sobolev spaces and their relatives, BMO, and so forth. Closely 
intertwined with this are the theory of differentiability and the study of 
approximation of arbitrary functions by suitable types of smooth func­
tions, such as trigonometric polynomials or harmonic functions. 

(2) Singular integral operators, oscillatory integral operators, and oper­
ators defined by convolutions or Fourier multipliers, and their continuity 
properties with respect to the Banach spaces mentioned above. These 
classes of operators include pseudodifferential operators and their gener­
alizations, as well as the Fourier transform. 
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(3) Nonlinear operators such as maximal functions, Littlewood-Paley g-
functions, and Lusin area integrals that can be used to control the behavior 
of functions in various ways. 

The motivation for all of this comes from several sources. Much of 
it is in response to questions that arise in partial differential equations, 
several complex variables, and other branches of analysis. Also, there is 
an obvious desire to extend the sort of detailed understanding that was 
achieved for functions of one variable in the first half of this century to 
higher dimensions. And of course, once a subject like this gets going, 
it generates its own ideas and techniques, which often turn out to have 
applications in unexpected places. 

After these generalities, let us come down to earth by contemplating a 
very concrete, very basic problem: the Lp convergence of Fourier series. 
Let Q denote the unit cube [0,1]" in R". If ƒ is a function on Rn, periodic 
with period 1 in each variable and integrable on g, we can form its Fourier 
coefficients 

f(k) = f f(x)e~27lik-xdx, k = (k{,...,kn)eZ", 
JQ 

and thence its Fourier series 

(1) Y,Kk)e2nik'x. 
kez" 

The series (1) always converges to ƒ in some weak sense, and we can ask 
whether it converges to ƒ in the Lp norm when ƒ G LP(Q). TO make this 
precise, we interpret (1) as the limit of its spherical partial sums, 

SR/(X) = £ f(k)eMk'x (\k\2 = £ > ƒ ) . 
\k\<R 

(there are other interpretations of (1), leading to other results!), and we 
ask 

Is it true that lim \\SRf - ƒ |L = 0 whenever ƒ G LP(Q)1 
R—*oo 

For p = 2 the answer is always yes, because the functions e2nik'x form 
an orthonormal basis for L2. On the other hand, for p = oo (and hence, 
by a duality argument, for p = 1) the answer is always no: it has been 
known for over a century that the Fourier series of a continuous periodic 
function ƒ need not converge uniformly, or even pointwise, to ƒ. In the 
one-dimensional case, an old theorem of Marcel Riesz assures us that the 
answer is yes for 1 < p < oo. It therefore comes as an unpleasant surprise 
to discover, as Charles Fefferman did in 1971, that when n > 1, the answer 
is no for all p ^ 2. 

What to do? Well, it was recognized long ago that one-dimensional 
Fourier series can be made more tractable by employing summability meth­
ods that cut off the Fourier coefficients in some smoother way than simply 
taking partial sums. For example, the Fourier series of a continuous ƒ is 
always uniformly Cesàro or Abel summable to ƒ. A convenient summa­
bility method in higher dimensions that is closely related to the spherical 
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partial sums SR ƒ is provided by the Bochner-Riesz means of order a > 0, 
defined by 

S%f(x) = J2 (l-R-2\k\2rf(k)e2"ik'x. 
\k\<R 

(As a —• 0 these become the partial sums of (1), and when n — 1 and 
a = 5, they are essentially equivalent to the classical Cesàro means.) We 
now ask 

Is it true that lim \\S% ƒ - ƒ |L = 0 whenever ƒ G L'(Ö)? 
^ — • 0 0 

It is not hard to show that the answer is yes for all p, even p = 1 and 
(when ƒ is continuous) p = 00, provided that a > (n - l)/2. For smaller 
values of a, the results are deeper and more recent. It is known that the 
answer is yes when 

(2) | I - I | < ! ± 2 2 
K) \p 2\ In 
provided that either n - 2 or a > (n - l)/2(n + 1), and no when (2) 
fails. The situation when a is near zero and n > 2 is still not completely 
understood. 

The nominal aim of the book under review is to prove the theorems 
outlined above, both the negative result for SR and the positive results for 
S%. But in fact, the book does much more: it could well have been sub­
titled "A working introduction to modern Fourier analysis." The authors 
start more or less from scratch, i.e., from a background in analysis such as 
can be found in [2] or [3], and develop the machinery they need as they 
go along. They take pains to explain the conceptual framework underlying 
the methods and results and to give the intuitive motivation behind tech­
nical arguments. As a result, one who reads this book from cover to cover 
will not only learn how to sum multiple Fourier series, but will become 
conversant with many of the most important current tools of the real an­
alyst, such as Cotlar's lemma, maximal functions, "good A" inequalities, 
weights of class AP9 the multiplier theorems of Mihlin-Hörmander and 
Marcinkiewicz, restriction theorems, and Meyer's lemma. 

The authors employ a determinedly lively and informal style that will 
undoubtedly be appreciated by readers struggling to understand the tech­
nical material. Sometimes they overdo it (I think that calling the standard 
limiting process for defining the Fourier transform on L2 "trickery and 
deceit" is an abuse of poetic license), but that is still preferable to an ex­
cessively dry presentation. 

The book suffers a bit from occasional sloppiness in content and typog­
raphy. A few examples: On p. 2 the authors describe the theorems about 
S% which they want to prove by drawing two diagrams, but they forget 
to explain that the first and second diagrams pertain to the cases n — 2 
and n > 2 respectively. The paper [1] of Carleson and Sjölin is referred 
to in the text, but it is omitted from the bibliography. And there is no 
excuse for letting a T£Xnical typist get away with things like "isign(Ç)" 
when "/sign(£)" is just as easy to produce. 
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But these are minor matters. This monograph is a welcome addition to 
the list of books to which one can send people who want to learn about 
modern real analysis. 
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Even when speaking to a group of differential geometers one cannot 
safely assume that everyone knows what an Einstein metric is. Why then 
would A. L. Besse write a 500 page book on the subject? With characteristic 
frankness he addresses that question in §B of the excellent nineteen page 
introduction (an impressive mathematical essay in its own right). This 
book is his response to the importunities received over his career to write 
a treatise on Riemannian geometry. This is the treatise, but with a focus 
and sense of purpose that make it far more exciting and fun than most 
weighty treatises ever are. Using Einstein spaces as his reference point, 
he can easily and naturally enter into some of the most exciting research 
activity of today: topology (the Poincaré conjecture), partial differential 
equations (Aubin-Yau solution of the Calabi problem, Yang-Mills theory), 
and the wonderful world of four dimensional geometry (self-duality and 
the Penrose construction), to name just three. In the final analysis, how­
ever, the author has a passion for Einstein metrics in their own right and 
his intention is to teach the reader what he knows about them, what great 
number of unanswered questions can be naturally asked about them, and 
why they merit enthusiastic study. 

What then is an Einstein metric? A Riemannian metric g on an n-
dimensional manifold M is a collection of positive definite inner products 
on the tangent spaces of M, one at each point, which vary smoothly in 
the sense that the inner product of any pair of C°° vector fields on M is 
a C°° function on M. With respect to local coordinates xl,..., xn in M, 
g = Y,8ijdxl dxj, where gy = gjt are C°° functions. For example, in 
Euclidean space Rn where every tangent space is identified with R" itself, 
the canonical Riemannian metric is Ysidx1)2, the standard inner product 
on R". In his inaugural address Riemann showed that his curvature tensor 
R (n4 local functions R^i with respect to local coordinates) provides the 


