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However, as up-to-date as this volume is, the field is moving so quickly that 
a student will not find enough about the topics of interest in today's research. 
Representation theory dominates today, with spectacular achievements in the 
representation theory of the groups of Lie type and whole new areas starting 
up in general representation theory. The use now of representation theory as a 
tool for studying structure of simple groups is very minimal, though in the long 
run one suspects this will not remain the case. The other very active area of 
finite group theory is the study of more geometrical approaches. These ideas, 
in particular, the amalgam method introduced by Goldschmidt, have blos­
somed and have applications to structural questions. Indeed, some of the 
proofs of the basic "pushing up" theorems in local methods, which Suzuki 
exposits so well, are fast becoming obsolete due to these much more powerful 
geometric methods. The quickness of progress in finite group theory will no 
doubt continue to plague authors of books on the subject. 
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Introduction to various aspects of degree theory in Banach spaces, by E. H. 
Rothe, Mathematical Surveys and Monographs, vol. 23, Amer. Math. Soc, 
1986, vi + 242 pp., $60.00. ISBN 0-8218-1522-9 

Those who have not seen his name before or know as little about the author 
as we do will suspect that there must be something special about him, since his 
manuscript was published in an edition which is one of the finest we have seen 
in recent years. Golden letters on the cover and paper so innocently white that 
one hesitates to mark the only thing that has to be, namely the ends of proofs, 
which are often difficult to find since proofs are long, interrupted by lemmas 
with proofs, etc. The secret is easily brought to Hght if one starts reading as 
usual, i.e., references first. There one finds his first paper [5] on the subject, 
and a look into the original reveals that it was written in 1936. In other words 
the book appeared just in time to celebrate the golden wedding of author and 
topological degree. 

Digging more into history we see that the fundamental paper [4] on degree 
theory in Banach spaces by J. Leray and J. Schauder was published in 1934, 
and from the second part of this paper it is obvious that the class of maps they 
consider was motivated by its usefulness in solving elliptic boundary value 
problems. In fact it was a revolutionary breakthrough in the treatment of these 
and other nonlinear problems, studied intensively and solely by the then 
almighty method of successive approximations. Since any revolution is based 
on previous evolution, let us note that Leray-Schauder degree, as it is called 
today, had a well-known forerunner, the corresponding concept for continuous 
maps on Rw, called Brouwer degree, since L. E. J. Brouwer's paper of 
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1912. This is an outcome of combinatorial (or prealgebraic) topology which, 
together with some of its topological consequences and as a byproduct of 
intersection theory, was made popular by the then brand-new classic [1] of 
P. Alexandroff and H. Hopf of 1935. Clearly, the name Banach space indicates 
that some knowledge about infinite-dimensional normed vector spaces and 
analytical/topological concepts related to them is necessary too. Although 
most writers still did not feel so at home in such spaces as we do today, a flood 
of papers and ideas on (linear) functional analysis, as it is called in our days, 
was already canalized by S. Banach's classic [2] of 1932. Almost 20 years later 
papers of M. Nagumo and E. Heinz made evident that degree theory can also 
be established elegantly by means of purely analytical tools, and this is what 
the author tells us in his introduction: "the book is written from the point of 
view of an analyst." Pursuing this point of view, let us now sketch the subject 
and its role today. 

Those who had a reasonable teacher in complex function theory know about 
the useful role played by the winding number w(T, a) of plane piecewise 
differentiable curves T (with respect to points a & T) in the study of zeros of 
analytic functions. Those who even had a good teacher (or book) also know 
that the concept can be extended to continuous T, due to the observation that 
w(T1, a) = w(T29 a) if a £ T and the C1-curves Tx and T2 are sufficiently close 
to T, and that it is not difficult to establish its essential property, namely 
homotopy invariance. To get a concept of similar usefulness for the study of 
finite systems ft(xv..., xn) = yt (for / = 1 , . . . , «), we simply imitate, consider 
open bounded B c R " instead of the regions enclosed by T, continuous maps 
ƒ: 12 -> Rn and points y e R W \ / ( 3 1 2 ) , and try to find a Z-valued function d 
on these triples ( ƒ, 12, y) which satisfies at least the following natural require­
ments: 

(dx) </(id, £2, y) = 1 for y e 12 (id(jc) = xon RM). 
(d2) */(ƒ, 12, y) = d(f±Ql9 y) + d(f, 122, y) if 12x and 122

 a r e disjoint open 
subsets of 12 and y <£ / ( S \(12x U 122)). 

(d3) d(h(t9 -),û, y(t)) is independent of t e ƒ = [0,1] if h: J X 12 -» Rn 

and y: J -» Rn are continuous and y(t) £ h(t, 912) on / . 
Condition (d2) implies that we have a solution of f(x) = y if d( ƒ, 12, y) -=h 0, 

and the homotopy invariance expressed by (d3) is most useful in detecting 
</(ƒ, 12, y) # 0. In particular, Brouwer's fixed point theorem, saying that a 
continuous ƒ from the unit ball Bx(0) into itself has a fixed point, follows from 
(d3)and(d1) . 

