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RIGIDITY AMONG PRIME-KNOT COMPLEMENTS 

BY WILBUR WHITTEN1 

An unpublished result of Hempel and Waldhausen states that the group 
of a prime knot in S3 determines the type of the knot provided that each 
nontrivial (tame) knot K satisfies the unique imbedding property (UIP), that 
is, if any imbedding E(K) —> S3 of the exterior of K into S3 extends to an 
autohomeomorphism of S3. Since we do not yet know that all nontrivial knots 
have the UIP, much less property P, this result suggests four old questions. 

(1) Does the group of a prime knot determine the complement? 
(2) Does the group of a prime knot determine the type of the knot? 
(3) Do knot complements determine knot types? 
(4) Do all nontrivial knots satisfy the UIP? 
Partial answers abound—see, for example, Simon's remarks in [K, Problem 

1.13, p. 278] and the extensive comments of Gordon in [G] for background— 
but these partial results do not resolve any of these questions. The principal 
announcement in this paper is that the answer to Question (1) is affirmative. 

RIGIDITY THEOREM. Prime knots (C S3) with isomorphic groups have 
homeomorphic complements. 

REMARK. Since the group of a prime knot cannot be isomorphic to that 
of a composite knot [FW, Lemma 2, p. 1286], the Rigidity Theorem answers 
Question (1) affirmatively. 

The Rigidity Theorem follows from Proposition 1 and recent (combined) 
work of Culler, Gordon, Luecke, and Shalen ([CGLSi, Corollary 2, p. 43] or 
[CGLS2, Corollary 2]). Let Q denote the rationals, let r E Q U {00}, and 
let K(r) denote the closed, orientable 3-manifold obtained by r-surgery on a 
tame knot K C S3. 

PROPOSITION 1. If there exist prime knots with isomorphic groups and 
nonhomeomorphic complements, then there exist a nontrivial knot K and an 
integer m such that 

(1) K(l/m) s S3, and 
(2) H ^ 0 , 1 , or 2. 

OUTLINE OF PROOF. Let J\ and J2 be prime knots with isomorphic 
groups and nonhomeomorphic complements. Then, as is well known, Ji is 
a cable knot, J(pi,qi,K{)1 about a nontrivial knot K{ (i = 1,2) (see, for 
example, [K, Problem 1.13, p. 278]), and so there exist annuli, A\ and A2, 
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and solid tori, Vi and V2, such that E(Ji) = E(Ki) \JA. V{ (i = 1,2). By an 
application of Johannson's deformation theorem [Ja, Theorem X.21, p. 212], 
we can find a homeomorphism ƒ: E{K\) —• E{K.2) such that f(A\) = A2. 
Hence, if we orient K{ and let {\ii,\ï) be a (standard) meridian-longitude 
pair on dE(K{), then ƒ takes a (pi, <7i)-curve on dE(K\) to a ±(p2> #2)-curve 
on dE(K2). For homological reasons, we have \p\\ = \p2\ and \q\\ = \q2\. 
Changing orientations, if need be, we can guarantee that q\ = #2 = q > 2; set 
pi = p, and note that p2 = £p, with s G {-1,1}. 

Homologically, /*(Ai) = ±À2, and /*(//i) = ±//2 4-mA2 (for some m£ Z); 
also, /*(p/ii + gAi) = ±(epfi2 + Q^)- It follows easily that mp = ±2#. Hence 
1 < |p| < 2 and 

, m | _ f 2 « , if|p| = l, 
| m | - t^(odd) , if|p| = 2. 

Therefore, \m\ ^ 0,1, or 2, since q > 2. Since /*(/ii) = ±/i2 + ^A2, either 
/JC2(l/m) = (53 , üfi) or K2(-l/m) = (53 , Ifi). D 

COROLLARY 2. TTiere exzst at most two distinct prime knots with a given 
group. 

PROOF. Let {Ki, K2,...} be any collection of prime knots with TTiE(Ki) « 
iriE(Kj), for all i and j . By the Rigidity Theorem, we have E(Ki) = E(Kj), 
for all i and j . By [CGLSi, Corollary 3, p. 43] or by [CGLS2, Corollary 
3], the collection {Ki,K2,...} contains representatives from, at most, two 
distinct knot types. D 

Complete proofs and other results will appear in [W]. I wish to thank 
M. Boileau, F. Gonzâlez-Acuna, C. Gordon, K. Murasugi, and J. Simon for 
helpful comments. 
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