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INTRODUCTION 

Suppose that a function g generates a Fourier series in the usual way: 

Now multiply both members by eixt/2*n and formally integrate over a period. 
On the right we obtain 

(la) 

or, equivalently, 

(ib) 

^ 5111 7T^« "~ II) 
LC" tr(t-n) 9 

sin 77/ y» ( - 1 ) n 

IT 

which is called a "cardinal series". On the left we obtain a function ƒ whose 
form 

(2) f(t) = j^f_j(x)e'x'dx 

suggests that it has a Fourier transform with compact support on [-TT, TT], or, 
put another way, ƒ has no frequency content outside the "band" [-TT, TT]. One 
can expect that such an ƒ will be represented in some sense by the cardinal 
series (1), and that in all likelihood the coefficient cn will, because of (2), be of 
the form ƒ(«). 
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The purpose of this article is to bring under review some of the mathematics 
surrounding the cardinal series, including a few notes on its history. Some of 
the material seems to be new, but the presentation will be largely expository in 
character. 

A major factor affecting current interest in the cardinal series is its impor­
tance for certain applications; in fact, its use as an essential ingredient in the 
sampling theory of band-limited signals in communications engineering con­
stitutes a truly important piece of scientific methodology. During the past three 
decades or so, this application alone has provided a strong impetus to further 
the mathematical theory, much of which has in fact appeared in engineering 
literature. 

This sampling principle has even begun to penetrate the semipopular litera­
ture; see, e.g., Bigelow and Day (1983, p. 102), where it appears in a rather 
unexpected context. 

There are two recent survey articles in this area. A. J. Jerri's (1977) covers a 
wide range of topics and has a large and useful bibliography; it is firmly 
oriented towards applications and includes results on stochastic processes. P. 
L. Butzer's (1983) is more modest in its scope and aims to survey some of the 
approximation theory associated with the cardinal series, with particular 
emphasis on those parts developed by hiniself and his colleagues at Aachen 
during the past decade. 

I certainly have neither the intention nor the competence to vie with either 
of these surveys; but I think that the more purely mathematical theory of 
cardinal series and its historical origins deserve a fuller account than has been 
attempted to date. I shall try to do this by drawing on the whole of the 
historical range of material and on engineering, as well as mathematical, 
literature. 

I. Kluvânek (1965) has remarked that "The origin of this theorem [the 
sampling theorem below] can hardly be traced". In the first of the stories to 
follow, which charts a historical journey starting in nineteenth-century France, 
I hope to show that this is an unduly pessimistic assertion. The first explicit 
mention of this sampling theorem (part A) and the cardinal series known to me 
occurs in three works of E. Borel dating from the last years of that century (see 
§1.1 for a fuller account). These contributions of Borel, as well as those of 
several other people, seem to have been overlooked in contemporary sources. 
Certain mysteries begin to appear (§§1.2,1.3) as we penetrate back further into 
the nineteenth century in search of deeper roots. 

I should add that the "history" will be of the rather superficial "who knew 
what and when" kind. Much of what we subsequently cover will be seen to 
have its origins in this historical material. 

These later stories can be left to speak for themselves. I make no apology for 
including so many examples in §4.2, most of which have not been pointed out 
before; in total, they show what a powerful unifying principle Kluvânek's 
theorem (§4.1) is in this area, and there seems to be something interesting to 
say about each one. There are also some other items of novelty, mostly 
consisting of "infilling", which include the complete orthonormal character of 
the set in Item 2, §3.1, and the main theorem on absolute convergence in §3.4. 
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Before the storytelling begins I want to describe in slightly more detail how 
the cardinal series is applied in the sampling theory of band-limited signals 
(those functions having the property described in part B below), and for this 
purpose I can do no better than turn to the seminal paper of C. E. Shannon 
(1949). 

In this paper Shannon gives a presentation of the sampling theorem with 
which his name has become closely associated (although we shall see in §1.5 
that he was preceded in this). This sampling theorem should really be consid­
ered in two separate parts, and we set these out below as parts A and B. Later, 
we allow a looser usage of the phrase "sampling theorem" and use it to mean 
an assertion about the representation of a function ƒ, band-limited in some 
sense, by a series generated from some set of data associated with/. 

SAMPLING THEOREM (PART A). If a function f(t) contains no frequencies 
higher than W/2 cycles per second, it is completely determined by giving its 
ordinates at a sequence of points spaced \/W seconds apart. 

SAMPLING THEOREM (PART B). A function f (t) band-limited to[-irW9<jTW]9 

i.e., with the form 

(3) f(')=r g(x)e»'dx, 
J -ItW 

is the sum of its "scaled " cardinal series 

Shannon was able to say of part A that it was "common knowledge in the 
communications art", and this knowledge was based on the following intuitive 
justification: if ƒ contains no frequency higher than W/2 cps, it cannot change 
to a substantially new value in a time less than half a cycle of this highest 
frequency, that is, \/W seconds. 

Shannon then proceeded to put the matter on a somewhat firmer footing, 
arguing something like this: since the general Fourier coefficient of g (in (3)) is 
f(n/W\ the ensemble of "samples" { f(n/W)}, n = 0, ± 1 , . . . , determines g 
via its Fourier series, and g in turn determines ƒ via (3). 

As to part B, Shannon's justification runs more or less like this: the sum of 
the cardinal series on the right in (4) is band-limited to \-mW, mW\ since this 
is true of each term separately (one shows this using elementary properties of 
the Fourier transform). Also, if m and n are integers, the "interpolatory" 
property 

( . smiT(Wt- n) (0, t = m/W,m*n, 

shows that this sum coincides with ƒ at the sample points. Hence, by part A the 
sum is none other than ƒ itself. 

Of course there are other ways of reconstructing ƒ from its sample values; for 
example, one can use the Newton-Gauss interpolation series (see, e.g., J. M. 
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Whittaker (1935, p. 62)). However, it is the cardinlal series which has found 
favour in signal-processing applications, undoubtedly because of the neat way 
in which it fits into the accompanying Fourier analysis. 

It was in this way that Shannon established the following important en­
gineering principle: if a signal has bounded frequency content, then all the 
information contained in that signal is in fact contained in the sample values at 
equidistantly spaced sample points, and knowledge of the bound determines 
the minimum rate at which the signal needs to be sampled in order to 
reconstruct it exactly. This rate, W samples per second, is called the "Nyquist 
sampling rate" (see Shannon (1949, p. 12) for references to early work of 
Nyquist and others in this field). 

Interestingly enough, Shannon goes on to mention that other sets of data 
can also be used to determine the band-Hmited signal/: for example, the values 
of ƒ and its first derivative at every other sample point, the values of ƒ and its 
first and second derivatives at every third sample point, and so on. Also, it is 
possible to use sample points that are not equidistantly spaced. Several years 
were to elapse before mathematical formulations of these procedures were 
developed (see, e.g., §§2.3, 3.1, 3.2). 

In a further interesting section, Shannon gives what amounts to a Hubert 
space formulation of the problem of transmitting a message over a band-limited 
communication channel and even includes a little glossary, of eleven items, 
comparing engineering and vector space terminologies. 

It should be mentioned that these remarks were all made in relation to 
signals of finite duration; it was J. D. Weston who gave the complete Hubert 
space formulation of the situation, independently of Shannon and at about the 
same time (see §1.5). 

Notations are mostly standard. The Fourier transform of/, 

*f(x)--±=f f(t)e-Mdt, 

where M denotes the real numbers, will often be denoted f, and/v will denote 
the inverse transform. A naked summation sign means that the index n is to 
range over the integers Z or over TLk as the context demands; a prime ' denotes 
the omission from summation of the term corresponding to n = 0; convergence 
is understood in the sense of spherical partial sums. 

STORY ONE 

HISTORICAL NOTES 

1.1. Beginnings. The cardinal series can be obtained formally by considering 
the Lagrange interpolation formula in the form 

/(») | /(-») 1| 
HM(z-n) H^-n){z + n)\y 

Hm{z) /(0) + E 
n « l 
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where 

ffm(z)-*n(i-£), 
which interpolates a function ƒ ( z ) at the points z = - m, . . . , 0 , . . . , m. Since 

« » " l \ AÎ2/ 

the cardinal series is obtained by letting m -> oo (see T. A. Brown (1915-1916) 
and Ferrar (1925, p. 270); see also J. M. Whittaker (1935, p. 63) where a more 
general limiting procedure is carried out). It can also be obtained formally as a 
special case of Cauchy's partial fractions expansion for a suitably restricted 
meromorphic function F with poles at the points (/?„), namely 

F(z) = £ residue at w = pn of -(— r ; 

one applies this to F(z) = / (z) /s in mz, where ƒ is entire, and the cardinal series 
(lb) results (see Ferrar (1925, p. 281)). 

The first explicit use of the cardinal series which I have been able to discover 
is in a brief note by Borel (1898, p. 1002), who was discussing the question of 
how the power series coefficients (an) of a function/(z) = T*anz

n determine its 
singularities. One way of getting information on this is to form an auxiliary 
function \p determined (in part) by the conditions yp(n) = an\ from the many 
ways of doing this, Borel chose 

, ( v sin 7TZ £ an 

n = 0 

with E|a„| < oo for convergence. This certainly has the appearance of the 
cardinal series (lb), but on closer inspection we notice that the summation 
does not extend over negative values of n, and the factor ( - 1 ) n is missing from 
the summand. No matter, the next year Borel (1899) returned to the interpola­
tion problem, set an = a_n and used the full cardinal series expansion, 
complete with ( — 1)M in the summand, under the less restrictive convergence 
criterion 

(6) < oo. 

This is an important inequality in the theory of cardinal series, and we shall 
return to it in §3.4. Borel went on to give a more general form of the series with 
the factor (z/n)p in the summand, a device for improving the convergence 
behaviour (p. 85). He also mentioned (p. 83) that he deduced the series from 
Lagrange's interpolation formula. 

A couple of years earlier, Borel (1897) had been studying the general 
Lagrange-type formula 

cn<t>(z) 
ƒ ( * ) - £ *'(aH)(z - an) ' 
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with 

for convergence, which he had also studied in his thesis. The significant 
passage here is on p. 675: 

Posons 

/ (z ) -= f rp(x)eizxdx 
J -IT 

et supposons que la fonction \p(x) satisfasse aux conditions de 
Dirichlet. Dès lors, si Ton connaît les valeurs de f(z) pour z = 
0, ±1 , ± 2 , . . . , la fonction \p(x) est déterminée et par suite la 
fonction entière ƒ (z) est connue sans ambiguité. 

This leaves no doubt that what we here call Sampling Theorem A for 
band-limited functions was known to Borel at this time. It is interesting to note 
that his justification for it is virtually the same as Shannon's (see the Introduc­
tion). I must point out, however, that nowhere can I discover that Borel linked 
his statement of Sampling Theorem A with his use of the cardinal series, which 
would have established Sampling Theorem B. 

A few years later Hadamard (1901) made a much more extensive study of 
this same problem of determining properties of a function from its power series 
coefficients. He used the same formula as Borel for the auxiliary function 
(quoting only Borel's 1898 paper and still omitting ( — l)w), but he too gave the 
less restrictive convergence condition (6). 

An interpolation scheme due to de la Vallée Poussin (1908) is often quoted 
as being an early form of the sampling theorem; actually it would be more 
realistic to describe it as a close relative. De la Vallée Poussin considered (op. 
cit., p. 227) the finite interpolation formula 

sin mt y( ^nf(nir/m) 

a ' 

where ƒ is a given function defined on [a, b]9 and the summation is understood 
to be over those n for which nir/m e [a, b). The limit m -> oo is now taken, 
and de la Vallée Poussin's main result (p. 341) is that the formula converges to 
f(t) at any point t in a neighbourhood of which ƒ is continuous and of 
bounded variation. 

This kind of interpolation has come back into fashion during the last decade 
or so, largely as a result of the need to apply sampling theorems to duration-
limited, as opposed to band-limited, signals (see, e.g., Butzer (1983, §3)). 

