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ASSOCIATED WITH ENDOMORPHISMS OF C*-ALGEBRAS 

BY SERGIO DOPLICHER1 AND JOHN E. ROBERTS 

The work described in this announcement is motivated by a long-standing 
problem in quantum field theory. Experimental evidence and theoretical con
siderations [1, 2] suggest that superselection structure is determined by the 
representation theory of a compact group, the gauge group of the first kind. 
Attempts to prove the existence of this group from the general principles of 
quantum field theory pinpoint the inadequacy of the classical Tannaka-Krein 
duality theorem for compact groups: it enables one to recognize the repre
sentation theory only when the intertwining operators are given concretely as 
linear operators between representation spaces. The discussion of superselec
tion theory in algebraic quantum field theory leads not to representations of a 
compact group but to endomorphisms of a C*-algebra, the C*-algebra of local 
observables, and the intertwining operators intertwine these endomorphisms 
[3]. We announce here, in the setting of C*-algebras, the basic results which 
have allowed us to resolve this problem. 

We give conditions on an endomorphism p of a C*-algebra A with unit and 
trivial centre in terms of intertwining operators for powers of this endomor
phism which suffice to determine a compact Lie group G and an action of a 
G-dual on A. It is convenient to begin by describing the C*-systems {B,G,a} 
which arise if we take a cross product of A by the action of the G-dual. 

Thus, we consider a C*-algebra S carrying a faithful continuous action 
a of a compact group G by automorphisms and a Hubert space H C B of 
dimension d, 1 < d < + oo, i.e. we have an orthonornal basis -0i, t/>2, • • •> ^d of 
H consisting of isometries satisfying 

d 

Let Ba denote the subalgebra of the fixed points. We suppose: 
(a) H and Ba generate S; 
(b) ag(H) = H,geG; 
(c) Detag\H = 1, g e G; 
(d) (BaY n S = CL 
The first three conditions imply that G is isomorphic to a closed subgroup 

of SU(d) and, hence, is a Lie group. The final condition leads to a particularly 
simple class of cross products. 

We first give some examples of this situation. 
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(i) Our C*-algebra B always contains the Cuntz algebra Od [4] of order 
d generated by the Hilbert space H. We therefore get minimal examples by 
taking B = Od and letting G be a closed subgroup of SXJ(d) acting naturally 
on Od- In these examples the fixed point algebras Ba will be denoted by 0G> 
OG has trivial relative commutant in Od-

(ii) Let A be a C*-algebra with centre CI, and let ft be an automorphism of 
A with (5d = i (the identity automorphism). The covariance algebra AxpZd 
is generated by A and a unitary V implementing /?. Let Zd he identified with 
the centre of SU(d) and let $ be the dual action on A Xp Z^. If a is the action 
Zd x SU(d) on A Xp Zd <8> Od given by 

àhxg = Ph-i ® othgi heZd, g e SU(d), 
where a is the natural action of SU(d) on Od, then define B to be the a% -
fixed points in A Xp Zd <8> Od and a the action of SXJ(d) obtained by restricting 
à to B. In other words, B is generated by A <8) I and V <g> H. (Constructions 
of this kind can be found in [5].) Now Ba = A ® Osu(cf) a n c^ ^ m (a)> 
(Bay n B = ci. 

(iii) A very similar structure occurs in Quantum Field Theory if we look 
at the superselection structure defined by a field algebra J , assumed, for the 
sake of this example, to be given a priori and acted on by a compact Lie group 
G C SU(d) of gauge automorphisms [2]. The only minor difference is that 
ƒ is a C*-inductive limit of local von Neumann algebras 7{0) as 0 varies 
over bounded open sets in space-time, and each 7{0) is generated as a von 
Neumann algebra by its fixed-point subalgebra and a Hilbert space H C 7(0) 
of dimension d. 

Notation. We work with the category of C*-algebras with unit; all ho-
momorphisms will preserve the unit. If A is such a C*-algebra and p and a 
are endomorphisms of A, (p,o~) will denote the subspace of intertwiners in A 
between p and a: 

Te(p,o) if Te A and Tp(A) = a(A)T, A e A. 

i denotes the identity automorphism of A. 
The group of all finite permutations of N will be denoted by Poo, and the 

subgroup leaving n + 1, n + 2 , . . . fixed will be denoted by P n . The endomor-
phism er of PQO is defined by 

op(l) = 1, (ap)(n) = 1 + p(n - 1), n > 1, p G P«>. 

