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A CRITIQUE OF NUMERICAL ANALYSIS 

PETER LINZ 

1. Introduction. In this essay I want to raise the question "Is numerical 
analysis useful?". Most mathematicians, even those without any involvement 
in numerical computations, will think that the answer is obviously yes. It 
is common knowledge that computational methods are used daily by many 
members of the scientific community to solve problems that otherwise defy 
treatment. How can one seriously question the usefulness of something that 
has become a standard tool for many people? 

To give substance to the question let me make a semantic distinction. I use 
the term computational mathematics to denote the wide spectrum of activities 
having to do with the approximate solution of scientific problems expressed 
through mathematical models. Typically, the equations arising from these 
models are differential or integral equations with no known closed form solu­
tion. For an approximate solution they must be discretized, that is, replaced 
by some finite system of equations that can be solved by algebraic methods. 
The whole process involves several phases and some quite distinct aspects. 
One is numerical methodology which considers ways of discretizing differential 
and integral operators and how best to solve the resulting finite systems. An­
other is numerical analysis which involves the rigorous study of the algorithms 
created by the methodology. The primary goal of analysis is to describe the 
relationship between the exact solution of the original equation and the ap­
proximate one obtained from its discretized version. It is numerical analysis 
in this narrower sense that I wish to examine here. 

Even with this narrowed interpretation, the usefulness of numerical analysis 
is rarely questioned. Those who work in this area point out, with a great deal 
of justification, that analysis gives much insight into the nature of numerical 
methods and has contributed significantly to the widespread acceptance of nu­
merical methodology. While some computational methods, such as relaxation 
and finite element techniques, were originated by engineers relying on physical 
insight, later analysis was crucial. Methods limited to special problems be­
came general approaches as our theoretical understanding increased. In other 
instances the analysis suggested new methodologies. Numerical analysis has 
been instrumental in the design of effective numerical algorithms, and the ef­
fort expended has been repaid handsomely through the creation of a powerful 
tool for the solution of many important problems. Nevertheless, as I want to 
point out, this is not the end of the story. There are some fundamental issues 
that have been studied less thoroughly then they deserve, issues that grow 
in importance as scientists tackle more complex problems. There are open 
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problems here whose solution would have a major impact on computational 
mathematics. I will suggest some promising directions for further work, al­
though I do not mean to imply that these are the only ones worth pursuing. 
What I want to emphasize is that there are unresolved questions in numerical 
analysis whose solutions call for a great deal of mathematical knowledge and 
ingenuity and which constitute a challenging and attractive research area. 

The discussion will concern itself mostly with very fundamental and broad 
issues, which are "soft" in the sense that one cannot prove many theorems 
about them. But if we want to claim that numerical analysis is truly useful 
we must look at all relevant questions, even when immediate and very precise 
answers are not yet available. 

2. Convergence analysis. First, let us look at a sort of capsule summary 
of the accepted modus operandi of numerical analysis. Modern numerical 
analysis tends to employ the terminology of functional analysis. In articles 
published in typical journals such as the SI AM Journal on Numerical Analysis 
or Numerische Mathematik, one routinely finds terms like Hilbert spaces, 
compact closure, and weak convergence. These concepts serve the theoretician 
well and have allowed the establishing of a coherent and extensive theory of the 
approximate solution of operator equations. While most articles on numerical 
analysis are technically difficult for those with only a modest knowledge of 
mathematics, one can extract some fairly simple general principles. I will 
illustrate this with the linear operator equation 

(1) Lx = y, 

where L: X —• Y is a linear operator between the normed linear spaces X 
and Y. The right side y is given and the equation is to be solved for the 
unknown x. We assume that L has a bounded inverse on Y. Many important 
scientific problems whose mathematical formulation involves linear differential 
and integral equations fall into this class. There are problems that do not fit 
into this abstract framework, but what I say here about (1) has its counterpart 
for most other numerical problems. 