Ferrar (1926) reported that de la Vallée Poussin's work had been applied 
and extended by Steffensen (1914) and Theis (1919). This is true of Theis, as 
her title suggests, but Steffensen's main source for the cardinal series was 
Hadamard (op. cit.), and he referred to de la Vallée Poussin only in passing. 
Steffensen (p. 83) seems to have been the first to relate the cardinal series to 
other interpolation series, in this case Newton's divided difference formula. 
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1.2. The Cauchy connection. In this section I want to mention the first of two 
mysteries concerning the early history of the cardinal series which I am 
presently unable to resolve. 

This concerns a passage from H. S. Black (1953, p. 41) which is worth 
quoting in full: 

If a signal is a magnitude-time function, and if time is divided into 
equal parts forming subintervals such that each subdivision com­
prises an interval T seconds long where T is less than half the 
period of the highest significant frequency component of the signal; 
and if one instantaneous sample is taken from each subinterval in 
any manner; then a knowledge of the instantaneous magnitude of 
each sample plus a knowledge of the instant within each subinterval 
at which the sample is taken contains all of the information of the 
original signal. 

This is followed by a reference to Cauchy (1841). I must report that I have 
been unable to find anything to support such a statement in this reference or, 
indeed, in any other of Cauchy's writings. Following Black, later writers have 
given the same reference, however, and suggested that ".. .the sampling 
theorem was already known to Cauchy..." (Yen (1956); see also Petersen 
(1963) and Haddad et al. (1967); Jerri (1977, p. 1565) sidesteps the issue by 
saying ". . .some attribute it [the sampling theorem] to Cauchy..." and refers 
to Black). 

Cauchy's paper is in two parts. By a strange coincidence the first part is 
concerned with developing certain finite interpolation formulae (by taking the 
interpolation points in Lagrange's formula to be in geometric progression), 
which have every right to be called cardinal series; but we shall have to look at 
the abstract harmonic analysis setting (§4.2) before being able to see this, and 
it seems impossible that these were what Black was referring to. The second 
part of Cauchy's paper is concerned with trigonometric interpolation and is 
quoted in historical studies (e.g., Burkhardt (1899-1916, p. 642 et seq.)) as 
being one of the main sources for this. The difficulty is that Cauchy's paper is 
about finite interpolation and contains no reference to band-limited functions, 
as required in the quotation above. 

The intention behind this reference remains a mystery. 

1.3. The Poisson connection. Unresolved mystery number two concerns the 
following description of the sampling theorem by Neveu (1965, p. 50): " . . . le 
théorème d'échantillonnage dit de Shannon mais dû en fait à Poisson". No 
reference is given, and I have not been able to find any definite evidence for 
either part of the sampling theorem in the works of Poisson. Certainly the 
cardinal series is closely connected to Poisson's summation formula, but this 
seems to be a much later development (see §2.5). 

At the same time, in searching through Poisson's collected works I did come 
across a most interesting paper (1820) on the vibrations of a string composed 
of two different parts. 



52 J. R. HIGGINS 

Let us take up the story with Poisson on p. 460, where we find a pair of 
coupled nonharmonic Fourier sine expansions: 

f(x) = £ i ? x s inX— sinX—, 

(7) °L ", 
g{x') = Y,BX sin X— sin X— ; 

a a' 

here the summations are taken over the positive roots (Xn) of 

n/x. , . XL'* XL XL' . XL . 
P( X ) s a sin cos h a cos sin — = 0, 

a' a a' a 
ƒ and g represent the initial states of the two pieces of string, L and L' are their 
lengths, and x' — L + L' - x. The coupling is due to Poisson's initial condi­
tions. 

With Poisson we multiply the first of these coupled equations by sin(tx/a) 
and integrate over (0, L); we multiply the second by sm(tx'/a') and integrate 
over (0, L'), and then add the results; after some reduction one obtains 

(8) ni)'H,)lT^K^r 
in which 

F(t) - ~ an — ƒ sin — f(x) dx a a Jo a 

a . tL cv . tx' / A , , 
+ — sin — ƒ sin — e ( x ) dx . 

Because of the special nature of the sum i% this is more than just another 
Lagrange interpolation series. The case a'' = a — L' = L ~1 reduces to what 
is effectively the cardinal series representation for a function F which is even 
and such that F(t)/sin t is band-limited. 

This raises the question of whether we can say that Poisson discovered the 
sampling theorem for band-limited functions in 1820. On the strength of these 
calculations one might be inclined to say yes, but at this point I must confess 
to having prejudiced the issue to some extent. Where I have written the 
variable /, Poisson had X', which he used along with X to represent any root of 
P(X) = 0, and his intention was merely to find the coefficients (Bx) in (7) 
(which he does on p. 462). Thus, with hindsight the interpolation series (8) is 
read into Poisson's presentation without difficulty; of course, I have done this 
because it seems a rather interesting situation in its own right, but, all in all, 
one can hardly credit Poisson with something he did not intend. 

So a second mystery remains. 

1.4. From E. T. Whittaker to G. H. Hardy. In this section we shall 
concentrate on some of the interesting material from the interwars period 
which seems to have fallen into an undeserved oblivion. This historical period 
is, for our purposes, conveniently delimited by two landmark studies in the 
theory of cardinal series. 



CARDINAL SERIES 53 

The first of these is the groundbreaking study by E. T. Whittaker (1915). It 
contains no references of any kind and really represents a new beginning. 
Whittaker posed the familiar interpolation problem of finding a function 
which passes through the points (a + nw, ƒ„), a, w complex, n = 0, ± 1, ± 2, 
He called the class of all such functions the cotabular set associated with ( fn) 
and showed that the sum of what we now call the cardinal series picks out a 
special member, the "cardinal" function, of this cotabular set. Whittaker's new 
idea was that this function is special because it is entire and free from " violent 
oscillations", or, more precisely, it has "no constituents whose period is less 
than twice the tabular interval w" (p. 193); in other words, it is band-limited. 
Then Whittaker's series (op. cit., p. 186) for the cardinal function ƒ takes the 
form 

v-n ., . sin7r(x — a — nw)/w 
2_,f(a + nw) j± r^f—, 

TT(X - a - nw)/w 
He did not call it the cardinal series—the name seems to first appear in the 
works of J. M. Whittaker, his second son, about 1920. 

Before exploring further in this historical period, it should be mentioned 
that, according to Ferrar (1926, p. 333), F. J. W. Whipple, in an unpublished 
manuscript dated 1910, introduced the cardinal series somewhat earlier than 
E. T. Whittaker and discovered several of its properties, including the band-
limited nature of its sum, which he called slowly swinging. It is tempting to 
think that Whipple was familiar with these lines from "Seal Lullaby" in 
Rudyard Kipling's The jungle book: 

The storm shall not wake thee nor shark overtake thee, 
Asleep in the arms of the slow-swinging seas. 

Incidentally, it was Whipple who coined the phrase "well poised" for a 
certain kind of hypergeometric series, a field in which he is much better 
known. It is unclear why he preferred not to publish his results on the cardinal 
series. 

We come now to one of the highlights of this period—the use of cardinal 
series, and certain extensions, to deduce properties of entire functions from 
their known behaviour at a sequence of points. There are one- and two-dimen­
sional results of this kind. 

In order to approach these ideas let ƒ be entire, of exponential type TT, and 
bounded over U. Then (f(z)—f(0))/z is also of exponential type m and 
belongs to L2(R). Now a function satisfying these conditions is represented 
pointwise over M by its cardinal series (see HI et seq.). After writing out the 
appropriate series and rearranging it (using the partial fractions expansion for 
esc TTZ), one gets 

i+—11-
n z — n \) 

Note that, as well as the sampled values of ƒ at the integers, one item of 
derivative information is also required for the reconstruction of ƒ. Here, the 

(9) / (*)-^{/ ' (o) + ^ + £'(-1)700 
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more usual L2 condition is replaced with one of boundedness over R; conse­
quently, ƒ need not be band-limited (but see the further remarks about this 
series in Topic II of the Conclusion). The series (9) was introduced by 
Tschakaloff (1933), who used it to give an affirmative answer to a problem 
posed by Pólya (1931): 

Let f(z)e~ez be bounded over the complex plane for each e > 0. 
Does the boundedness of the sequence (ƒ(«)), « = 0, ± 1 , . . . , 
imply that ƒ is constant? 

We might call (9) the T-cardinal series. It was used shortly after this by 
Cartwright (1936) and Macintyre (1938) to prove theorems on growth proper­
ties of entire functions. Macintyre gave a second extension along the same 
lines: 

/ w - ^ r w + ̂ / io) 
LVT IT 

• à n W f l , £*£ 1 fir* , y ( - l ) " z 2 / ( " ) \ 
* \[z+ 3! yw + L n 2 ( z _ n ) ƒ• 

Here, ƒ is still of exponential type m but need only be 0(|x|) over R. We can 
call this the r2-cardinal series. 

Macintyre also mentioned that the ordinary, the T- and the r2-cardinal 
series are all special cases of a much more general class of interpolation series 
discussed some years earlier by G. Valiron (1925). Let /A be a nonnegative 
integer, F an entire function (called the base function), and pk a polynomial of 
degree k. Then Valiron calls 

<10> **) = £ ,,,, kt* r + *-i<*) 

the "Lagrange interpolation series of rank ju", convergent if 

^F'(a>r1 < 0°' 
Clearly we get the ordinary, T~ and T -̂cardinal series by taking sin mz for the 
base function, p = 0,1,2, respectively, etc. Also it will be obvious how to 
construct a 7^-cardinal series for a function of exponential type IT which is 
0(|x|*) over U (see, e.g., Boas (1954, p. 221)). 

On looking into Valiron's paper one finds that he gives no references for 
(10), and his general tone seems to indicate that he expected his readership to 
be familiar with it. In fact, he was not the originator, and it does go back much 
further in the literature; see P. Cazzaniga (1882) and M. Guichard (1884) for 
early versions; also see P. E. B. Jourdain (1905). Nevertheless, Vahron's name 
seems to have become firmly linked with the series (e.g., Macintyre (1938) and 
R. P. Boas (1954, p. 232)). 

Zygmund (1959, p. 276) gives a somewhat different application of the 
T-cardinal series, using it to prove Bernstein's theorem on entire functions of 
exponential type and deducing some interesting summation formulae. 
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The T-cardinal series was discovered independently by Hardy (see H6 of this 
section) and M. Zakai (see Conclusion, Topic II). More recently, it has been 
studied from the point of view of approximation theory by W. Splettstösser et 
al. (1981), who call it the interpolating series of Valiron; it has also been used 
by D. H. Mugler (1976), who attributes it to Macintyre. 

At about the same time that Tschakaloff was solving Pólya's problem, Pólya 
himself was contributing to the solution of a rather similar two-dimensional 
version of it. J. E. Littlewood had conjectured that: 

If / is an entire function of order less than two, then the 
boundedness of the double sequence (f(m + in)) (m, n = 
0, ± 1, . . . ) implies that ƒ is constant. 

It was J. M. Whittaker (see (1935, p. 73)) who first settled this conjecture in 
the affirmative, and to do it he introduced the following two-dimensional form 
of the cardinal series. 

THEOREM. Let f be entire such that 

& logM(0 * 
r-*oo j .2 2 

where M is, as usual, the maximum modulus function. Then 

(ID M=«(,)L/(m+*) (- l ) W + w +7-p l"-1;2 + w 2 ) / 2 ) • 
Note that the part played by SUITTZ in the ordinary cardinal series (lb) is 

now taken over by the Weierstrass sigma function <x(z), which has zeros at the 
"lattice points" m + in. 

However, it was Pólya who noticed that Littlewood's conjecture falls out 
from (11) in a couple of Unes or so (see J. M. Whittaker (1935, p. 73)). 

Shortly afterwards, this two-dimensional cardinal series appeared in one or 
two studies concerned with similar problems (see J. M. Whittaker (1935, 
p. 104) for references), but after that it seems to have been completely 
forgotten. It would be interesting to know something more about it: for 
example, whether or not the expansion functions have any nice orthogonality 
or completeness properties. 