The n + 1-cycle (1 ,2 , . . . , n + 1) will be denoted (n, 1). 
Our assumptions on the C*-systems {B,G,a} have some straightforward 

structural implications for the fixed-point algebra: 

THEOREM 1. Let B be a C*-algebra containing a Hilbert space H of finite 
dimension d > 1 and let a be a faithful strongly continuous action of a compact 
group G on B satisfying (a)-(d) above. Let A = Ba and let p denote the 
endomorphism of A obtained by restricting pn to A, where 

(i) i/>B = pH(B)rp, V e H, BeB. 
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Then we have the following implications for {A,p}: there exist a unitary rep
resentation e of Poo in A such that 

(2) e(ap) = p(e(p)), p e P o o , 

(3) e ( l , l ) € ( p V ) , 
(4) e(«, 1)X = p{X)e{r, 1), X e (pr, p% r, s € N„, 

and an isometry R G (̂ , pd) such that 

(5) R*p(R) = (-l)d-Hl/d)I, 

(6) RR* = i £ 8ign(p)e(p). 
' p€Pd 

.Every automorphism of B leaving A pointwise fixed is of the form ag for some 
geG. 

In terms of an orthonormal basis ipi, i = 1,2,..., d, in H we have 

(?) e(p)= J2 ^i^---^n^p ( n )"-^p ( 1 ) , pePn , 
t l | t 2 v i » n 

V d ! P6P , 

T/ie support of e\Pn corresponds to the set of Young tableaux with n squares 
and at most d rows. 

If p is an endomorphism of A we say that p has permutation symmetry if 
there is a unitary representation sp satisfying (2)-(4). If, in addition, we have 
Rp G (̂ , pd) satisfying (5) and (6), we say that p has permutation symmetry 
of dimension d and satisfies the special conjugate property. 

Our main result is the following converse to Theorem 1. 

THEOREM 2. Let A be a C*-algebra with centre CI and p an endomor
phism with permutation symmetry of dimension d > 1 satisfying the special 
conjugate property. Then there is a C*-algebra B containing a Hubert space 
H of dimension d, a faithful strongly continuous action of a closed subgroup 
G ofSXJ(d) on B satisfying (a)-(d), and a monomorphism ir of A into B with 
n(A) = Ba, pif07T = 7rop. If we require, in addition, that n{Rp) = R and 
7r(Sp(l, 1)) = £(1,1), then G is uniquely determined up to conjugacy in SU(d). 

Every compact Lie group appears as a subgroup of SU(d) for some d, so the 
special conjugate property leading to G C SU(d) is not an essential restriction 
as far as G is concerned. It is, however, possible to modify the above results 
to include a wider class of endomorphisms p with permutation symmetry of 
dimension d giving just G C U(d). 

The remaining theorems in this announcement were derived in the course 
of proving Theorem 2 and are included partly for their intrinsic interest and 
partly to indicate the method of proof. 

The Cuntz algebra Od plays a special role: if S = 0<j, as in example (i), 
we write 0(p) and S for the elements defined by (7) and (8), aH for the 
endomorphism defined by (1), and a for its restriction to OG-
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THEOREM 3. The C*-algebra Osv(d) is generated by S and 6(p), p G Poo-
OG is simple for any closed subgroup G ofSXJ(d). By contrast, 0\j(d)> the C*~ 
algebra generated by 0(p), p G Poo> has many ideals. 

Now the tensor powers of the defining representation of G C U(d) are 
realized within Od on the tensor powers of H and the corresponding spaces 
of intertwining operators are precisely the subspaces (ar,<r5) of OG- When 
G C SU(d) the representation theory within OG is sufficiently rich to be 
regarded as a dual object for G. An action [6] of this G-dual on a G*-algebra 
A with unit can be described in terms of OG- It consists of an endomorphism 
p of A and a monomorphism // : OG —• A with 

//o<7 = po/z, /i(ar,<73) C (pr,p9), r , 5 G N 0 . 