In the process of discretization, equation (1) is replaced with a parametrized 
sequence of problems 

(2) Lnxn = yn, 

where now Ln is an operator on some n-dimensional spaces Xn and Yn. For 
simplicity, let us assume that these spaces are subspaces of their counterparts 
X and Y. The quantity n is called the discretization parameter, it measures 
the degree to which the discretized operator Ln represents the original oper­
ator L. 

Since Ln is effectively an n x n matrix, it is in principle possible to solve 
(2) algebraically. Ignoring such additional difficulties as round-off error in 
computer arithmetic, solving (2) then gives the approximate solution xn. The 
fundamental concern of all analysis is the relation between the true solution x 
and its approximation xn. In particular, we would like to prove convergence. 
By this we mean that, as we increase n, the approximate solution should come 
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closer and closer to the true solution, in the sense that 

lim \\x — xn\\ = 0. 
n—»>oo 

Usually, the first step of the analysis is to define a consistency error 

(3) rn(x) = Lx - Lnx. 

From (1) and (2) we see immediately that 

Ln(x -xn) = y-yn- rn(x), 

and we get a bound for the error of the approximate solution 

(4) l | x - x n | | < | | J L - 1 | | { | | 2 / - j / n | | + | | r n | | } . 

In most cases it is relatively elementary to show that 

(5) lim | | y - y B | | = 0 , 
n—•oo 

and that, under well-defined conditions, 

(6) lim | | r n | | = 0 . 
n — • < » 

We need one further result, the stability condition 

(7) lim \\L^\\<K <oo. 
n—•oo 

If we put this into (4), we get the central theorem of numerical analysis that 
stability and consistency imply convergence. 

This, in a nutshell, is what conventional numerical analysis is all about. 
Because of technical difficulties, there are lots of unresolved problems, but 
most of the difficulties in analysis come in verifying the stability condition 
(7). Generally, this is not easy at all. There are other questions, for example 
how difficult it is to solve (2) or how quickly xn coverges to x, but normally 
these are simpler to deal with than stability. 

Suppose now that we have shown that a numerical method is stable and 
convergent. What does this tell us? It does show that, in some asymptotic 
sense, the method works. If the assumptions needed to justify (5) and (6) 
hold, then (4) and (7) tell us that we can in principle achieve arbitrarily high 
accuracy by making n sufficiently large. Before we start writing a computer 
program for some method, it is reassuring to know this (even though programs 
for most complicated practical problems are written without the benefit of a 
proof of convergence). Actually, we can often say more. In most cases the 
approximation error can be bounded more explicitly as 

(8) \\x-xn\\<n-P\\L-l\\r,{x), 

where rj is some complicated functional of the unknown solution x. The 
quantity p is called the order of convergence and tells us something about 
how accurate the method is likely to be. For a given amount of computational 
effort, a method with a high order of convergence tends to give better results 
than one with a low order. This is balanced by the fact that high order 
methods usually are more restricted in their applicability and more difficult 
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to implement. While there are a number of less obvious factors involved in (8), 
this kind of reasoning is often used and is a reliable guideline for the selection 
of numerical methods. Thus, a major usefulness of convergence analysis is as 
a plausible predictor for the success of a suggested algorithm. This is a very 
valuable aspect. 

But there are other important concerns that (8) does not address. In par­
ticular, it may not give us a useful bound for the error ||x — xn | |. The reason 
for this is two-fold. First, rj involves the unknown solution x, so to bound 
||x — xn | | we may need to know a good deal about x; for example, bounds 
for some of its higher derivatives. In most practical situations, this is nearly 
impossible to get. Second, even if rj can be bounded, the various inequalities 
and estimates involved make the bound (8) quite unrealistic, overestimating 
the actual error by several orders of magnitude. Consequently, (8) is rarely 
used in practice. While there are many computer programs for solving com­
plicated equations efficiently, few of them provide a rigorous assessment of the 
error. 

