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to the subject and is, moreover, indispensible for a lot of important mathe­
matics. It is true that one should figure out what abstract notions mean in a 
more concrete context, as in the case of the Baer sum. But one expects in a 
Springer Lecture Note that something more than that has happened after 66 
pages. Another complaint concerns the title. It suggests that one will learn a lot 
about representation theory, not just the fact that Schur mulipliers occur when 
one tries to lift a projective representation to a linear one. It would have made 
more sense to put "isoclinism" in the title. If you want to learn about 
isoclinism and its connections with the multiplier, I suggest reading instead the 
survey article by one of the authors [2]. It has a swifter pace so that one can see 
more easily where things are going. In the same proceedings one may also read 
Wiegold's paper on the Schur multiplier. On page 204 of the book one should 
modify the definition of unicentral to save what follows. The correct require­
ment is that 7rZ(G) equals Z(Q) for all central extensions m\ G -> Q. 

REFERENCES 

1. R. Baer, Erweiterungen von Gruppen und ihren Isomorphismen, Math. Z. 38 (1934), 375-416. 
2. F. R. Beyl, Isoclinisms of group extensions and the Schur multiplicator, Groups — St. Andrews 

1981 (C. M. Campbell and E. F. Robertson, eds.), London Math. Soc. Lecture Note Ser., Vol. 71, 
Cambridge, 1982, pp. 169-185. 

3. R. L. Griess, Jr., Schur multipliers of the known finite simple groups. II, The Santa Cruz 
Conference on Finite Groups, Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc, Providence, 
R.I., 1980, pp. 279-282. 

4. H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 
257-309. 

5. S. Mac Lane, Origins of the cohomology of groups, Topology and Algebra, L'Enseignement 
Math. Mono. 26 Kundig, Genève, 1978, pp. 191-219. 

6. J. Milnor, Introduction to algebraic K-theory, Ann. of Math. Stud. No. 72, Princeton Univ. 
Press, Princeton, N.J., 1971. 

7. I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, 
J. Reine Angew. Math. 127 (1904), 20-50. 

8. , Vntersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare 
Substitutionen, J. Reine Angew. Math. 132 (1907), 85-137. 

9. , Uber die Darstellungen der symmetrischen und alternierenden Gruppen durch 
gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250. 

10. C. Soulé, K2 et le groupe de Brauer d'après A. S. Merkurjev et A. A. Suslin, Sem. Bourbaki, 
Vol. 1982/83, Exp. 601. 

11. J. Wiegold, The Schur multiplier, an elementary approach, Groups — St. Andrews 1981, op. 
cit., pp. 137-154. 

WILBERD VAN DER KALLEN 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 10, Number 2, April 1984 
© 1984 American Mathematical Society 
0273-0979/84 $1.00 + $.25 per page 

Introduction to number theory, by Loo Keng Hua, Springer-Verlag, Berlin, 
1982, xvüi + 572 pp., $46.00. ISBN 0-3871-0818-1 

The book under review is a translation from the Chinese of a book first 
pubHshed in 1956. (The Chinese edition was reviewed by K. Mahler in 
Mathematical Reviews.) Some of the chapters in this translation have been 
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supplemented by notes updating some of the results of these individual 
chapters. The notes were provided by Yuan Wang and the translation is by 
Peter Shiu. 

Number theory enjoys, today, an interest and vigor comparable to any 
discipline in mathematics. Although some of the results are centuries (and even 
millenia) old, and some have a specialized and seemingly isolated character, 
interest in them is as broad and sustained as ever. 

One need only mention such ancient topics as perfect numbers, unique 
factorization, and distribution of primes, which are found in Euclid; represen­
tations of integers by quadratic forms—a subject persued by the Babylonians; 
the solutions to diophantine equations, whose origins are lost in history. 

How are we to account for this vigor, which has been sustained over the 
centuries? This is a difficult question to answer and some are tempted to 
ascribe it to a quasi-theological basis. At least, Kronecker felt that the integers 
occupied a special place in the history of ideas. 