Spain (1940) ingeniously used the cardinal series to interpolate a sequence, 
not of function values, but of operators (Dn); here Dn denotes «-fold differ­
entiation if « is a positive integer, w-fold integration if « is a negative integer, 
and the identity operator if n is zero. This process was considered somewhat 
disappointing in that it did not produce the usual fractional derivative operator 
(but this operator is produced (Spain (1958)) if the Newton-Gregory interpola­
tion formula is used instead). 

We end our survey of the present historical period with an important study 
by G. H. Hardy (1941). It is self-indulgent perhaps, but I cannot resist quoting 
six items from Hardy's treasure chest of beautiful results on cardinal series. 

First, we recall that the classical Paley-Wiener theorem asserts that the class 
of functions which are entire, of exponential type T, and whose restrictions to 
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the real axis belong to L2(U) is identical to the class of functions ƒ with a 
representation 

f(z)=(T g(u)e»udu, geL2(-T,T). 
J rr 

Thus, Hardy (1941, p. 332) found it natural to call members of this class 
Paley-Wiener functions. Note that these Paley-Wiener functions form a Hu­
bert subspace of L2(R); we shall denote it PWr, or just PW if T = TT. 

HI. The functions 
, v %vs\m(t — n) 

* ( ' . * ) » 77 \> « = 0, ± 1 , . . . , 
*n\t - n) 

form a complete orthonormal set in PW. 
Shannon (1949, p. 13) mentioned the orthogonality without proof; Hardy, 

on the other hand, gave two proofs. One uses contour integration. The other, 
which gives the completeness as well, proceeds from the complete orthonormal 
character of {einx/2ir} in L2( — TT, IT) via the Fourier transform (see also §3.1). 
HI has been rediscovered many times since Hardy's day. 

Hardy also mentioned that the expansion for ƒ e PW in the set { w(t, «)} is 
its cardinal series and converges uniformly on compact subsets of R. 

H2. PW is a reproducing kernel Hubert space. The reproducing kernel is 

, v sin nit — x) 

(Hardy did not use the phrase "reproducing kernel".) Thus, the inner product 
of ƒ e PW with w reproduces ƒ : 

•JR 77V -" X) 

This integral equation is ascribed by Hardy (p. 340) to H. Bateman (see also, 
Titchmarsh (1948, p. 349)). 

It is of interest to note that every ƒ e PW can be represented as a convolu­
tion sum (its cardinal series) and as a convolution integral (12). The similarity 
between these two representations is striking (and can be generalised; see §3.2). 
Indeed, the integral can be thought of as a "continuous analogue" of the 
series; Boas and Pollard (1973) have given several interesting examples of this 
kind of analogue. 

Hardy went on to discuss function classes more general than L2(U). For any 
/set 

^(0 = f f(x)w(t> x) dx. 

F is frequently encountered in Hardy's theorems. If ƒ does belong to L2(U) 
then F is the orthogonal projection of ƒ on PW. It is natural to consider the 
Fourier series for ƒ in the set { w(t, «)}: 

(13) £ c „ w ( M ) , 
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where 

cH = ff(t)w(t9n)dt. 

If this series converges in some sense, it does not necessarily do so to ƒ, of 
course; it can be the cardinal series for F (see, e.g., H4 below). 

DEFINITIONS. Let 

We have L2(U) cj?*<zj?. 

H3. If f G:Jt* (resp. Jt) then (13) converges {resp. is CI summable) to F 
uniformly on compact subsets ofU. 

DEFINITIONS. Let 

H4. Let f e J(\ then the Fourier series in { w(t, n)} for f is the cardinal series 
forF. 

In particular, we have 

H5. The Fourier and the cardinal series coincide for f e 8&. They are absolutely 
convergent in this case. 

Finally, we give a slightly weakened form of Hardy's theorem on T-cardinal 
series: 

H6. Let f G <%\ then the T-cardinal series for f converges pointwise to ƒ on R. 

1.5. Introduction of the sampling theorem to communication theory. We have 
already mentioned that the sampling theorem in form (A) was known to Borel 
in 1897, and both forms (A) and (B) were introduced into the engineering 
literature by Shannon, whose paper was apparently written in 1940 but not 
published until after World War II (Shannon (1949)); however, its contents 
seem to have been in circulation in the United States by 1948 (see p. lOn; also 
see Shannon (1948)). 

Some years later it became known outside Russia that Kotel'nikov (1933) 
had published the sampling theorem in forms (A) and (B) well before World 
War II, and, in that country, it had become known by his name. References to 
Kotel'nikov's work began to appear in western literature in the late 1950s (e.g., 
Kolmogorov (1956) and Kolmogorov and Tichomirov (I960)). In the early 
1960s D. P. Petersen (1963) still felt it desirable to draw it to the attention of 
the engineering community and summarise its main results. 

Let us note two other independent introductions of the sampling theorem. 
One of these is by Someya (1949) and evidently continues a long Japanese 
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interest in cardinal series (going back to Ogura (1920)), but I can only report 
Someya's contribution at second hand, since I have never been able to obtain a 
copy of his book. 

The other continues in the English tradition. J. D. Weston (1949b) exploited 
Hardy's result HI to give 

. . . a general quantitative theory of communication. The fundamen­
tal idea is that a coded message can (like the state of a microphysi-
cal system in quantum theory) be represented as a vector, or point, 
in a space of an infinite number of dimensions, and that the process 
of transmitting a message over an "ideal" signalling system is (like 
a pure observation in quantum theory) equivalent to a projection of 
this vector on to a subspace A further idea is the provision, in 
this subspace, of a set of rectangular axes with respect to which the 
components of a transmitted message are physical magnitudes 
associated with definite instants of time In this way the geomet­
rical point of view is reconciled with that in which transmission is 
regarded as a process of interpolation. 

Weston went on to mention applications to telephone design. See also 
Weston (1949a). 

Other early contributors to the engineering literature were Nyquist, Bennet 
and Gabor (see, e.g., Shannon (1949, p. 12)), and Raabe (see, e.g., Butzer 
(1983, p. 186)). An interesting account of the engineering origins of the 
sampling theorem was given by Luke (1978). 

STORY TWO 

SOME METHODS FOR DERIVING THE CARDINAL 
AND ALLIED SERIES 

2.1 Foreword. It is appropriate to begin this story with the "S-method"; 
Dirac's delta is a particularly convenient tool in the derivation of sampling 
theorems, and, although not rigorous, the method is one of power and 
fecundity. 

We shall go on to consider what happens if the hypotheses of the sampling 
theorem are modified in some way. For example, we can ask for information 
not only from the function to be reconstructed but from its derivative as well; 
we can alter the "band region" (the set on which ƒ "has compact support); we 
can perturb, or "jitter", the sampling instants. These modifications, as well as 
others, have appeared in the literature largely in response to the needs of 
engineering applications. Of those mentioned, the first two will be discussed in 
§§2.3 and 2.4; the third, in §3.1. To end the present story, we shall see how the 
cardinal series is closely related to the classical Poisson summation formula. 

2.2. The â-method. The delta distribution enters the picture naturally here, 
because the nearest thing one can do on paper to imitate the physical process 
that an engineer would use to actually sample a signal at the instant t = T, that 
is, to subject the signal f(t) to an "instantaneous" pulse at that time, is to form 
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f(t)S(t — T). Of course, one cannot sample over an infinite time scale; 
nevertheless, the "sampled version" fs of/, 

Z,(0- / (OE«('-»T), T>O, 

- E / ( » T ) « ( r - » T ) , 

suggests that ƒ itself be represented as 

(14) f(t) = Zf{nr)g{t - nr), 

in which g is to be a "reconstruction" function independent of/. In order to 
find g, first note that (14) can be written 

(15) f(t) - ƒ / (n)g(f - t O l * ( « - nr) A . 
' R 

Next, this periodic "delta train" is expanded in Fourier series: 

£ « ( i i - « T ) - - £ exp — - — . 
T T 

On rearranging (15) we find a summand consisting of/(f)exp(-2*ri/if/T) 
convolved with g(t)/r; taking Fourier transforms, 

(16) fXx)-fógXx)Zf(x + ^y 
On the right we find a phenomenon frequently encountered in the derivation 
of sampling theorems—spectrum repetition (the phraseology is common in 
engineering literature, where a function's Fourier transform is usually called its 
spectrum). One consequence of this is that if ƒ is band-limited to [ — nW, mW\ 
then we must give T the value \/W to obtain the optimum sample spacing, 
since any smaller value will cause overlapping of the spectra. Another is that, 
since there is one copy of ƒA on the left of (16), we shall have to take 
y/2Ïrg(x)/r to be a "window" through which we can "see" just one copy on 
the right. That one corresponding to n = 0 will do, so g A(x) must be 
X(-?rW, TTW)/ }/27rW(x, as usual, denotes the characteristic function of the 
indicated interval). Taking inverse Fourier transforms we get 

z v sin nWt 

and (14) is the cardinal series. 
Note that this method forces out the "right" form for the reconstruction 

function g (under the assumption of a series representation of the form (14)), 
and it even determines the Nyquist sampling rate. What does the lack of rigour 
matter when one has at one's disposal such a thoroughly healthy, rugged, 
outdoor method of derivation as this? 

It is not easy to trace the origins of the 8-method in the literature; 
Kohlenberg (1953, p. 1432) has given some early references, however, going 
back to 1947. 

Many different kinds of sampling theorems have been derived using this 
method. Linden (1959) used it to derive the derivative sampling formulae of 
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§2.3, both kinds of bandpass sampling formulae in §2.4, and others; a 
multidimensional version of the method was an essential feature of Petersen 
and Middleton's (1962) derivation of the formula for sampling over a general 
lattice (see §5.3). 

2.3. Derivative sampling. In order to illustrate a practical sampling situation, 
J. Fogel (1955) has mentioned the example of an airplane pilot's instrument 
panel, which traditionally consists of dials with pointers giving information 
about the plane's altitude, attitude, speed, etc. Pilots scan their instruments, 
obtaining information from any one of them on a roughly periodic basis. It is 
possible that derivative information could be available to the pilot as well; for 
example, the altimeter would be noticed to be "unwinding" at an alarming 
rate if the plane were in a nose dive! It is just conceivable that the acceleration 
of the pointer could be observed as well; at any rate this little example does 
point out the general need for a sampling theorem which takes account of 
samples not only from the function itself but also from its first r derivatives. 
When just the samples of ƒ (band-limited to [ — TTW, nW]) a n d / ' are available, 
the formula is 

and in this form it was first given by Jagerman and Fogel (1956). A scale factor 
has been included, because this will be a convenient place to mention that both 
here and in the ordinary sampling theorem the band-limited requirement on ƒ 
can be removed by allowing W to approach infinity. The Aachen school (see, 
e.g., Butzer (1983)) has successfully exploited this idea to obtain several 
interesting approximation theorems. They also seem to have been the first to 
attach proper convergence criteria to the derivative sampling formulae and to 
the bandpass formulae of the next section. For example, (17) holds uniformly 
on M if ƒ and ƒ ' are bounded, continuous, and integrable over U9 and ƒ ' is 
integrable there. This is for band-limited ƒ ; if this requirement is dropped, the 
result holds in the limit W -» oo. See also §3.2. 

The general reconstruction formula, which uses samples from a function ƒ 
and its first r derivatives, was first given by Linden and Abramson (1960). It is 

'smir[(Wt - ( r + l ) / i ) / ( r + 1)] 
ir{Wt-(r+ l ) w ) / ( r + 1) / ( 0 - E J V O M ) 

where each P r(«, t) is a polynomial of degree r whose form is too complicated 
to reproduce here. These polynomials were erroneously given by Linden and 
Abramson, but the error was corrected in their 1961 paper, in which implicit 
formulae are given from which Pr can be calculated. We recall that, with 
a = (r + \)n/W, Px = f (a) + (t — a) f'(a); one also calculates, for example, 

Pi = ƒ(«) + ( ' - « ) / ' ( « ) +(> - a)2(„W/6)(f(a) + ƒ " ( « ) ) . 