3. Useful error analysis. Suppose we now set ourselves a goal that goes 
beyond the traditional convergence analysis as exemplified by (8), to get error 
bounds that can actually be used in practical situations. If such error bounds 
are to be useful, they must be both computable and realistic. These adjectives, 
while quite intuitive, do not lend themselves to a very precise definition. They 
are of course just matters of degree. An error bound is computable if all 
terms needed for it can be obtained with a manageable amount of effort; it 
is realistic if it does not overestimate the actual error by too much. An error 
bound which is too high by 50 percent may be considered realistic, one which 
overestimates by a factor of 100 surely is not. Still, by any commonly accepted 
standards, the bound given by (8) is in most situations neither computable nor 
realistic. But if we look for better alternatives, we find little in the literature 
of numerical analysis that will help us. There does not exist at present any 
systematic and general way of finding computable and realistic error bounds. 
A potential exception is the method of a posteriori error analysis, but even 
this has not been worked out to any significant extent. 

The bound provided by (8) is of limited use because it involves the unknown 
x. We can avoid the difficulty by making an a posteriori analysis which uses 
instead the computed solution xn . Manipulating (1) and (2) in a slightly 
different way, we can see easily that 

(9) l lx-XnlIfÇlIL-lll^H, 

where pn is the residual of the computed solution 

Pn{xn) = Lxn ~y. 

It is often not hard to produce a reasonably good bound for ||pn||; we simply 
plug the computed solution back into (1) to see how well it fits. Putting a 
realistic bound on ||Z/_11| is more difficult and is the key element on which the 
success of the a posteriori analysis depends. 

The a posteriori method is quite old and what I have said here is elementary 
and well known. What I find surprising is that it is used so little. I have been 
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unable to find any reference to it in introductory numerical analysis texts, and 
even more advanced treatments, such as Isaacson and Keller [2], refer to it only 
casually. The reason for this seems to lie in the perception that getting good 
bounds on H^"1!! is impossible. The problem is certainly not a trivial one, 
but there are some recent indications that progress is possible. Analysis done 
on finite element methods, for example [1, 9], has had some success for elliptic 
partial differential equations. In my own work I have used a combination of 
analytical and numerical techniques for the solution of integral equations [4, 
5]. Since many partial differential equations have integral equation analogues, 
this has some promise for future progress. But certainly much more work 
needs to be done and the finding of effective methods for bounding | | £ - 1 | | for 
the most common equations of mathematical physics remains a challenging 
open problem. 

I hasten to add that I do not see the a posteriori method as a panacea for 
numerical computation. It certainly has the attractive feature of conceptual 
simplicity, important if it is to be used in practice. It holds enough promise 
to make its further pursuit worthwhile, but it is unlikely that it can be used 
everywhere. There are other approaches that remain to be investigated or 
even invented. We do not know exactly where this will lead, but what is 
important is to recognize the existence of a serious problem in computational 
mathematics. The lack of realistic and computable error bounds prevents 
the design of very high-quality numerical software and makes it difficult for 
the user of existing software to view the results with a very high degree of 
confidence. This lack of reliability causes much wasted time and effort and on 
occasions results in undetected erroneous answers. There is an urgent need 
in computational mathematics for effective methods of obtaining useful error 
bounds. Success in this direction would have immediate drastic effects on how 
scientists solve numerical problems. Without significant progress, numerical 
computing will remain in its present unreliable state. 

I am optimistic that some progress can be make and that a concerted effort 
in this direction will yield rich results. Nevertheless, it would be unrealistic to 
expect that rigorous and useful error bounds can be obtained for all problems. 
There will always be those problems that we are just barely able to solve and 
for which we have no hope of any significant analysis. What do we do in 
these cases? Here we enter a third area of computational mathematics, that 
of numerical pragmatics. This deals with the problem of making practical 
decisions where precise theoretical guidance is not available. 

4. Numerical pragmatics. Many people, some of them with rather weak 
backgrounds in mathematics, solve problems numerically. This is possible be­
cause, on the whole, numerical methodology is easy to use. The discretization 
of even very complex partial differential equations by finite difference or finite 
element methods is relatively routine. Often the most challenging problem is 
the management of details involved in representing regions, finite elements, 
sparse matrices, and so on. In some situations stability problems arise, but 
there the stability analysis for simple problems gives enough guidance for the 
successful treatment of more complicated ones. With a little tinkering, an 
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experienced engineer can solve most of his problems numerically. By solving 
I mean that he can get some reasonable numbers out of the computer as long 
as he does not worry too much about how good these results are. 