Whatever the philosophical reason, it is a fact that over the years there has 
been repeatedly, a sort of catalysis between number theory and other branches 
of mathematics, sometimes borrowing and sometimes giving, both enriching 
and being enriched. Consider for example the problem of constructing regular 
polygons. This geometric question was solved by Gauss with the help of 
"Gaussian sums" whose properties relied on some number-theoretic results, 
such as the existence of a primitive root. In this case, the study of Gaussian 
sums and their variants became a part of number theory. In other cases, the 
number-theoretic problem gave birth to new developments in other fields. As 
an example, the study of diophantine equations has provided an important 
stimulus in algebraic geometry. In still other cases, number-theoretic pursuits 
have given rise to new disciplines. For example H. Bohr's studies of the 
Riemann zeta function led him to the concept of almost periodic functions. 
(Some would question whether the zeta function is properly a part of number 
theory.) 

In some instances the development has remained a part of number theory 
with no apparent intellectual justification. It is difficult to understand, for 
example, why the transcendence of TT should be a theorem in number theory. 
Indeed A. Weil, in one of his essays on number theory, questions whether 
analytic number theory is number theory at all. We can do no better than to 
quote from "Alice...": "When I use a word, it means just what I choose it to 
mean—no more and no less." 

In addition to its influence in other branches of mathematics, number theory 
has had "apphcations" of various sorts some rather unexpected. Hua notes a 
couple of examples. The first is a recent encryption scheme of Adleman, 
Rivest, and Shamir whose decoding requires the factorization of large integers. 
The other is the detection of a logical error in a computer, found by Rosser, 
Schoenfeld, and Yohe, while calculating zeros of the zeta function. We could 
add to these apphcations the use of finite fields in coding theory and the use of 
diophantine approximation in the problem of approximate quadrature, a topic 
to which Hua himself has contributed. 

Hua espouses the point of view we have remarked upon, and so has written 
a comprehensive book. It is fairly long—twenty chapters in about 575 pages, 
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but the reader should not be discouraged, for many of the chapters can be read 
independently of one another. 

Apart from classical material, the book covers a wide variety of topics. We 
shall illustrate, with two topics, the way in which number-theoretic problems 
have influenced developments in other realms of mathematics. 

The first concerns the theory of trigonometric—sometimes called exponen­
tial—sums. These sums play a crucial role in numerous applications to 
number-theoretic and other problems. 

Let f(x) be a real valued function defined on some real domain and let 
A > 0 be any real number. An exponential sum has the form 

E-E(f9 y9 A)- £ e2"""», 

where the sum is extended over integral values w. It is evident that E = 0(A). 
If, however, values of f(x) exhibit some regularity, then one might hope that 
the individual terms would damp each other. Thus the central problem is to 
determine conditions on ƒ and y which produce this cancellation resulting in 
E = o(A% and more precisely to specify how much "smaller" than A the sum 
is. Much work has been devoted to this fundamental problem. If for example/? 
is a prime, y = l/p, and A = /?, and f(x) is a primitive polynomial e Z[JC], 
then the sum can be related to a geometric question; using the Riemann 
hypothesis for curves over finite fields, A. Weil had shown the remarkable 
result that 

Such a sharp result cannot be expected (nor indeed is it true) in general. In 
any event, the search for good estimates has stimulated work in other areas of 
mathematics. 

Deriving and then using an appropriate estimate, Hua gives a proof of the 
fact that if n(p) is the least quadratic nonresidue mod p, then 

n(p)<p1^ log2 p. 

We add parenthetically that the existence of a "small" quadratic nonresidue 
has played a role in estimating the number of steps required to factorize a 
number. 

The second example we give arises from additive number theory and can, 
with justification, be said to have stimulated the general theory of modular and 
related forms. 