Note that whatever positive integer value r takes, the spacing between sample 
points is r + 1 times that in the ordinary sampling theorem, but since we need 
r + 1 samples at each point, the usual Nyquist sampling rate is retained. 
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2.4. Altering the band region—bandpass functions. Up to now the band 
region associated with our band-limited functions has been an interval centered 
at the origin. This is more than just a notational convenience; because the 
complex conjugate of f\ — x) is f\x\ we find that if ƒ is real valued, as it 
usually is for applications, then | f | is even, so the compact support of ƒA is 
necessarily symmetric with respect to the origin. 

It will be useful to have at our disposal a "shifted" cardinal series for 
functions ƒ band-limited to the interval (w - TTW,W + mW\ and it is a trivial 
matter to obtain formally, as in (la), the formula 

Note once again that the Nyquist sampling rate is related to the bandwidth 
exactly as before. 

What is not so trivial is to develop a sampling series for functions 
which not only fail to contain high-frequency components, but also 
contain no low-frequency ones either; that is, their band region consists of an 
interval with a concentric interval removed, say 

( - w - TTW, -W + mW\ U(w - TTW,W + <nW\. 

Such a function is called a bandpass signal in engineering terminology. If, for 
example, one were dealing with audio signals, speech or music perhaps, this 
kind of signal would be encountered; examples also occur in radar. 

One could bypass the difficulties altogether by ignoring the "hole" in the 
band region and simply using the ordinary cardinal series for functions 
band-limited to [ — w — mW, w + mW\ but intuition tells us that this would be 
inefficient, since we expect that the overall bandwidth, proportional to W 
alone, should determine the sampling rate as it has before. This does turn out 
to be the case, as we shall now see in sketching two of the main approaches to 
bandpass sampling (for a third, see J. L. Brown (1980)). 

In the first of these, we concentrate on the right half, say, of the band 
region; this approach is suggested by Goldman (1953, p. 76). One can do this 
by writing the bandpass function ƒ by the alternative form of Fourier's integral 
formula (Titchmarsh (1948, p. 119))— 

Z ( 0 = f (a(u)co$tu + b(u)smtu) du, 

where 
f\x) = a(x) - ib(x) 

—and then introducing the auxiliary function 

$ ( x ) - r+9W (a(u) - ib(u))eixudu. 
Jw-mW 

Then R e ^ ( x ) = f(x) and Im$(;<;)= ~~fXx)> where ƒ ~ denotes the allied 
integral or Hubert transform. Now <P(x) admits a shifted cardinal series 
expansion (above), and taking the real part of this we get the desired modifica­
tion of the cardinal series for the bandpass function/: 
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Some notes. First, the overall bandwidth is B = 4TTW, SO the sampling rate is 
still B/2 IT points per second. Second, the presence of the Hilbert transform 
here seems very natural, but this opinion is not universally held; Gonzâles-
Velasco and Sanvicente (1980, p. 135) take just the opposite view! Third, this 
sampling series, together with that of the previous section, suggests the general 
problem of reconstructing/from samples taken from ƒ and from r functionals 
of it. Steps in this direction have been taken by Papoulis (1968) and J. L. 
Brown (1981). 

A second approach to the sampling of bandpass functions involves "second 
order sampling" and is due to Kohlenberg (1953), who used the S-method of 
derivation. Second order sampling means that one employs two sets of 
sampling points, each equidistantly spaced with the same spacing and with one 
set shifted from the other by a factor K, say. Then the reconstruction series for 
our bandpass function is 

/(.>-£{/(£)*(- É M ' + ÉM-' + ' + É)}-
in which g is a special reconstruction function whose form is too complicated 
to reproduce here. Note once again the same Nyquist sampling rate as before. 

2.5. Poisson's summation formula. It appears that Boas (1972) was the first 
to exploit the Poisson summation formula for the express purpose of deriving 
the sampling theorem. The main object of this section is to sketch this method 
and note that it carries the added bonus of deriving a certain error bound in 
the process. Before doing this, let us turn aside for a moment to look at some 
interesting summation formulae. 

First, we note that if it were permissible to integrate the cardinal series 
representation 

fit) = £ƒ(«) *** ~"} = I / (*K(0 
7T\t — Yi) 

term by term oyer R, we would at once obtain, using the well-known fact that 
the integral of each wn(t) has the value unity, 

(18) ƒ f(t)dt = Zf(n). 

This rather striking formula cannot make sense for every ƒ with a cardinal 
series representation, however. Indeed, we can find a Paley-Wiener function 
for which the series diverges; take, for example, a sequence (cn) of reals such 
that T,c% converges, but £c„ does not, and invoke the Riesz-Fischer theorem in 
the Hilbert space PW. This, together with the convergence facts in, and 
following, HI (§1.4), gives a Paley-Wiener function with the stated behaviour. 

On the other hand, (18) does hold for ƒ band-limited to [-TT, TT] and 
belonging to L(R), since then ƒA is continuous over R, null outside ( — TT, TT), 
and hence belongs to L2(R); thus, ƒ also belongs to L2(R) and, hence, to PW. 
The cardinal series for ƒ converges uniformly over M as in Kluvanek's theorem 
(§4.1), term by term integration is justified, and (18) holds. 
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Boas (1972) deduced this result from a general form of Poisson's formula, 

which, he reports, Hardy used to give in lectures, by taking y = 1, a = /? == 0. 
Formula (18) belongs to the "continuous analogues of series" circle of ideas 

(Boas and Pollard (1973)). It is also of interest in that it is an exact quadrature 
formula. The idea goes back to Wiener (see Bhatia and Krishnan (1948, p. 
184n)), who used it to show that 

sin(na + 6) I2 __ m_ 
not + 0 J a ' 

Boas also deduced the summation formula 

(19) E ( - l ) 7 ( « ) = 0 
under the same hypotheses on ƒ by taking y = 2, a = 0, /? = 1/2 in Poisson's 
formula. Note that, for essentially the same reason, (19) does not generalise to 
PW any more than (18) did. Interestingly enough, however, the scaled version 

(19a) E ( - 1 ) 7 ( » T ) - 0 , 0 < T < 1 , 

does hold for all ƒ G PW (see Zakai (1965, p. 148) for this and another 
criterion for (19) to hold). 

Turning now to the derivation of the cardinal series, we note first that the 
absolute error incurred in expanding an arbitrary function in cardinal series, 
| / ( 0 — L f(n)wn(t)\9 is called the aliasing error and is important for applica­
tions, because one may wish to sample a function whose bandwidth, even 
though finite, may not be known a priori. 

We shall now need Poisson's formula in the form 

(20) y/l^ZfXl"" - 0 - £/(«)*""> 
virtually as it was given (without proof) by Gauss (1900, p. 88) in a note 
written sometime between 1799 and 1813. 

After our previous discussions, this formula is redolent of possibilities; on 
the left we recognise spectrum repetition, while the series on the right has all 
the appearance of a Fourier series, which, if multiplied by e~ixt and integrated 
from — 7T to 7T, would yield the cardinal series. 

Now suppose that 

(21) f(t) = ^=f g(u)eiu'du, g € L ( R ) . 

Let us formally replace ƒ in (20) with g and carry out the integration procedure 
just mentioned. We can then write the aliasing error as 

1 
J(2n-\)ir 

-l.lHt\ /•<2n + 1 ) * 

The term corresponding to n = 0 vanishes, and, after an obvious estimate and 
reconstitution of the integral, we find that this aliasing error is bounded by 

2 
5 = ƒ \g{u)\du. 
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This result goes back to P. Weiss; see J. L. Brown (1967), who derived it (by a 
different method than that just given) for ƒ as in (21), together with a similar 
bound for bandpass functions. 

A nice little example by Brown shows that the constant l/y/lîr cannot be 
improved. Take ƒ(t) = [sin27r(* - l/2)]/n(t - 1/2), which vanishes at every 
integer sampling point. Hence, the aliasing error cannot exceed max| f(t)\ = 2; 
but the value of B for this/, calculated as above, is also 2. 

For many other results on the aliasing error see Jerri (1977, §VI B). 
Returning to the Poisson summation method, we see that the cardinal series 

representation for ƒ is obtained formally if g in (21) vanishes outside [-IT, IT]. 
See Butzer (1983, p. 188) for the detailed derivation, which additionally 
requires that ƒ Gl (R) , 

Boas remarked that the same results can be obtained from the Euler-Mac-
laurin summation formula. Earlier, Kohlenberg (1953) had also pointed out the 
relevance of the Euler-Maclaurin formula; the details have been given by 
Butzer and Stens (1983). 

STORY THREE 

L2 AND LP THEORY 

3.1. Bases for the Hubert space of Paley-Wiener functions. Hardy's results 
HI and H2 (§1.4) form the core of the L2 theory of cardinal series. We shall 
expand a little on these results; in this section we look at several interesting 
bases for PW, all of which are obtainable by Hardy's method; in the next 
section we look at a generalisation of the reproducing equation, as well as some 
results about operators on PW. 

We denote by «£?2(-TT, TT) that subspace of L2(R) whose members are null 
outside [-7T, 7T]; clearly i f 2 ( -TT, TT) is isometrically isomorphic to L 2 ( -TT, TT). 
Hardy used the Plancherel theory to show that a CON set in J^2(-7r, IT) maps, 
under J*"-1, the inverse Fourier transform, to a CON set in PW; note that this 
mapping also preserves bases, even Riesz bases (see, e.g., Young (1980, p. 30)). 
Table 1 contains a hst of some of the possibilities, and some comments follow. 

TABLE 1 

Se\-m,m) *-> PW 

V. e-'nx/}/2^ (n e Z) 
2. s&ixe-'nx/}& ( n e Z ) 
3a. e - ' ^ y v ^ , 

\\H-n\<D<i ( n e Z ) 
3b. hn(x) 

4. (n + \f/2Pn{x/*\ " = 0,1, . . . . 
5. <t>n(x)/fn 

K(0 
[ir(t - n)/2]~lsin2 ir{t - n)/2 

H>A„(0 

H(t)/H'(t)(t - X„), 

H(o - (r - x0)ns-i(i - t/\n\\ - t/\_n) 
(» + i )1 / 2(- l )"(^)"1 /V l l + i /2(^) 
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Comments. 
Item 1. Needs no further comment. 
Item 2. That (sgn xeinx/ \/2TT } is CON in J^ 2 ( -TT, TT) follows from multi­

plying the trigonometrical set of Item 1 by a function whose modulus is one 
a.e.; this alters neither its completeness nor its orthonormality. It does not 
seem to have been pointed out before that the corresponding set in PW is in 
fact CON there. The expansion in this set for ƒ e PW is 

the Hubert transform entering the form of the coefficients as in Titchmarsh 
(1948, p. 120). This expansion formula was previously known for a more 
restrictive class of functions (Butzer and Splettstösser (1977, p. 47)). 

Item 3a. The function set in the first column is a Riesz basis for^>2(-7r, TT), 
which is in many ways the next best thing we can ask for after a CON set. This 
is a result of Kadec; see Young (1980) and Higgins (1977) for this and many 
other similar criteria. We see that the set { wXn} in the second column forms a 
Riesz basis for PW. The sample points (Xn) are perturbations (not too large) of 
the integers; perturbations of this kind are sometimes called "jitter" in 
engineering terminology. 

Item 3b. Since the biorthogonal set to a basis for a Hubert space is also a 
basis, we consider here the biorthogonal sets for those in 3a (we do not need 
the precise form of the functions (/*„))• For references to the form of the 
function set in the second column, see, e.g., Higgins (1976). We see that, under 
a perturbation of the sample points, the cardinal series splits into two different 
representations for a PW function; the first is not an interpolation series, but 
its expansion functions are perturbations of the ordinary ones, while the 
second is clearly an interpolation series of Lagrange type. For much more on 
jitter, which in applications is often stochastic in nature, see Jerri (1977, §§IVD 
and VIC). 