How do engineers deal with the problem of assigning some measure of 
reliability to the numbers that the computer produces? Over the years, I 
have sat on many Ph.D. qualifying examinations or dissertation defenses for 
engineering students whose work involved a significant amount of numerical 
computing. In one form or another, I invariably ask two questions "Why did 
you choose that particular algorithm?' and "How do you know that your an­
swers are as accurate as you claim?". The first question is usually answered 
confidently, using such terms as "second-order convergence" or "von Neumann 
stability criterion". The next question, alas, tends to be embarrassing. After 
an initial blank or hostile stare, I usually get an answer like "I tested the 
method with some simple examples and it worked", "I repeated the computa­
tion with several values of n and the results agreed to three decimal places", 
or more lamely, "the answers looked like what I expected". So far, I have not 
faulted any student for the unsatisfactory nature of such a response. 

One reason for my reluctance to criticize is that I have really nothing better 
to offer. Rigorous analysis is out of the question. Even if the average engineer­
ing student were made to master the intricacies of functional analysis, what 
he would find would be disappointing. When we leave the realm of text-book 
problems, the requirements of most convergence analyses are too restrictive to 
be applicable, and the results in any case are not very helpful. In face of this 
failure of analysis, the student can hardly be blamed for resorting to simple 
and often successful rules of thumb. What I do find disturbing is the prag­
matics that are used are often ill-considered. Take for example the common 
practice of repeating the computations with several values of the discretiza­
tion parameters. The reasoning behind this is that, if the method converges 
and we observe that the solution has "settled down" in the first few decimal 
digits, we can be confident that it is actually exact to this accuracy. Some­
times this makes good sense, but unfortunately it does not always work. For 
example, it may not catch systematic errors such as a wrong sign somewhere 
or a dropped factor of two. But such errors are very common, particularly in 
the computer programs that are eventually written. There are many instances 
of programs that delivered incorrect results for a considerable period of time 
before the error was found. Still, one cannot blame the students too much. 
The subject of numerical pragmatics is rarely mentioned in numerical analysis 
texts and is, in my experience, hardly ever treated satisfactorily in courses on 
the subject. 

Pragmatics, being by nature imprecise, can always fail, but they should 
not be ignored because of this. The benefits of numerical methodology are 
so considerable that it will be used even if it cannot be justified rigorously. 
For the analyst this means not rejecting pragmatic approaches, but to come 
up with more effective ones. This is virtually terra incognita in numerical 
analysis. To begin exploring it we might try to classify pragmatics, examining 
their strength, when they are likely to succeed and under what conditions they 
can fail. If mathematics cannot provide rigorous error bounds, perhaps it can 
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get us some way of assigning credibility to the computed results. This, I 
believe, is a very deep question. The machinery for investigating it may exist 
in the theory of probability or in the notion of fuzzy sets, but I know of no 
concerted effort addressing this problem. Yet, it is a very important issue; it 
would greatly benefit many people if we were to understand it a little better. 

5. Producing information instead of numbers. Finally, I would like 
to mention one more point that deserves attention. What I have done so far is 
typical, but rather incomplete. I have used || • || without saying exactly what 
norm is meant. This has the advantage of generality, but the exact nature of 
the norm has to be specified before the result can be put to any practical use. 
The choice of the topology is important. Analysts tend to use the topology 
which makes the arguments simple; most often this means an inner product 
space, such as L^ or a Sobolev-type space. Some finite-element analysis goes 
a step further and uses the energy inner product 

(x,x)L — (Lx,x) 

which is convenient and suitable for positive-definite L. 
Do we then have complete freedom to choose the topology and take what­

ever norm we like? The answer is clearly no, as we can illustrate by ma­
nipulating the problem to an absurd conclusion. As pointed out, the major 
difficulty with the a posteriori analysis is to put a good bound on ||I>-1||; if I 
could always do this, I would have a universal method for bounding the accu­
racy of numerical computations. Of course, I cannot do this in general, but 
if you allow me enough freedom I can swindle the problem away altogether. 
Let me introduce the f(udge)-norm, defined by 

||x||/ = \f(Lx,Lx). 
If L~l is bounded, this is theoretically permissible. But then 

l l* -*n | | / = ||Pn||, 

where the norm on the right might be the L<2 norm. Since ||pn | | is computable 
even for very complicated equations, I have solved the question of rigorous 
and computable error bounds for a large class of problems. 