Let it be required to determine r(n)—the number of ways of writing the 
integer n > 0 in the form n — a{ + a2 + • • • + as—where the at belong to sets 
At c Z. It is easily seen that if ƒ(x) = Ef l€y4xa', then 

F(*)- Ê K»)*"-n/,00 (Ko) = i). 
n = 0 ' 

If now the functions ft(x) have favorable properties, then we can infer 
properties of r(n). Perhaps the oldest example, due to Euler, is the case when 
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At = {0, i, 2 / , . . . , mi,... } and s is unrestricted. We then get 

ƒ , ( * ) - ( 1 - * ' ) . F(x) = U(l-xT, 
1 = 1 

and then r(n) = p(n) = number of unrestricted partitions of «. The function 
F(x) has modular properties i.e. if x = e2t7TiT, then the mapping 

ar + b 
T - * — — - 7 , a,b,c,deZ, ad-bc=\, 

transforms F(x) in an especially nice way. The set of such transformations 
forms the unimodular group G, and functions behaving well under G or its 
subgroups play an important role in number theory, and their study comprises 
a very active area of research. There have been recently discovered connections 
between modular forms and characters of the sporadic simple groups. At any 
rate, using these modular properties on F(x), Hua gives a proof of a theorem 
of Hardy and Ramanujan, viz., 

logp(n) _ \2m 

Many readers will know that this is a weak form of Hardy's and Ramanujan's 
asymptotic formula for p(n), which was perfected to a rapidly convergent 
series by Rademacher. 

If At = {0,1,4,.. . , m 2 , . . . } then 

00 / 00 \ s 

Er(«)x"= I*"2 =(f(x)Y 
n=\ \-oo / 

and here r(n) is the number of representations of « as a sum of s squares. The 
function ƒ(e2"iT) is a theta function whose modular properties were observed 
by Jacobi who also studied the case s = 4. In this book Hua analyzes the case 
s = 3 and derives an explicit and detailed formula for r3(n). 

These two examples illustrate the close interaction of number theory with 
some other parts of mathematics. 

One of the most striking features of the book is its economy of style, 
incorporating an astonishing number of results and topics. It achieves this 
efficiency, in part, by avoiding the temptation of stating and proving results in 
their greatest generality. To be sure, proofs of some theorems are left as 
exercises which supplement the, unfortunately, relatively few exercises to be 
found in the book. 

As an example of this characteristic we single out especially the chapter on 
algebraic number theory. In the compass of 50 pages, the author takes us from 
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the very beginnings of the subject through ideals, class numbers etc., and ends 
with applications to Mersenne primes and diophantine equations. This is 
achieved with no sacrifice of lucidity. 

What is true of this chapter holds to a greater or lesser extent for most 
chapters. The interested mathematician may approach the material with 
minimal prior knowledge. The language is classical and the reader will not be 
impeded by the necessity of having a large mathematical vocabulary. On the 
other hand, the reader will be amply rewarded with beautiful results of 
considerable depth and can come away with a sense of satisfaction. 

In one of his letters to Sophie Germain, Gauss, referring to number theory, 
wrote that "the enchanting charms of this sublime science are not revealed 
except to those who have the courage to delve deeply into them." This book 
provides an admirable vehicle for so delving. 
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Since the second World War the theory of linear partial differential equa­
tions has undergone two major revolutions. The first was the advent, in the late 
forties, of a formalized theory of "generalized functions". Its starting point was 
the use of test-functions. The idea was not entirely new; it had been introduced 
earlier in the theory of Radon measures (in particular, on locally compact 
groups [Weil 1940]) and had something to do with the old quantum mechanics: 
one could not always assign a value at a point to certain "functions", such as 
Dirac's, but one could "test" them on suitable sets, or "against" suitable 
functions. In the most important case the test-functions are smooth (i.e., C00) 
and vanish identically off some compact set. The corresponding generalized 
functions were called "distributions" in [Schwartz 1948]. Distribution theory 
assimilated many ideas and discoveries of the preceding decades (by Heaviside, 
Hadamard, Sobolev, Bochner and others). To these it added new ones, of 
which the most successful were perhaps the now-called Schwartz spaces 6?, S?' 
and the theory of Fourier transform of tempered distributions—although 
again the link between slow (or tempered) growth, the Fourier transform and 
localization, and, beyond, causality, was not absolutely new, and certainly not 
to physicists. Schwartz gave a strong functional analysis slant to the theory, 