Item 4. The Legendre polynomials form a CON set in J2P2( —*r, TT); their 
inverse Fourier transforms in the second column form a set of functions 
associated with the classical Bessel-Neumann series. Its completeness in PW 
was pointed out by Higgins (1972, p. 712). 

Item 5. It follows from the standard Hilbert-Schmidt theory of integral 
operators with symmetric kernel that the operator ̂ , where 

^<K0=f iix)**^ - ? dx, <*>eL2(-T,"), J-IT iryt — x) 

has infinitely many eigenvalues (vn) with corresponding eigenfunctions (<j>M) 
which form a CON set in J?2(-n, IT). These are the prolate spheroidal wave 
functions and they have several remarkable properties, not the least of which is 
the Fourier transform property indicated in Item 5. The set in the second 
column is a CON set for PW and has been studied intensively by Landau, 
Pollack, and Slepian. One of their results is that the expansion for a 
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Paley-Wiener function in prolate spheroidal functions is superior to the 
ordinary cardinal series with respect to certain truncation errors. See, e.g., 
Landau and Pollack (1962) and also Landau (1967a, p. 1703). 

3.2. Further results for PW. the equality between convolution integral and 
convolution sum in the following theorem is one way of generalising the 
reproducing equation of H2, §1.4. 

THEOREM. If f and g belong to PW then 

(22) ƒ f(u)g(t -u)du = Zfin)g{t ~ n) 

is the series converging uniformly in t on compact subsets ofU. 

Of course, (22) is nothing more than a form of Parseval's relation in PW (cf. 
Stens (1980, p. 40)); the result follows in a standard way from an L2 

convolution theorem (Titchmarsh (1948, p. 90)), which states that if ƒ and g 
belong to L2(U) then the left side of (22) equals 

(22a) f f(x)g\x)e~itxdx. 

We shall look at two special cases. 
First, take g(t) = (7r//2)_1sin27r//2. On using (22a) the left side of (22) 

becomes —1(f\x)sgn x)\t), and we recognise the signum rule for the Hubert 
transform f of ƒ. Thus, for every ƒ belonging to PW, 

an expansion which bears an obvious relation of duality to that in Item 2 of 
the previous section. Actually, using f ~ = - ƒ a.e., ƒ e L2(R), either result can 
be obtained from the other. 

Our second special case gives the derivative sampling formula which we met 
in (17) of §2.3. Let us start with ƒ e PW so that 

ƒ ( - * ) = 7 = f fXu)e-^du = ^=[k7r FXx)e-**dx9 

on putting x = ku, r = t/k, and F(x) = f(kx\ k > 0. Clearly the factor 
(xsgn JC)/&TT + (1 - \x\/kn) can be inserted into the integrand, and the 
integral can be rearranged in two parts; (22a) is then applied to each part in 
order to assemble the left side of (22). From this, the formula 

f(t) = jZ{F'(n)(r-n) + F(n)}Sk(r) 

can be obtained, where ^ ( T ) denotes (&7rT/2)~2sin2 kirr/l. However, care 
must be taken with (22), since its application is only valid if Sk(r) e PW, 
which will only be the case if k < 2. This restriction is only to be expected on 
intuitive grounds, since k > 2 would give a sampling rate less than Nyquist. 

The cases k — 1,2 give, for every ƒ G PW, 

sin7r(f - n)/2 f(t) = \Z{f\n){t-n)+f(n)} 
ir(t - n)/2 
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and 

/(0-E{/'(2»)(/-2»)+/(2»)} 

respectively. These two formulae are noted by Butzer and Splettstösser (1977) 
under more restrictive hypotheses. A direct comparison of the two shows that 
the "|" in the first one can be interpreted by taking the sum in two parts—one 
where the summation is over the even integer sampling points; the other where 
it is over the odd integer sampling points—each part representing ƒ. Once 
again, this is only to be expected on intuitive grounds. 

I would like to end this section by mentioning some results of Weston (1949) 
on operators on PW, which we sum up in the theorem below. First let the 
dilation operator 8a be defined, for real nonzero a, by 

« „ : ƒ ( / ) - | « | 1 / 2 / ( f l 0 . 

Then 8a is a unitary operator on L2(R). 
Let the translation operator rk be defined, for real k9 by 

V/('W('-*). 
Then { rk } is a one-parameter continuous group of unitary operators on L2(R). 

Further, let D and * denote differentiation and convolution as usual. 

THEOREM. 1. If \a\ < 1, PW is an invariant subspacefor Sa. If\a\ > 1, PW-1 is 
invariant. 

2. PW and PW-1 are invariant subspacesfor rk. 
3. —iD is a bounded self adjoint operator on PW. Its spectrum is the continuum 

[-7T, TT]. 

4. Let f e L2(R), g e PW, and f * g e L2(R). Then f * g e PW. 

To these results let us add 
5. PW and PW-1 are invariant subspacesfor Hubert transformation on L2(U). 

REMARKS. In 1 of the theorem we note that scaling by a factor a, \a\ < 1, will 
reduce the bandwidth, and it might be preferable to regard f (at) as belonging 
to a different PW space. 

It is clear by considering the convolution properties of the Fourier transform 
that the product of k members of PW will be band-Hmited, but with k times 
the original bandwidth; however, if each of these k members are scaled by a 
factor l/k, their product will belong to PW. This seems to cover certain 
remarks of Weston (1949a, particularly the bottom of p. 339ff.) about members 
of the basis {wn} for PW; these remarks must be treated with some cir­
cumspection since they are based on formulae which appear to be incorrect as 
they stand. 

For other discussions of operators on PW see Kramer (1973) and Mugler 
(1976). It should be pointed out that much of the theory of operators on PW is 
but a special case of the more general theory on Hubert spaces with reproduc­
ing kernel, a point that we shall touch on at the end of the next section. 

sin7r(; - 2n)/2 
v(t - n)/2 
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3.3. Beyond the Fourier transform. It was J. M. Whittaker (1935, p. 71) who 
first pointed out that kernels other than the Fourier kernel can be used as a 
basis for a cardinal type series, mentioning explicitly the Hankel kernel 
(xt)1/2J0(xt). Like the Fourier kernel, which yields a complete orthogonal set 
in L2( — 7T, TT) when integer values are given to one of its arguments, the 
Hankel kernel yields a complete orthogonal set in L2(0,1) when one argument 
is evaluated at the zeros of /0 . It is just this idea of using an integral operator 
whose kernel K(t, u) has an associated sequence (/„), such that {K(tn, u)} is a 
complete orthogonal set in some L2(a, b) space, that is the chief ingredient of 
Kramer's generalisation of the cardinal series. The idea had also been sug­
gested by Weiss, but Kramer (1957) gave the following 

THEOREM. Let 

f(t) = ( J f g ) ( 0 = fb K(t,u)g(u) du, 

where g e L2(a9 b\ K(t, u) e L2(a, b) for each t e R, and {K(tn, u)} forms a 
complete orthogonal set in L2(a, b) for some (tn). Then 

fU) = Itf(t„)sn(t), 
wheres„(t) = <*(*, • ) , * ( '„ , -))/\\K{tn, -)| |2. 

Here, ( • , • ) denotes the inner product and || || denotes the norm. 
However, much more needs to be assumed about X if we are to parallel the 

r.k. setup which holds in the ordinary Fourier case. There, an essential feature 
is the unitary character of the Fourier transform on L2(R); also the r.k. is the 
inner product of the Fourier kernel with itself. 

Conditions sufficient for some of the r.k. theory to hold in this more general 
setting have been given by Higgins (1972). Thus, if J f : L2(a, b) -• L2(U) is 
bounded and has a bounded inverse, then its range does have r.k., and, further, 
if Jf* is unitary this r.k. is indeed given by the inner product of the kernel K 
with itself. The special case of the Hankel kernel (xt)1/2Jv(xt), v > — 1, has 
been studied as a case in which it is possible to meet the rather lengthy Hst of 
requirements on Jf. 

Indeed, if {jvn, n = 0,1,...} denotes the set of positive zeros of the Bessel 
function Jv(t),v> — 1, then the class of functions { ƒ } belonging to L2(0, oo), 
whose Hankel transform 

(23) (*J)(/) = l.i.m. fA (xt)1/2Jv(xt)f(x) dx 

is null outside [0,1], is a Hubert space whose reproducing kernel, when one of 
its arguments is evaluated aijvn, yields the CON set 

The expansion for such an ƒ is then 

(24) f(t)= tfUMt)-
«-0 
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See Jerri (1977, §111 A) for further references to this kind of cardinal series. 
Special expansions for Bessel functions can be obtained as particular cases in 
just the same way that the ordinary cardinal series can be made to yield special 
expansion formulae, a large collection of which can be found in Magnus et al. 
(1966, pp. 136,180). See also Jerri (1977, p. 1592). 

Both Weiss and Kramer had pointed out that kernels of the type required 
for Kramer's theorem to hold can be obtained formally in association with 
eigenfunctions of selfadjoint differential operators, and many examples of this 
have appeared in the literature. See Jerri (1977, §§IIIA, F); see also Mehta 
(1975) for additional references. It must be said, however, that these tend to be 
rather ad hoc collections of formulae, and, while operational properties of 
many of the kernels involved are in the literature, these examples have not 
been integrated into a theoretical framework like that described above. 

The connection with differential operators is not essential; in fact, Kak 
(1970) has derived the Walsh sampling theorem (see §4.2) as a special case of 
Kramer's theorem. 

A "bandpass" version of the Kramer theorem has been given by Sharma 
and Mehta (see, e.g., Jerri (1977, §IVE-1)). 

The presence of a reproducing kernel in H9 the range of the operator Jf, 
suggests that the action of operators on H is likely to be closely connected with 
this kernel and, hence, with the sampling expansion. 

THEOREM. Let H be a separable Hubert function space with reproducing kernel 
k(u9 t)9 w, t e R, and let (tn)9 n e Z, be a sequence of reals such that {k(u9 tn)} 
is a complete orthogonal set in H. Let 3" be a bounded linear operator on H with 
adjoint J r*. Then for each ƒ e H9 

^7(0 = E/(O^(-,O(0 

= (f,r*k{-,t)). 
These results are not deep. The second is obvious, and the third follows at 

once from the reproducing kernel theory (Meschowski (1962, p. 50)). As to the 
first, we have 

k/-Z/(0^(-.0 <m /-£ƒ('„)*(•, U 

but strong convergence implies pointwise convergence in a Hubert space with 
reproducing kernel, hence the result. 

For example, if H is PW and & is the Hubert transform, then one finds, on 
using a special transform, that the first and third results are just those that we 
found in §3.2 as the first special case of (22). 

3.4. Absolute convergence. R. P. Gosselin (1963) says that "the convergence 
behavior of cardinal series is, in general, quite favorable...". Let us begin this 
section by looking at some of the classical convergence theorems. 
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THEOREM 1 (UNIFORM CONVERGENCE PRINCIPLE). If a cardinal series con­
verges for a single noninteger value oft, it converges uniformly on compact subsets 
of the complex t-plane to an entire function oft. 

THEOREM 2 (ABSOLUTE CONVERGENCE PRINCIPLE). A cardinal series Lanwn(t) 
converges absolutely if and only if 

(25) El < oo. 

Both of these theorems appear in the work of J. M. Whittaker (1929a, p. 42; 
1929b, p. 171, resp.). The first is really part of a more comprehensive result, 
being true if (C, k) summability is inserted instead of convergence. We also 
have 

THEOREM 3. Let 

f(t) « f g(u)e""du, g e L\-m, ,r). 

Then ƒ is represented by its cardinal series pointwise on U. 

It now seems natural to adopt the following 
DEFINITION. Let us say that ƒ e BL p if 

(26) / ( 0 - f S(u)eitudu9 g€=L*(-7r,7r). 
J -<n 

Note that BL2 s PW, and BL p c BLl,/> > 1. 
In order to approach Theorem 4 we need a further definition and subse­

quent inequality. 
DEFINITION. We say that g belongs to Re H1 if g consists of the boundary 

values of the real part of a function h belonging to the Hardy space H1. 
Hardy's inequality. If (cn) are the Fourier coefficients of g e Re H1 then 

£'|c„AI < oo. 
It is well known that Lp( - IT, TT) C Re H1 c L\ - «r, TT), p > 1. 