In this context we can define a G*-cross product A ®M Od of A by the 
action of the G-dual: consider the problem of finding a G*-algebra S and a 
commutative diagram 

A A B 
(9) M î î ç 

OG - • Od 

such that ç(ip)ir(A) — n o p(A)c(iJj), ip € H, where the morphism OG —> Od is 
simply the inclusion mapping. 

THEOREM 4. The above problem has a universal solution, denoted A <8>M 

Od, where we write AÇÇ^C for TT(A)Ç(C). A^^Od carries a strongly continuous 
action à of G, the dual action, with àg(A(^tÀC) = ACC^agfö). The fixed-point 
algebra for this action is A 0M / . The closed G-invariant ideals in A (8)M Od are 
in 1-1 correspondence with the closed p-stable ideals in the fixed-point algebra. 

If, in particular, we regard the mapping -K in (9) as a Hubert space repre
sentation, the universality property in Theorem 4 shows that A ®M S is the 
appropriate generalization of the notion of covariance algebra to our context. 

The G*-system {S, G, a} of Theorem 1 is canonically isomorphic to {A <8>M 

Od,G,a} since, if we take Od to be the G*-subalgebra generated by H C S, 
p, is just the inclusion OG C Ba = A. Although we are not given the group 
G in the setting of Theorem 2, the next result allows us to apply the cross 
product construction with G replaced by SU(d). 

THEOREM 5. Given A, p, ep and Rp as in Theorem 2, there is a unique 
monomorphism p,o : Osu(d) —> A with 

Mo(5') = Rpi 

/*o(0(p)) = £p(p), p e P o o , 
po fi0 = fi0oa. 

Writing B for A® p00d and it (A) for A® ̂  I, thenu{A) = B& and7r(A)'nB = 
B'nB. 

Thus the G*-system {S, SU(d), &} satisfies all the requirements of Theorem 
2 except that the relative commutant of the fixed-point algebra does not 
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reduce to the complex numbers. A simple general procedure [7] leads to 
the desired result: since à acts ergodically on the centre of B, SU(d) acts 
transitively on its spectrum. Every point (j) in that spectrum determines a 
stabilizer G<f, C SU(d), and if Ĵ > denotes the closed ideal of B generated by 
Ker</> and rj^ denotes the corresponding quotient homomorphism of B onto 
B/«/</>, then 

THEOREM 6. The C*-system {B,G,a} obtained by setting B = B/J^, 
G — G(f> and defining a by ag o rj^ = ^ o âg, g £ G^, has the properties 
described in Theorem 2, where IT = n^ o fi. 

By the comments following Theorem 4, Theorem 6 provides us with an 
extension of p,Q to a monomorphism /i: OG —> A for which fi(ar,(Ts) — 
(/9r,pa), r,s E NQ. This makes the pair (/i, G) unique up to conjugation in 
SU(d); this surjectivity of p, on intertwiners reflects condition (d) and singles 
out our special class of cross products. 

Our main theorem, Theorem 2, can be generalized to treat a semigroup 
A of endomorphisms; under an appropriate analogue of our assumptions we 
can conclude that A is the fixed-point algebra of a dual C*-system {B,G,a}, 
where G is a compact group which is now not necessarily a Lie group. 

This has applications to Quantum Field Theory when A is the C*-algebra 
of local observables whose local structure determines a semigroup A r of endo
morphisms associated with superselection sectors [3]. For each p G A r , there 
is a canonical unitary representation ep of P ^ in A describing the (particle) 
statistics. As this structure is deduced from basic principles, it provides a 
general analysis of the possible statistics in particle physics: the support of 
SplPn corresponds to the set of Young tableaux with n squares and at most 
d rows, when p is said to have para-Bose statistics of order d, or with at most 
d columns, para-Fermi statistics of order d [3, 8]. 

The results announced here allow us to conclude that there is a compact 
group G, the gauge group of the first kind, whose representation theory de
scribes the superselection structure, and an action of G on a C*-algebra 7 of 
fields with normal commutation relations. 

Another application is to the duality theory of compact groups. These 
results allow one to recognize the representation theory of a compact group 
when it is given concretely in terms of endomorphisms of a C * -algebra and 
their intertwining operators, but it is possible to go further and strengthen 
the Tannaka-Krein duality theorem, by characterizing the abstract category 
of representations of a compact group. 

We also envisage developments of the present analysis with applications to 
If-theory, duality for cross products, and the Connes spectrum. 
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