Life is unfortunately not so simple that we can solve difficult problems 
by a mere change of view. The sleight of hand here is too obvious to be 
acceptable. But then what is a permissible setting? Should we reject the ƒ-
norm, but accept the L<i or energy norms? Or should we insist on a stronger 
maximum norm? These questions can be answered only by considering what 
we expect to get from our numerical computations. 

What information we want from solving (1) must be taken into account by 
the analysis. If x is some function on Rn whose overall shape (say as it appears 
when plotted) is of interest, then an energy or L^ norm analysis means very 
little. In such a situation the maximum norm ought to be used. On the other 
hand, if what we want is some quantity derived from x, a weaker norm may be 
justifiable. The latter is often the case. An engineer computing the flow field 
around a three-dimensional aerodynamic structure is rarely interested in that 
field to a high accuracy. His interest may be primarily in quantities derived 
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by some sort of averaging, such as the lift and the drag on the structure. It 
could well be that in this case an L^ analysis is sensible. 

It is not too hard to give a preliminary formalism by which we can look at 
the question of what is and what is not useful information. Suppose there is 
a linear operator (/> which associates the interesting information (j>x with the 
uninteresting solution x. In this case we will care little about ||x — xn | |, but 
we will be concerned with bounding \\(j)x — 0xn | | . An a posteriori analysis 
trivially yields the inequality 

(10) H ^ - ^ n l l ^ l l ^ ^ l l l l P n l l . 
We are now faced with having to get a bound, or at least a realistic estimate, 
for | |0L_1 | | . This may be easy or difficult, depending on the nature of the 
problem and the information we wish to obtain. But at least the a posteriori 
analysis provides a conceptually simple starting point for the questions that 
we should be asking. 

All of this brings up a related issue. Computational mathematics may 
have been affected negatively by an overly close adherence to the paradigms 
of classical analysis. Classical analysis concentrates its efforts on getting a 
closed form solution of (1); the physically interesting answers are then derived 
from this. Numerical methodology has followed this lead, replacing the quest 
for a closed form solution by one for a numerical approximation. After an 
approximate solution xn has been found, further numerical computations are 
needed to get (f>xn. Since the relation between xn and <\>xn may not be clear 
to the user, there is a tendency to overcompute. The result is that many 
hours of computer time are wasted calculating to several significant digits, 
things that nobody wants to know. Once in a while one sees a comment on 
this; that instead of starting from (1), we ought to find formulations whose 
solution leads to (j)xn directly. This is an intriguing suggestion that is worth 
pursuing but about which we know very little at the moment. 

6. Conclusions. If we look at the present situation in computational 
mathematics, we find a wide range of success as well a some areas of failure, 
and we see that analysis has been the primary factor that determines the 
successes as well as the limitations. While practitioners rarely worry about 
mathematical rigor, the strength of the methodology that is used is very much 
dependent on what we know about the theory. Algorithm selection, which is 
supported by a well-understood convergence theory, can be done effectively 
by an unsophisticated user even for very complex problems. On the other 
hand, there is very little theory by which the numbers we get can be judged. 
The results that come out of the computer are therefore always suspect and 
sometimes downright wrong. It is clear that if any progress is to be made 
in this direction, a better theoretical foundation will have to be established. 
This is a task which, because of recent advances in computers and computer 
science, is becoming increasingly more critical. 