THEOREM 4. (i) Iff e BL /?, p ^ 1, then it is represented by its cardinal series 
pointwise on R, hence uniformly on compact subsets. 

(ii) The convergence is absolute ifp > 1. Whenp = 1 the convergence may f ail 
to be absolute, but it is absolute if g in (26) belongs to Re H1. 

Part (i) is a consequence of the facts assembled in this section. As to part (ii), 
note first that when p > 1 the absolute convergence follows from Holder's 
inequality, since the Fourier coefficients for g in (26), which are {ƒ (« ) / \Z2TT }, 
belong to lq, p + q = pq. 

The interesting part is what happens when p = 1. Now if g e Re H1, we 
find that an in the absolute convergence criterion (25) and cn of Hardy's 
inequality are both equal to ƒ (« ) / 2̂TT , so that the two criteria are one and the 
same. It only remains to show, therefore, that absolute convergence may fail if 
g £ Re H1. A classical example from the theory of Fourier series shows this; 

file:///Z2tt
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indeed, let 

/ v S COS WW 

This g belongs to L\-IT9 TT), and the series is its Fourier series; but Hardy's 
inequality and (25) both fail, and g $ Re H1. 

A phenomenon of Fourier analysis, which has often been remarked on (see, 
e.g., Coifman and Weiss (1977, particularly p. 271ff.)), is that there are many 
results about Lp( — n, TT), p > 1, which do not carry over to all of L1( — TT, TT) 
but do hold for Re Hl. In view of the equivalence of Hardy's inequality and 
the absolute convergence criterion for cardinal series when g e Re Hl, we find 
a very natural occurrence of this phenomenon in the second half of Theorem 4. 

3.5. Cardinal series and distributions. This material does not properly belong 
to Lp theory, but follows on rather naturally from it. 

Let us first consider one of the representations for Si(f)> the sine integral 
function: 

1 n eiut 

si(0 = ̂ p.v. r —du. 
Zakai (1965, p. 143) has pointed out that Si(f) occurs naturally in applications 
in that it represents the response of an ideal low-pass filter to a step function. 
However, it does not belong to any of our BL p classes, since the integral is the 
transform of a principal value distribution. Si(t) does suggest, though, that we 
consider the possibility of expanding into cardinal series the Fourier transform 
of a distribution with bounded support. 

Let us look at another 
EXAMPLE. The cardinal series for eia\ t G R , a e (-77,77), regarded as a 

function of a, is E eianwn(t). This is also the Fourier series for eiat regarded as 
a function of a. It converges to eia\ a e (-TT, 7T), uniformly in t on compact 
subsets of R. 

Note that this cardinal series does not converge absolutely. The representa­
tion 

J -IT 

is another kind of substitute for the usual band-limited property. The example 
was given by Hardy (1941, p. 334) and by Campbell (1968, p. 626) from two 
rather different points of view. It shows, for example, that the existence of the 
sum of a cardinal series is no guarantee that this sum is band-limited in the 
conventional sense. 

Here is another example, also by Campbell (op. cit.). 
EXAMPLE. Replace 8 in the previous example by 8'. The cardinal series for 

iteiat diverges. 
Two questions immediately suggest themselves. 
First, can we find an appropriate modification of the cardinal series that will 

represent at least those functions appearing in our examples? It is known that 
one can introduce a convergence enhancing factor which will do this. 
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Second, for what class of Fourier transforms of distributions of bounded 
support can we expect an ordinary cardinal series representation? Here, it is 
known that an appropriate class is the dual of S9 the class of C°° functions of 
rapid descent with ƒA supported on [-TT, TT]. See Jerri (1977, §IVG) for further 
remarks and references to the very small amount of literature there is in this 
area. 

STORY FOUR 

THE CARDINAL SERIES AND LCA GROUPS 

4.1. The main theorem. A very general form of the sampling theorem was 
given by Kluvânek (1965) in the setting of harmonic analysis on LCA (locally 
compact abelian) groups. In this section we describe this theorem, and in the 
next we look at several examples. 

Let G be a LCA group (written additively) with a discrete subgroup H. Let T 
be the dual of G, and let the value of y e r at JC e G be denoted by (x, y). Let 
A c T be the (discrete) annihilator of H, i.e., 

A - { Y € r : ( M ) - l ( * e f l ) } . 

We set the Haar measures in a very standard way. Discrete groups are given 
counting measure, and compact groups are given total measure one. We denote 
the Haar measure on a set S by ms and normalise mG for Fourier inversion; 
thus, 

A ï ) " / (-x,y)f(x)dmG and f(x) = ƒ (x, y)f\y) dmT 

provide a unitary equivalence between L2(G) and L2(T) via the 
Fourier-Plancherel theory. Finally, Haar measure on T is normalised so that a 
standard integration formula shall hold; in the present context this is 

ff(y)dmT-f Lf(y + \)dmT/A. 

Next, let Q be a measurable subset of T such that for each y G T, 0 n 
(y + A) consists of a single point. It is standard to take Ö = T/A, but certain 
other choices can also lead to interesting examples. 

To complete these definitions let us call 

4>(x) = ƒ (x,y)dmT 

the reconstruction function, since one easily shows that it has the interpolatory 
property 

</>(*) = 0, J C € # , X # 0 , <J>(0) = 1. 
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THEOREM (KLUVÀNEK). Let f & L2(G) and let ƒA be null outside £2. Then ƒ is 
almost everywhere equal to a continuous function; if f itself is continuous, then its 
cardinal series expansion is 

fix)- I f(y)*(*-y), 
y^H 

the convergence being both uniform on G and in the norm of L2(G). Also 

ll/H2= E \f(y)\2-
yeH 

4.2. Examples of cardinal series on R, T, T2 , Z, A, and UN. 
EXAMPLE 1(a). Let us take G9 and hence T, to be R. Let H = (1/W)Z9 

W > 0. Then Q = T/A = ( - mW9 mW\, and the scaled version (4) of the 
cardinal series results. 

EXAMPLE 1(b). Let G, T, and H be as above, but let £2 = {-A - *nW9 -A] 
U (A9 A + mW\ as for the bandpass sampling of §2.4. Now the condition that 
Û n (7 + A) be a single point for each y e T i s equivalent to requiring that 
the points of Q be pairwise incongruent mod27rW, and this in turn means that 
A must be a positive integer multiple of irW9 say mWs. Hence, 

ft =(-7rW(,s + 1)9-TTWS] U (irWs,irW(s + 1)]. 

Also 

• O ^ T - m eltudu = * ^r . 
v 2TTW JQ mWt 

Thus, from our theorem (§4.1) we find that if ƒ e L2(U) a n d / is null outside 
Ö, then 

, \ _ Y r( n \ sin(s + l)vr(Wt - n) - sinsTT^f - ft) 

with the appropriate modes of convergence. 
This series is one that had been given by Kohlenberg (1953), without any 

convergence criteria, in the context of bandpass sampling. 
EXAMPLE 2. Let G = T, the "circle group" consisting of complex numbers of 

modulus one under multiphcation. Let H be the finite subgroup generatecd by 
K, a primitive A:th root of unity. We have 

T = {zn
9n e Z } , A = {zkn

9n e Z} . 

Take Ü = T/A = {zJJ = 0,. . . 9k - 1}. Then 

* „-0 *(1 - Z) 

and 

fXn) = ^J^-","f(e'9)de, 
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where f(z) e L2(C), C denoting the unit circle. If /"is null outside ft, we have, 
changing the notation slightly, 

f z~n~1f(z) dz = 0, n = k,k+ 1,. 
JC 

We can now write a remarkable finite cardinal series representation for 
functions satisfying the conditions above, which was given by Cauchy in 1841 
(p. 286): 

K n « 0 K - Z 

EXAMPLE 3. Let G = T2 with subgroup if generated by K and X, primitive 
kth and /th roots of unity, respectively. Then we get the following two-dimen­
sional finite cardinal series, also due to Cauchy (p. 290): 

^ ' « - O ^ O K Z A Z 

for functions ƒ e L2(C X C) such that 

f z-r~xz-s-xf(z, w)dzdw = 0, r = k, k + 1, . , . and s = /, / + 1, . . . . 
JCXC 

Cauchy's originals for these two series contained scale factors, which would 
have entered here if we had taken our circles to be of nonunit radius. 

EXAMPLE 4. Let G be Z, with subgroup H = kZ, k a fixed integer greater 
than one. We have T = [einy, 0 < y < 2ir} and A = {e27riJn/k, j = 0 ,1 , . . . , 
k - 1}. Take Ö = T/A = [0,2ir/k) and then 

We can now state the following discrete form of the cardinal series for 
functions ƒ <= I2 such that A x ) = Le~inxf(n) = 0 for x (£ (092ir/k): 

JL 02mi(m-nK)/k _ -i 

A-)-^£A*.)',(,_„/• 
Mugler (1980) has given a rather different discrete analogue of the cardinal 

series that is closely connected with a discrete version of the Paley-Wiener 
theorem. 

EXAMPLE 5. Let G be A, the dyadic group of all 0-1 sequences (tj) = 
...\0,t_N,...,t0.tl9... that are O-stationary to the left, under "no carry" 
binary addition. 

Let t = (tj) and x = (xy) be two members of A. Then the Walsh function 
\pt(

x) is defined by 

*Pt(x) = ± 1 according as ]C'i-nxn *s e v e n o r odd-
It is well known that the Walsh functions constitute the character group T of A 
(see, e.g., Pichler (1973, p. 26) and the references given there). Next let A; be a 
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fixed positive integer and put H = {s/2k, s = 0,1, . . .} , where s/2k is given its 
finite dyadic expansion. H is a discrete subgroup of A. 

The annihilator A of H is isomorphic to the set of all 0-1 sequences \ such 
that A = . . . ,A_A . ,0,. . . ,0.0,. . . , for then if x e H,Y,\l_nxn = 0 and\px(x) = 
1. As usual, we take ti = T/A, and it follows that we can let £2 = [o, 2k). Then 

• (*) -2-* /** r ( , )*- ( j ' '«MO.*"*). 
•'o 10, otherwise. 

For this calculation see Splettstösser (1980, p. 366). 
We now now state the sampling theorem in its Walsh-Fourier analysis 

setting: 
Let/€=L2(A)and 

f(t)-f*+r{t)f(r)dr. 

Then 

The kind of functions appearing in this theorem, namely those whose 
Walsh-Fourier transforms have support on [0,2*), are called sequency band-
limited in engineering terminology. They are important for certain applications, 
as can be gathered from the references given in this section. It might be 
mentioned that sequency band-limited functions are step functions, as one 
deduces from the theorem; but this is a reversal of the usual procedure for 
proving it. 

This Walsh sampling theorem seems to be due originally to Pichler (see, e.g., 
Pichler (1973) and the references to his earlier work cited there). We have also 
mentioned (§3.3) that Kak deduced the theorem from Kramer's generalised 
sampling theorem. Several others have taken a hand in the introduction of the 
theorem; D. K. Cheng and D. L. Johnson (1973) use the 8 method of 
derivation and refer to Johnson's thesis as their primary source; see also 
Maqusi (1972) and Kawamura and Tanaka (1978). 

Several other studies of this kind of sampling theorem for sequency-limited 
functions have appeared recently; see, e.g., the bibliography in Butzer (1983). 
Ziegler (1981) has given a version in the context of Haar-Fourier analysis. 

EXAMPLE 6. In the last example of the present section we shall see how a 
multidimensional form of the ordinary cardinal series can be obtained from 
Kluvânek's theorem by letting G be UN. A more detailed survey of multidi­
mensional forms will be found in Story 5. 

Let the vectors {Vj},j = l,2,...,iV, constitute a basis for UN, and let {uj} 
be the biorthogonal set to {Uj} such that vt • Uj = 2n,8|.y.. For x = 
(xl9 x2,".,xN) ^ R^put 

v[x] — vlx1 + v2x2 + • • • + vNxN. 