In the construction of such a function d we find it most instructive to start 
at the end and to cook the problem down, step by step, to the simplest case 
f(x) = Ax with de t^ # 0, i.e., we go from C(12) to C°°(12) n C(12) by means 
of (d3) and the fact that C°°(12) O C(12) is dense in C(12), then from singular 
values y to regular ones (i.e. det ƒ '(x) # 0 whenever f(x) = y) by means of 
(d3) and an easy special case of Sard's Lemma, saying that f({x e 12: 
det ƒ '(x) = 0}) has «-dimensional Lebesgue measure zero, and finally, since 
we have at most finitely many solutions x* in the regular case, we use (d2) and 
(d3) to see that computation of d(g, 2^(0), 0) with g(x) = f\xl)x is all we 
need. Now elementary linear algebra shows that this integer is necessarily given 
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by sgndet ƒ \xl). The advantage of this first step is that on our way down we 
use only things which we need anyway on the way up, that we have proved 
uniqueness of d, and that our starting point, i.e. the definition 

d(f,Q,y)= I sgndet ƒ ' (*) 

for the regular case, does not fall from heaven. On the way back to C(ü) the 
only difficulty is getting rid of the regular case, i.e. to prove d(f, £2, y1) = 
d(f, Ö, y2) if yl_and y2 are regular and sufficiently close to y & f(dQ) with 
ƒ e C2(ö) Pi C(0), say. Instead of using an analytically awkward transversal-
ity argument by going one dimension higher as in this book, we prefer the 
simple trick of writing d( ƒ, S, y') as 

f %(f(x)-y')detf'(x)dx 
JQ 

with mollifiers (pe of sufficiently small support. Then the desired equality 
follows easily from the divergence theorem and LJLiSa^/S*,- = 0 (for j = 
1 , . . . , «), where atj is the cofactor of dfJ(x)/dxi in det ƒ \x). 

Now, let us replace Rn by an arbitrary real Banach space X. If dim X < oo 
then the extension of Brouwer's degree just discussed is obvious, since X is 
linearly isomorphic to Rw. In case dim X = oo there cannot be a degree 
satisfying (d1)-(d3) for all continuous ƒ since, for example, Brouwer's fixed 
point theorem is no longer valid. However, a unique ^egree exists for the 
subclass of maps ƒ = id — f0 with f0 continuous and /0(Q) relatively compact, 
considered by Leray and Schauder in [4] and by the author throughout the 
book. The idea behind its definition is simple, since /0 can be approximated, 
uniformly on Û, by finite-dimensional maps g (i.e., g(Q) c Y with dim Y < oo) 
and, assuming y e Y without loss of generality, the solutions of JC - g(x) = y 
are already in Ö Pi Y; in other words repeated use of (d3) brings the problem 
down to the uniquely determined degree for finite-dimensional spaces and 
return to the general case presents no difficulties. Since this is so, we do not see 
any reason, at this level, to imitate the R"-procedure sketched above, i.e., to 
start with the regular case under the additional assumption that f0 be C2, say, 
and to check how far one can go this way, as is done in this book based on the 
author's paper [6]. Also a newcomer may suspect that at the end we cannot get 
rid of a C1-assumption unless we consider very special X, and he may 
complain about the starting point, i.e. the analogue of d(g, B^O), 0) = sgn det A 
for g(x) = Ax, which is not motivated and requires a lot of preparation, while 
it is so easy to deduce from the elementary spectral theorem for compact Hnear 
operators once the degree is established in the quick way. 

Of course the development did not stop at this point. One has considered 
more general settings, say manifolds modelled on X or absolute neighborhood 
retracts, and more general classes of maps, say set-contractions or multivalued 
maps. On the other hand many different applications called for invention of 
new or improvement of other old methods, so that degree (or index) theory still 
plays a useful role, but no longer the dominant one it had for some period in 
the abstract treatment of nonlinear problems, which we may call nonlinear 
functional analysis today. 
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By what we learned about the author and his book, we of course wish we 
could have had the opportunity to talk with him before we wrote the first two 
chapters in [3] and he wrote his nine chapters plus two appendices. 
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Potential theory, an analytic and probabilistic approach to balayage, by 
J. Bliedtner and W. Hansen, Springer-Verlag, Berlin, Heidelberg, New York 
and Tokyo, 1986, xi + 434 pp., $40.00. ISBN 0-387-16396-4 

Potential theory and probability theory began a symbiosis in the 1940s and 
1950s which continues to yield some of the deepest insights into the two 
subjects. On the surface, they seem quite dissimilar; fundamentally, certain 
aspects are identical. 

The genesis of modern potential theory was H. Cartan's investigation of 
Newtonian potential theory in the 1940s. If /x is a distribution in R3, then the 
potential generated by JU, is the function Un(x) = ƒ \x - y\~l[i(dy). Some hint 
of the richness of this class of potentials rests in the observation that every 
positive superharmonic function in R3 can be represented as the sum of a 
positive constant and the potential of a positive measure ft. This collection S of 
superharmonic functions is the potential cone of Newtonian potential theory: 
it is closed under addition and scalar multiplication, and the minimum of two 
functions in S is again in S. 

Many of the problems of potential theory are rooted in the problems of 
electrostatics in the classical case. Place a unit charge on a conductor B in R3. 
The electrons will rush to the skin of B and assume an equihbrium distribution 
IT so that the potential UTT(X) of this distribution is constant for x in the 
interior of B. We can obtain UTT(X) from S as follows. Let ƒ = inf{g e S: 
g > l o n 5 } . There is a unique element Uy in S which agrees with ƒ almost 
everywhere. The total mass of y is called the Newtonian capacity of the 