Those who do numerical work are likely to agree that numerical method­
ology is a powerful but at the same time clumsy tool. A scientist who needs 
to solve a complicated partial differential equation numerically must usually 
do a large amount of tedious work. The equations have to be discretized first, 
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then a computer program written and tested, after which numerical results 
are produced that must be further analyzed to get the desired information. 
The process is essentially straightforward, but takes a lot of time and it is very 
error-prone. Few would use it if there were any viable alternatives. Actually, 
the problem is about to get worse. With the development of computers capa­
ble of performing billions of arithmetic operations per second, scientists are 
beginning to tackle some extremely complex and only partially understood 
problems, such as three-dimensional turbulent fluid flow or atmospheric mod­
els for reliable weather prediction. These will have to be solved numerically 
in an environment of computer hardware and software more complicated by 
orders of magnitude than what we presently have. In such a situation, the 
answers will be very difficult to verify and many undetected errors will occur 
if the current casual approach continues to be used. 

What is needed is not hard to state: a system which allows the user to 
describe problems in familiar mathematical notation, which can make an in­
telligent selection of a good algorithm, and which produces guaranteed re­
sults in the way the user wants them. Computer scientists have long strived 
to achieve this goal, but it is only now that it is within reach. A variety of 
systems, such as ELLPACK [6] for the solution of linear elliptic partial dif­
ferential equations, are beginning to make their appearance. These systems 
are still fairly primitive and we can expect better ones as time goes on. Given 
what is currently happening, we can make some reasonable predictions. Fu­
ture systems will not use numerical methodology exclusively, but will be able 
to solve problems by an effective mix of symbolic and numeric computations. 
These systems will have built into them a fair amount of rigorous mathematics 
and good pragmatics, kinds of "expert systems" that will outperform any but 
the most experienced numerical anslysts. Finally, the systems will converse 
with the user interactively so that they can be guided by the user's insight and 
physical intuition. It may take some time before such an ideal is realized, but 
the work has begun. When we start looking at such new ways of computing, 
we quickly realize that the current state of numerical analysis cannot support 
such systems adequately. As their development proceeds, the open problems 
I have outlined here will take on added significance. The automatic problem-
solving systems of the future will need to be based on a strong theoretical 
foundation, so that they can produce results that are either guaranteed or 
have a high reliability as measured by some well-defined criteria. Otherwise, 
they will be viewed with suspicion by some and used incorrectly by others. 

The advances that are now being made in various areas of computer science 
are forcing us to re-evaluate the way in which we do numerical computations. 
The realization that a different view is necessary has already created a new 
catch-word, scientific computation, which is becoming recognized as a separate 
discipline transcending the old computational mathematics. Mathematicians 
can play a significant role in this emerging discipline if they are able to provide 
new paradigms for computation, but in order to do so much of what has been 
done up to now will have to be reconsidered. There are some signs that such a 
fundamental rethinking is beginning. The work of Traub (e.g. [8]) and Smale 
[7] introduces ideas from information theory and computational complexity 
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in an effort to understand more clearly what we can expect from numerical 
algorithms. My own work has convinced me that the a posteriori method is an 
idea with potential for major advances in making analysis practically useful, 
not only for the typical problems in differential equations, but also for the 
more difficult inverse and ill-posed problems [3]. But all of this work is in its 
early stages and has not yet had much impact on accepted numerical method­
ology. Perhaps the only importance of this activity is just to stir things up; 
eventually newer ideas may come along that will replace or subsume the older 
ones. What is exciting is that numerical analysts are beginning to look at 
their field in a very different way that might eventually lead to new and more 
powerful concepts. One hopes that these new concepts will not only answer 
unresolved practical problems, but will also make computational mathematics 
a richer and more attractive subject. Because introductory numerical analy­
sis courses often emphasize a well-developed but uncritical methodology, the 
subject strikes many mathematicians as just a collection of "cook-book" for­
mulas. This is unfortunate and discourages some to look at numerical analysis 
as an area for exciting research. But, as I tried to indicate, there are a large 
number of challenging problems in which mathematicians can make some very 
significant contributions. In fact, the full realization of the potential of com­
putational mathematics requires the development of new and sophisticated 
analytical tools. 
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