Then 

1"= {u[m]:meZN} 



76 J. R. HIGGINS 

is called the sampling lattice. It is clearly a subgroup of UN, and we take this to 
be H of Kluvanek's theorem. 

Now if m, k e ZN we have 

cxp(iv[m] • u[k]) = exp(2?r/m • k) — 1; 

hence, 

A = {exp(ix-u[k]):keZN}. 

For £2 we take T/A, which can be taken as the parallelepiped U with one 
vertex at the origin whose edges are defined by the vectors { wy}. Then 

* ( 0 - / " eitydy; 

here </y means that the integration is with respect to N-dimensional Lebesgue 
measure. 

Kluvanek's theorem now gives us a cardinal series expansion for functions 
ƒ e L2(UN) whose Fourier transforms are null outside U. We get a standard 
case by choosing i?. = Wjej9 where the W/s are positive constants and {e-} is 
the natural basis for UN. This case can be called "rectangular", or "square" if 
all the W/s are equal. Then the rectangular cardinal series for ƒ is 

f(A -Yfl n \ s i n 9 r(**Vi~ ni) à*«{WNtN-nN) 
Jy) ^J\W) «(W^-nJ ' " *(WNtN-nN) ' 

STORY FIVE 

EXTENSIONS TO HIGHER DIMENSIONS 

5.1. Foreword. J. M. Whittaker's extension to two dimensions of the ordinary 
one-dimensional cardinal series involves the Weierstrass a-function, as we saw 
in §1.4, and it seems clear that the intention was to find an extension that 
would remain firmly within the framework of classical function theory. A 
particular feature of the one-dimensional case is thus preserved, but others, 
such as the Nyquist sampling rate, the band-limited nature of the sum, etc., are 
at best unaccounted for and perhaps lost altogether. 

Other known extensions to higher dimensions follow a similar pattern. In 
each case it is possible to discern some property in one dimension that is being 
given a multidimensional analogue, but at the same time it seems that no 
higher-dimensional form preserves all the desirable features of the one-dimen­
sional case. 

More remarks will be made about this in context. 

5.2. The X-cardinal series. In R. P. Gosselin's multidimensional form of the 
cardinal series, it is the orthogonaHty of the translates of (smirx)/7rx over the 
integers that is given a multidimensional analogue. One considers a function K 
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of L2(UN) for which {K(x + w) :«€Z A r } i s orthogonal in L2(UN). Then 

YéanK(x + n)> wherea„=/ /(x)A'(x + n) rfx, 

is called the ^-cardinal series for/. 
The proofs of the next three theorems follow standard L2 methods and are 

found in Gosselin (1963). The first thing to do is characterise that class of 
functions K whose translates are indeed orthogonal in the sense described 
above. 

THEOREM. If g belongs to L(UN) and 

(27) £ \g(x + 2Tra)| = constant a.e., 

then the function K whose Fourier transform is |g(x)|1/2^'*(x), <j> real and 
measurable, is an L2 function whose translates are orthogonal. 

On the other hand, if the L2 function Khas orthogonal translates then 

(28) H\K\x + 2<nn)\ = constant a.e. 

Some further interesting facts about JK-cardinal series are contained in the 
following two theorems. 

THEOREM, (a) Let TK denote the closed linear span in L2(UN) of the orthogonal 
set {K(x + n): n&UN}. Then the L2 function ƒ belongs to TK if and only iff 
= KT*, where 

F* = (2ir)NY,fXx + 2mn) K\x + lirn) . 

(b) If in part (a) supp K*is compact, this condition is equivalent to 

f(x) = f f(t)L(x,t)dt, 

where 

L(x9t) = Yte
2"n'x( K(u) K(u + * ~ x) e~27rinudu. 

This goes some way towards generalising Hardy's one-dimensional result 
(H2 of §1.4, et seq.), but although there are various known multidimensional 
forms of the Paley-Wiener theorem, there seems to be nothing in the literature 
to place the present situation in the context of a multidimensional Paley-Wiener 
space. Gosselin does not use the phrase "reproducing kernel" any more than 
Hardy did, but I. I. Hirschmann (1964) has pointed out that more could be 
said about the mode of convergence of the Jf-cardinal series, and presumably 
the presence of a reproducing kernel was part of what he had in mind. As in 
the one-dimensional case, it follows that ƒ 's as in part (b) above are repre­
sented by their X-cardinal series not only in the norm of L2(RW), but also 
pointwise and uniformly on compact subsets of U n. 

The following theorem gives a condition for TK to be translation invariant. 
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THEOREM. Let f(x) e TK. Then f(x + a) e TK (a e Un) if and only if 
\K*\ = (27r)"w/2 on its support. 

Compare Weston's result for PW (second theorem (part 2) of §3.2). 
Gosselin (1972) went on to make an interesting application of the square 

cardinal series to the theory of singular integral operators of 
Calderón-Zygmund type. To begin with, E. C. Titchmarsh (1926a) had shown 
how the Lp boundedness and the inversion and Parseval type formulae for the 
Hubert transform could be obtained from similar properties of the discrete 
analogue: 

bk " T ~ ^ * + n + X ' 
where (an) e lp. Then, for example, (bk) is a bounded operator on lp, and 

aj~~ m ^ j + n + X ' 

These operators are clearly forms of the cardinal series, but Titchmarsh did not 
point this out explicitly; he only used them subsequently in the case X = 1/2. 
The required properties of the Hubert transform are obtained by subjecting 
these discrete formulae to a suitable limiting process. 

In the same vein, Gosselin constructed the kernel AT of a convolution 
operator T as a cardinal series 

^ , , JL smir(x, + n) 

7-1 n X y + H ) 

where K0 is a Calderón-Zygmund kernel. Then a special sequence of operators 
constructed from K converges to K0 in a weak sense. 

5.3. Cardinal series over a general lattice. We continue to discuss the 
multidimensional cardinal series which constituted the last example of Story 4. 
Probably the most important feature of this general lattice sampling is that 
which allows some flexibility in improving the sampling rate over that which is 
available in the rectangular case. One achieves this by arranging copies of the 
"band region" ^ , that subset of UN over which ƒA is nonvanishing, in a 
configuration of closest packing; this in turn minimises the density of the 
sampling points, and we get a kind of analogue of the Nyquist sampling rate. 
These matters will be illustrated with a special case, called "hexagonal", which 
has been closely studied in the literature. 

First, we note that, whether Ü is chosen to be T/A or not, Kluvanek's 
theorem (§4.1) requires that it be a regular tessellating figure for T = UN 

(regular in the sense that copies of it tessellate RN by translation over the 
vectors {«,-}). 

Second, in applications 81 will probably be fixed in advance and unlikely to 
furnish the kind of Ü just described. The best we can do is to enclose ^ in a 
suitable Q. The choice of £2 will affect the geometry of the sampling lattice L^, 
and a sensible choice will be one which minimises the density of LN. Since we 
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can associate each point of LN with a distinct translate of V (V is that 
parallellepiped with edges determined by the vectors {vj} (see Figure 1)), this 
is equivalent to maximising the hypervolume \V\. This in turn is equivalent to 
rninimising the hypervolume \U\ (similarly associated with {w,-}), since one 
easily shows that \V\ is inversely proportional to \U\. The ease with which Ü can 
be chosen will depend very much on the shape of ^ . 

EXAMPLE. Hexagonal sampling. Take n = 2 and J* to be the unit disc of U 2. 
We choose ux and u2 so that translated copies of the circular band region are 

close-packed, and we let Ö be the hexagonal Dirichlet region associated with 
this close packing. The density of L2 is l/\V\ = ]/3/2ir2. 

Clearly, it would have been less efficient, as far as the density of L2 is 
concerned, if we had enclosed ^ in a square S. Then closest packing would not 
have been achieved, the square two-dimensional cardinal series would have 
resulted, and the corresponding L2 would have had density l/ir2. On compar­
ing these two densities one finds that the hexagonal method represents a saving 
of some 13.4 percent of the points necessary in the square case. On the other 
hand, the reconstruction function for the hexagonal scheme, which must be 
calculated by integrating eitx over the hexagon of Figure 2, is 

2tx cos(/1/\/3 )cos t2 - 2tx cos(2^/\/3 ) - 2^3 sin(^/V^ )sin t2 

' i ( ' i 2 3'f) 

2 

IT 

V2 ƒ 

it 

v i / 

271 

1 — V 

FIGURE 1 

FIGURE 2 
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whereas that for the square form is just 

7Ttl 7Tt2 

Of course, an engineer would have to carefully assess the advantages and 
disadvantages before adopting one or other of these sampling schemes to solve 
a practical problem. By and large it seems that electrical engineers prefer the 
simplicity of the square form or the marginally less simple rectangular form. 
However, the hexagonal and other nonrectangular forms have been champ­
ioned by Mersereau (1979) and Mersereau and Speake (1983); they point out 
that another advantage of the hexagonal scheme, which can be important in 
certain applications to image processing (Mersereau (1979, p. 932)), is that the 
sample points each have six nearest neighbours; this is convenient for imple­
mentation and not enjoyed by the rectangular arraangement. In giving details 
of hexagonal sampling and several higher-dimensional analogues of it, Petersen 
and Middleton (1962, p. 286) attribute its introduction to Myakawa. 

It is worth mentioning that the reconstruction function given by Kluvânek's 
theorem is just that which Petersen and Middleton singled out from among 
other possibilities and called canonical. These other possibilities arise because 
of the "S-method" of derivation used by Petersen and Middleton (op. cit., 
p. 288) that involves the multidimensional analogue of "spectrum repetition", 
which was such a striking feature of the one-dimensional formulation (§2.2): 

f\t) - ^ E A < + «[«])• 

This certainly requires <J>A to be constant over the band region ^ , but in that 
part of M N not covered by $& and its translates (see Figure 2, for example), the 
value of <J>*is arbitrary. We can, if we like, form another kind of reconstruction 
function by taking 

(29) </>(') = (const)/* eixtdx. 

In the cases of a radially symmetric ƒ band-limited to the unit hypersphere 
centered at the origin of UN

9 the reconstruction series reduces to a relatively 
simple form. Indeed, the integral (29) reduces by a very well-known construc­
tion to a Bessel function, and the series for such ƒ is 

W ' {2w\x-l\)N/1' 
where the LN is that lattice generated by { Vj] for which the corresponding {t/y} 
defines the lattice of centres of hyperspheres in the closest lattice packing 
configuration. The appropriate lattices for dimensions two through eight are 
quoted from results of Coxeter by Petersen and Middleton (1962, p. 314). 

5.4. Remarks. 1. It seems to have been E. Parzen (1956) who first suggested 
the rectangular multidimensional form of the cardinal series. Although a 
special case of more general forms, it has received sporadic attention in its own 
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right since that time. For example, Prosser (1966) treated the truncation error 
in both the L2 and L00 norms, and Splettstösser (1982) has treated the aliasing 
error and given other reconstruction series (not of cardinal type) which have 
better aliasing errors. 

2. A somewhat different approach to two-dimensional sampling, involving 
polar coordinates, has been developed for use in optical science. The general 
idea is this. Suppose that 

(30) f(r,e)-Zein"cn{r), 

where 

(31) cn{r) = ±-j2"f{r,0)e-'»°d0. 
Lit J0 

Let us formally calculate the Fourier transform of ƒ term by term; we get 

ftp* <#>) - I>"""* H rcn{r) f2" exp(«0 - rp sin*) dOdr. 

It comes as no surprise that a Bessel function appears here, the second integral 
being one of the standard representations for Jn(rp). Thus, we have 

(32) fXp,4>) = 2 i rL*-V- 1 / 2 Jr» [r^c . ( r ) ] (p ) , 

where 3tfn denotes the Hankel transform (23). 
Next, suppose that ƒ is band-limited to the unit disc of U 2; then each of the 

Hankel transforms in (32) vanishes outside [0,1], and, therefore, because of the 
self-inverse nature of 3tfny rl/2cn(r) has a representation by the Bessel-Hankel 
form of the cardinal series (24) with v = n. This in turn means that cn(r) is 
determined by the set of samples {cn(jni)}—that is, from (31), 

c„(jJ = i:f2,'fUniJ)e-""'de, 

in which jni is the ith zero of the nth Bessel function Jn(x). Then (30) gives a 
double series reconstruction for ƒ from information taken from function values 
on a doubly infinite set of circles which are one-dimensional subsets of R2, 
rather than from values on the doubly infinite set of points used in the 
two-dimensional Cartesian approach to the cardinal series. 

This form of reconstruction series has been studied and applied by Blazek 
(1974,1976). Another polar form has been given by Stark (1979) and Stark and 
Sarna (1979), which is valid for functions ƒ that are finite Fourier series, and 
proceeds via finite trigonometric interpolation. 

How far can one go in this direction? How can one reconstruct functions 
defined on IR N and satisfying some sort of band-limited criteria from informa­
tion such as the function's values on a collection of M-dimensional subsets of 
IR ̂ ? It is an open question. 

3. It should be mentioned that multidimensional extensions have been made 
in connection with the Kramer series, derivative sampling, and jittered sam­
pling; see Jerri (1977) for references. See also Butzer and Engels (1982) for a 
multidimensional Walsh-type sampling series. 
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4. Finally, it is fair to say that multidimensional sampling theory is still in a 
tentative state of development. For the mathematician the main interest is in 
theorems giving the existence of cardinal type series representations with good 
convergence criteria and their mathematical properties; but there is a lack of 
such theorems in the present literature. More often than not, the mode of 
convergence for the multisums is not even specified; exceptions are Gosselin 
(1963) ("spherical" partial sums) and Splettstösser (1982) ("square" partial 
sums). To my knowledge no extension of the cardinal series to CN has ever 
been made. 

Here is an area where much remains to be done. 

CONCLUSION 

In concluding this survey of matters relating to the cardinal series, I would 
like to include four more topics which are of sufficient interest to warrant a 
brief description. 

I. The first of these topics does not involve the cardinal series directly, but is 
of interest in the study of band-limited functions in that it concerns reconstruc­
tion from samples taken at points intrinsic to the function itself, in this case its 
real zeros. This arose as an engineering problem in the context of speech 
transmission when it became recognised that it was efficient to transmit the 
"cupped" version sgn f(t) of a speech signal/, and then reconstitute ƒ as best 
one can at the receiving point. For an account of the origins of this problem 
and the first mathematical treatment of it, see Bond and Cahn (1958). 

An example, or rather a family of examples, will help to illustrate the 
problem. 

EXAMPLE. If m is an even integer exceeding two, then 

_ f* sinw(?7t//m) 

- oo ( ITU/m ) 

belongs to PW and is positive everywhere on R. 
For m — 4, the example was given by Khurgin and Yakovlev (1977). The 

positivity is obvious; as to membership of PW, the Fourier transform is simply 
related to, and indeed has the same support as, that of [(iru/m)'1 sin(7rw/m)]m, 
which is available in standard lists of transforms (e.g., Oberhettinger (1957, 
p. 19)). 

It is clear from this example that there is no hope, in general, for reconstruct­
ing a band-limited signal from knowledge of its real zeros alone. But if we 
consider the natural extension of ƒ to the complex plane, the situation is just 
the opposite; among the many classical theorems on the zeros of what we now 
call band-limited functions (see, e.g., Boas (1954, Chapter 8)), one of Titch-
marsh's (1926) is appropriate here. It guarantees that a band-limited function 
has infinitely many zeros, and these serve to determine it via a product 
representation. This is not very convenient for engineers, however, who do not 
expect to be able to detect complex zeros in their signals. Much ingenuity has 
gone into circumventing this difficulty. See Jerri (1977, §IVF) for references to 
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the older literature, and E. Masry (1982) and the references given there for a 
more recent approach involving the comparison of a band-limited signal with a 
random reference, or "dither", signal. 

II. Zakai (1965) has generalised the notion of band-limited function by 
calling ƒ "band-limited (F, 2e)" if it is reproduced by convolution, not with the 
ordinary kernel (sin mt}/mt as for Paley-Wiener functions, but with the more 
general kernel 

_2 \ 1 / 2 sin(F + e)t sine/ 
ir) t et 

This function is the inverse Fourier transform of that continuous function 
which vanishes outside [-V- 2e,V+ 2e], is constantly equal to one on 
[ - F, V], and is linear on [ - (V + 2e), - V] and [V, V + 2e]. 

Zàkai shows that a function ƒ that is band-limited in this sense, and is such 
that / ( 0 / ( l + ' 2 ) 1 / 2 e L2(U\ is necessarily of the form /(O) + tg(t\ g e 
PW(K+2e)- Such functions are represented by ordinary scaled cardinal series, 
the positive scale factor being less than *n/V, with uniform convergence on 
compact subsets of the complex /-plane. One shows this by giving ƒ its 
representation in (scaled) T-cardinal series (see §1.4). A few computational 
devices then serve to show that the T-cardinal series reduces to an ordinary 
cardinal series. 

III. Ryavec (1979) has given a form of the cardinal series in which the 
sampling points are the nonreal zeros of the Riemann zeta function f(z). It is 
based on a summation formula of A. Weil, which involves summing the 
Fourier transform of a function over, essentially, the zeros of f, a situation 
which is, of course, similar in spirit to that which relates the ordinary cardinal 
series to the Poisson summation formula. Ryavec deduced a new representa­
tion for f from this kind of cardinal series, which involves a summation over its 
zeros. 

IV. Throughout the preceding pages we have become used to the idea that 
the Nyquist sampling rate is the minimum rate at which a band-limited 
function can be sampled and reconstructed by the cardinal series, and indeed 
by other related series. But the question can be raised as to whether this rate 
might be capable of improvement in some way. An important study of this 
problem was made by Landau (1967a). He says (p. 1701) ".. .it is conceivable 
that signals might be recoverable from their values taken at a lower rate, if the 
sampling instants were chosen differently; or if the signals had their frequen­
cies in a union of several bands; or at the cost of more computing...", but 
goes on to show that, in effect, the Nyquist rate cannot be bettered. 

Let PW5 denote that subset of L2(R) whose members have Fourier trans­
forms supported on 5, and let (tn), n e Z, be a sequence of points of R which 
are separated by a least positive distance d. Then (tn) is called a set of 
uniqueness for PWS if f(tn) = 0 implies ƒ = 0 for every ƒ e PWS. Again, (tn) is 
called a set of stable sampling for PWS if there exists a positive constant K such 
that, for every ƒ e PW ,̂ || ƒ ||2 < KL\f(tn)\2. This very familiar kind of condi­
tion guarantees that small errors in the samples will cause correspondingly 
small errors in the reconstructed function. Clearly, such a set is essential for 
applications; it will be a set of uniqueness, but not conversely. 
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Beurling and Malliavin have shown that a least upper bound can be 
constructed for those bandwidths for which a given (tn) is a set of uniqueness. 
Landau showed that stable sampling cannot be performed at a rate lower than 
Nyquist, and dually, that data cannot be transmitted as samples at a rate 
higher than Nyquist. See also Landau (1967b). 

Many questions for further investigation will, no doubt, have occurred to the 
interested reader. We have noted various classes of functions which can be 
represented by their cardinal series; an interesting question would be to ask for 
a classification of all such functions. Similar questions would arise for allied 
series and for multidimensional representations. 

ADDENDA 

It is a pleasure to thank Professors J. L. Brown, P. L. Butzer, E. Masry and 
W. Schempp for bringing me up to date on certain topics arising in the stories 
just concluded. Their comments reached me only after the manuscript had 
received final preparation. 

Professor Brown informs me that he too has been troubled by the "Cauchy 
connection" mystery (see §1.2), especially in view of a recent article in the 
Sunday New York Times of 1 January 1984 by Hans Fantel: "Will disks still 
spin in 2020?" Here one can read that the concept of substituting a numerical 
code for "wiggly waveforms.. .actually dates back to Napoleonic times when 
the Baron Augustin Cauchy devised a theory for describing wave phenomena 
through mathematical sampling". Apparently no source for this assertion has 
so far come to light; nevertheless, in view of the fact that Cauchy was one of 
the instigators of trigonometrical interpolation (along with several others 
writing at about that time; see Burkhardt (1899-1916)), it is not without some 
justification. 

To be more specific, Brown has pointed out that Cauchy had developed 
some quite general finite sampling formulae in the second part of his 1841 
paper (op. cit.) which are applicable to trigonometrical polynomials, or 
"harmonic-limited" functions in Brown's phrase, and which incidentally were 
rediscovered not long ago. See his preprint Cauchy and polar sampling theo­
rems, in which he makes several remarks about the "mystery" and goes on to 
give a more general finite sampling formula. 

On the other hand, I have concentrated on the first part of the 1841 paper in 
§§1.2 and 4.2, where Cauchy's finite series associated with torus groups are 
described, since it is here that we find his contributions to the theory of 
cardinal series. Of course, the problem concerning H. S. Black's citation 
remains unresolved. 

Professor Butzer informs me that he and his colleagues at Aachen have 
recently proved that the cardinal series, the Poisson summation formula, the 
Euler-MacLaurin summation formula, and Cauchy's integral formula are 
basically equivalent. See P. L. Butzer, S. Ries, and R. L. Stens, Shannon's 
sampling theorem, Cauchy's integral formula and related results, Arbeitsbericht, 
1984, and the references given there. 

Of particular interest among the helpful comments sent by Professor Masry 
is the fact that Zakai's class of band-limited functions (described in part II of 
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the present Conclusion) does not depend on the parameter e, as might appear 
at first sight; indeed, he and S. Cambanis have verified Zakai's conjecture that 
ƒ belongs to this class if and only if f(t) = /(O) + tg(t), where g belongs to 
PWK. Such a function is evidently band-limited in the sense of distributions 
(see §3.5). See the references given in A. J. Lee, Characterisation of bandlimited 
functions and processes, Inform, and Control 31 (1976), 258-271, where the 
Zakai class and its characterisation (above) are generalised; Lee shows that the 
members of this more general class are represented by scaled cardinal series 
modified by the insertion of a convergence enhancing factor. This provides 
more information regarding the first question raised at the end of §3.5 on 
distributions. 

Professor Schempp has kindly pointed out to me that the general Poisson 
summation formula (§2.5) has deep geometric roots in harmonic analysis of the 
compact Heisenberg nilmanifold; for background see, for example, the survey 
by R. Howe, On the role of the Heisenberg group in harmonic analysis, Bull. 
Amer. Math. Soc. (N.S.) 3 (1980), 821-843. 

The Heisenberg nilpotent group provides the natural mathematical structure 
for describing the connection between quantum mechanics and information 
theory; actually, this had been anticipated by J. D. Weston (see the quotation 
in §1.5). In particular, the Fourier cotransform has, in this setting, a factorisa­
tion called the Poisson-Weil factorisation, in terms of the Weil-Brezin auto­
morphism. Professor Schempp has obtained the classical cardinal series as a 
special case of this. See W. Schempp, Gruppentheoretische Aspekte der Sig-
nalubertragung und der kardinal Interpolatiossplines, I, Math. Methods Appl. 
Sci. 5 (1983), 195-215. 

Important applications in signal processing stem from this approach, partic­
ularly to the design of radar systems. See W. Schempp, Radar ambiguity 
functions, nilpotent harmonic analysis, and holomorphic theta series, Special 
Functions: Group Theoretical Aspects and Applications (R. A. Askey et al., 
eds.), Reidel, 1984. See also the many references given there. 

I also thank Professor Schempp for pointing out to me another application 
of cardinal series interpolation—to medical tomography. See G. Schwierz, 
W. Hârer and K. Wiesent, Sampling and discretization problems in X-ray-CT, 
Mathematical Aspects of Computerized Tomography, Springer-Verlag, Berlin 
and New York, 1981. 
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